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Introduction 

The primary motivation of models discussed in this volume is the need 

to quantify the effects of policy measures on e.g. the pension system. Stylized models 

are preferred for qualitative insight (Diamond 2001), but cannot provide precise 

estimates for policy formulation. The price one has to pay for the realism is the 

relative complexity of the models. The models are not analytically tractable and even 

a description of their computational solution is involved. We discuss here a related 

model that deals with decision making in the presence of uncertainty about future 

mortality rates. While our model does not allow for analytical solutions either, it is 

transparent in terms of what is being optimized and permits an analysis of more 

general informational assumptions than the complex models used to analyse pension 

problems. In discussing the model we have the following three issues in mind. 

 Firstly, studies of the use of population forecasts in decision making1 

suggest that while the uncertainty of forecasts is readily acknowledged by both the 

users and producers of forecasts (Alho, Cruijsen and Keilman, 2006), there is 

considerable inertia in the adoption of new methods. Cohort-component forecasts of 

population have been produced in many European countries since the 1920s and 

1930s (Alho and Spencer, 2005). Since that time, alternative forecast variants have 

typically been offered, but the users have almost invariably considered the middle 

variant only. As discussed by Alho, Cruijsen and Keilman (2006), providing 

alternative variants is a deficient method for handling uncertainty. Nevertheless, a 

reason for considering only one variant may be the cost of added complexity in a 

decision process involving several decision makers. Alho and Spencer (2005) note 

that frequent updates may similarly be costly and lead to a lack of predictability in 

other parts of the economic system.  Thus, it is of interest to discuss low information 

                                                 
1 For a recent study in the EU context, visit 
http://ec.europa.eu/employment_social/social_situation/docs/lot1_projections_finalreport_en.pdf 



alternatives to rational expectations. In the lowest information one, we assume that the 

decision maker (‘consumer’, in our example) only learns the initial point forecast, 

makes a life course plan and never reconsiders. In an intermediate information case 

we assume that the decision maker is periodically provided with an updated point 

forecast that reflects the demographic development up to that time. She then produces 

a new plan for the rest of her life. This method of updating is continued until death. At 

any update, she does not take into account that she will be offered a chance to 

reconsider later on. Obviously, the low information alternatives should produce lower 

utilities than the rational expectations solution, on average. The question is how much 

the decision maker loses compared to a rational expectations solution. 

 Secondly, the OLG models developed for Denmark, Finland, Germany, 

Netherlands, and the U.K. that are discussed in this volume (Lassila and Valkonen, 

2006; Fehr and Haberman, 2006; Armstrong et al., 2006; Weale, 2006) have been 

developed in a deterministic context. Or, only one future population path is 

considered, and decision makers are assumed to know it exactly. The authors are fully 

aware that the assumption of perfect foresight is not natural in the context of 

stochastic population development, but numerical complications (caused by lack of 

Markovianity and the high dimensionality of the resulting optimization problem) 

currently preclude a formulation with rational decision makers that take precautions in 

the face of uncertainty. In contrast, our setting is simple enough so that the 

computational problems of determining the optimal decisions can be overcome. Thus, 

we are able to evaluate, how much a decision maker gains if given access to the 

‘crystal ball’ of perfect foresight as compared to the rational expectations solution.  

Thirdly, both results in this volume and other work suggest that 

uncertainty of population development directly influences the sustainability of 

pension systems (Weale 2006) and public finances as a whole (Alho and Vanne 

2006). On the other hand, although it has been established that past forecasts of 

morality have had major errors (National Research Council, 2000) it is also shown 

that for the sustainability of the health care systems other factors dominate (Ahn 

2006). In our example we consider aggregate mortality risk, i.e. the uncertainty 

caused by the fact that the forecast of the average mortality of a cohort is uncertain. 

While it is well-known that aggregate mortality risk is a major concern for public 

pension systems and insurance companies selling annuities (Blake and Burrows, 

2001; Friedberg and Webb, 2005), less is known about its direct importance to 



consumers trying to make optimal savings decisions. We will quantify this effect 

relative to idiosyncratic mortality risk, by which we refer to the uncertainty of an 

individual’s lifetime conditionally on average cohort mortality. This, of course, is a 

topic of classical life insurance mathematics.  

 The life cycle savings problem we consider involves a consumer who 

has to decide how much to save for retirement. She understands the nature of 

idiosyncratic risk, but her understanding of the uncertainty of forecasting ranges from 

the low information alternatives, via knowledge of the exact predictive distribution of 

future mortality, to perfect foresight. Formally, the predictive distribution we use is 

essentially equivalent to the mortality model of Lee and Carter (1992). Instead of 

trying to replicate the mortality of any given country, we will numerically evaluate the 

model so that it is representative of mortality of Europe, as assessed in the UPE 

project (cf. Keilman, Cruijsen and Alho, 2006). A discrete Markovian approximation 

will be provided that represents the uncertainty of forecasting 50 years into the future. 

This allows us to carry out the dynamic optimisation (cf. Filar and Vrieze, 1997) 

needed for the rational expectations solution. Mathematically, the other informational 

settings are easier. 

 We will start by developing the mortality model. Then, we describe the 

consumer’s decision problem in terms of her utility function, and the welfare measure 

that is used to translate utilities to equivalent consumption. Results for the various 

informational assumptions and different degrees of risk aversion follow. We conclude 

by considering the implications of our findings for future work. 

 

Demographics 

In this section, we present the stochastic process for aggregate mortality. The 

challenge is to specify a process that is simple enough so that it we can solve the life 

cycle savings problem of a fully rational consumer,  but that can also be calibrated to 

be empirically relevant. 

We assume that time is discrete and index the periods as 1,2,...,t T=  

and ages as 1,2,...,j T= . Death occurs at the end of the period only. 

     Let ( ) 0tm j ≥  be age-specific mortality rate among consumers in age j 

during period 1,2,...t =  True future mortality rates are taken to be random. 

Following loosely the bilinear model of Lee and Carter (1992), we specify the 



probability law of future mortality as follows. Let ( )m j  be the current mortality rate 

in age j and assume that it is known. Its expected rate of decline is ( )b j , and the 

median mortality t years ahead is ˆ ( ) ( )exp( ( ))tm j m j tb j= − . For a simple 

representation of the uncertainty of the forecast, we define a Bernoulli process tX  

such that ( 1) ( 0) 1/ 2t tP X P X= = = =  and then a discrete random walk 

1t t tY Y X−= + , where 0 0Y = . This is a first order Markov process with mean (or 

drift) t/2. Let us further define a function ( ) ( / 2)tZ y y t φ= − , where φ > 0 is a 

volatility parameter to be specified later. Then, the true age-specific mortality is 

assumed to be of the form 

 

 ( ) ( )exp( ( ( )) ( ))t t tm j m j t Z Y b j= − +  (14.1) 

 

Denote the probability that a consumer who is alive in age j at time t 

will be alive in the beginning of the next period by ( )ts j . For calibration purposes 

we assume that each period corresponds to five calendar years. Assuming that 

mortality is constant within a period, we have 

 

 ( ) exp( 5 ( ))t ts j m j= −    (14.2) 

 

In the analysis below, we will consider only the problem of consumers 

who are of age 1 in period 1. That is, we specialize to the case t j= . We will take the 

first period to correspond to age 20-24 and the last period to age 105-109. After that 

everyone is assumed to die. Therefore, the latest time period we will have to consider 

is 18T = . On the other hand, it will be important to keep in mind that the 

probabilities (14.1) are random, since they are functions of tY  via (14.1). To make 

this transparent, when t = j we will write ( ) ( )t t ts j S Y=  for (14.2). We assume that 

period t mortality rates are observed at the end of period t. Due to the Markovianity of 

process tY , both the expectation and median forecast at time v for the survival 

probability at time t v≥  depend on 1vY − . We denote the median by �
v
tS . A technical 

issue that arises here is that under our model, randomness is incorporated in a 



nonlinear manner into survival probabilities (14.2), so setting aggregate variance to 

zero does not exactly yield unconditional expected values. Instead, the relevant 

quantities must be determined numerically. 

The mortality process is parameterized by the values ( )m j , ( )b j  andφ . 

In calibrating these we aim to provide realistic values in a European context, rather 

than to replicate the values of any given country at any given time. Thus, we use 

combined male and female mortality data from Finland in 2002 for the ( )m j  's,2 and 

average rates of decline in mortality from eleven European countries during 1970-

2000 (Alho and Spencer 2005, p. 235). These empirical data were available up to age 

99. The estimates were extended to age-group 100-104 by assuming mortality to 

increase at the same rate as it increased from age 90-94 to age 95-99. The rate of 

decline over time was assumed to be the same as in age 95-99. For simplicity, we 

further took ( ) 0m j = , for 10j < . To specify the volatility of the process, we used 

data from nine European countries with long mortality series of good quality. The 

data suggest that a random walk can provide an approximate representation for the 

forecast error of the log of the age-specific mortality, when the standard deviation of 

the process increment is taken to be 0.06 (Alho and Spencer 2005, p. 256). By taking 

into account that an average value for the ( )b j  's is about 0.08, we arrive at a value 

3.3541φ = . Table 14.1 displays ( )m j  and ( )b j . In addition, it displays median 

probabilities of surviving from one period to the next. 

To see how the calculations were set up, note first that the rate of 

decline corresponds to five year model periods, so the annual rate of decline is about 

0.08/5 = 0.016, or about 1.6%. Also, note that we are displaying cohort survival 

probabilities here. Thus, e.g. the median mortality of those in age 85-89 has been 

reduced from the value 0.190 at t = 0, during 14 model periods to 0.190*exp(-

14*0.062) = 0.07976. Thus, the median survival is exp(-5*0.07976) = 0.671, the value 

given in the last column of Table 14.1 for this age-group. 

 

  [Table 14.1 HERE] 

                                                 
2  These correspond to a life expectancy at birth of about 78 years, which is the average period life 
expectancy for females in Europe in 2000 (United Nations 2002). Thus, the model can serve as an 
approximation of the combined male-female life expectancy for cohorts born now. From Table 2.3 we 
find that the UPE assumption of the combined life expectancy in 2049 is about 86.5 years for the EEA+ 
region. This area has a higher life expectancy than Europe as a whole.  



 

As an illustration of the degree of uncertainty related to future mortality, 

we present in Figure 14.1 the distribution of average lifetimes over 10,000 realizations 

of the mortality process. The standard deviation is approximately 3.3 years. Since this 

represents cohort survival 50 years into the future, it agrees well with the somewhat 

larger UPE values of Table 3.3 that relate to period survival in 2049. 

[Figure 14.1 HERE] 

 

 A related aspect of the mortality model is the relationship between 

aggregate uncertainty and idiosyncratic uncertainty. Consider median mortality. An 

individual’s lifetime has a standard deviation of about 6.1 years around the point 

forecast. (This is a somewhat too low value, because we have completely eliminated 

the ‘outliers’ that occur, in reality, before age 65.) This means that the total standard 

deviation that includes the aggregate uncertainty is approximately (6.12 + 3.32)1/2 = 

6.45. We see that from an individual’s point of view adding the aggregate uncertainty 

only adds about 5% to the standard deviation, or it does not dramatically alter the 

prospects of longevity. 

 

The consumer’s problem 

We consider a simple life cycle savings problem. The consumer receives wage 

income during the first periods and is retired for the last periods of her life. Let tw  

denote her wage income in period t. During retirement, the consumer needs to finance 

her consumption with her own savings. The model is a partial equilibrium one in that 

all prices are exogenously given. Prices are also independent of demographics. The 

periodic utility function is denoted by ( )u c , where 0c > stands for consumption. 

We assume that the only asset available to the consumer is a financial 

asset, k , that pays a constant interest rate, r . We also impose a borrowing constraint: 

0k ≥ . Together with lifetime uncertainty, the absence of both annuities and a 

bequest motive implies that the consumer will leave accidental bequests whose value 

is not reflected in her lifetime utility. 

In the case of rational expectations about future mortality, it is the 

easiest to write the consumer's problem recursively. Given the simple structure of the 

mortality process, in the beginning of period t, a single integer, 



namely 1 {0,1,..., 1}tY t− ∈ − , is sufficient to determine the best possible forecast 

about mortality in period t and beyond. Hence, 1tY −  is the only state variable needed 

to capture all relevant information about aggregate mortality in period t.3 Denoting the 

period t value function by tV , and the discount factor by 0β > , the problem can be 

written recursively as follows: 

 

11 | 1 1

1

( , ) max{ ( ) [ ( ) ( , )]}

such that
(1 )

t tt t t t Y Y t t t t t

t t t t

V k Y u c E S Y V k Y

k w r k c

β
−− + +

+

= +

= + + −
 (14.3) 

 

The solution to this problem includes a savings function 1 1 1( , )t t t tk k k Y+ + −=  and a 

consumption function 1( , )t t t tc c k Y −=  that determine next period's savings and 

current consumption given age, current savings, and demographic development up to 

period t-1.  

We will compare the above rational expectations problem to two 

alternate problems where the consumer has less information about the mortality 

process, and to the problem with perfect foresight. For the ease of comparison, we 

write these problems using backward recursion even though, in practice, they are 

more easily solved directly, in a single global optimization routine. With perfect 

foresight, the consumer’s problem can be written as follows:  

 

1 1 1

1

( ,{ } ) max{ ( ) ( ) ( ,{ } )}

such that
(1 )

T T
t t s s t t t t t t s s t

t t t t

V k Y u c S Y V k Y

k w r k c

β= + + + =

+

= +

= + + −
 (14.4) 

 
We have included the path of future Y ’s as an argument of the value function to 

highlight the fact that the optimal decision in period t  depends on all future survival 

                                                 
3 Under the scaled model of error and its parametrisations discussed in Alho, Cruijsen and Keilman 
(2006) the situation would be more complicated. For the random walk model of age-specific fertility 
the state variable would include a vector with as many components as there are child-bearing ages, say, 
30. For mortality the whole past history for males and females would have to be added (comprising at 
time t of, say, t×2×101 components). The same number would have to be added for migration. 
Moreover, to the extent that any future optimizations in OLG models depend on actual population 
numbers, we might, in principle, need to add the full population history, as well. Thus, even though the 
present formulation leads to a numerical optimisation problem, it is far more transparent than the other 
models considered in this volume. 



probabilities which are assumed to be known with uncertainty.4 Clearly, the 

consumption-savings decisions depend on demographic developments in the future. 

Consider then the other extreme case where the consumer learns only 

the initial point forecast in period t = 0, makes a life cycle savings plan believing that 

future mortality rates will be exactly as predicted by the point forecast, and never 

reconsiders the savings plan. Following again the recursive formulation, we can write 

the consumer’s problem in this case as follows: 

 

 

�
1

1 1

1

( ) max{ ( ) ( )}

such that
(1 )

tt t t t t

t t t t

V k u c S V k

k w r k c

β + +

+

= +

= + + −
 (14.5) 

 

Recall that �
1
tS  is the period 1 point forecast for surviving period t.  The solution to 

this problem is a sequence of consumption-savings decisions which are independent 

of the demographic path. 

  In the other low information case, the consumer updates her savings 

plan periodically based on the most recent point forecast. However, she still does not 

take uncertainty into account. For instance, in period 1 she makes a life cycle savings 

plan under the assumption that her future survival probabilities will be exactly those 

predicted by the period 1 point forecast. Then, in period 2 she is given a new point 

forecast (determined by 2Y ). She makes her period 2 savings decision taking her 

current savings as given and under the assumption that future survival probabilities 

will be exactly those predicted by the new point forecast, etc. For a given aggregate 

mortality path, the problem the consumer faces at time t can be written down formally 

as a sequence of dynamic optimization problems where future mortalities are assumed 

to be given by point forecasts that are conditional on demographic development up to 

time t - 1. Thus, we have formally that 

 1 1

1 1 1 1

( , ,{ [ | ]} ) max{ ( )

( [ | ]) ( , ,{ [ | ]} )},

T
t t t s t s t t

T
t t t t t t s t s t

V k Y E Y Y u c

S E Y Y V k Y E Y Yβ
− − =

− − − = +

= +
 (14.6) 

 
  

                                                 
4 In practice we solve this problem separately for each sequence 1{ }T

t tY = in our simulations. 



 

if survival is evaluated at the conditional expectation (rather the conditional median). 

In other words, the consumer decides as if she had a ‘crystal ball’ like in (14.4), but 

she actually only has conditional expectations given Yt-1 to work with. 

  

Calibration 

The retirement age is set at 10, which corresponds to real age 65. Until retirement, the 

consumer earns a wage income of 1 every period, i.e. 1tw =  for 10t < and 0tw =  

for 10t ≥ . Preferences are time-separable and the periodic utility function is of the 

constant-relative-risk-aversion form. For 0,  1σ σ≥ ≠  we have 

 
1

( )
1
c

u c
σ

σ

−

=
−

 (14.7) 

where � measures the constant relative risk aversion. For 1σ =  we have 

( ) log( )u c c= . 

Wages are paid and consumption occurs at the beginning of the period. 

For simplicity, we assume that both the interest rate and the subjective discount factor 

are zero. That is 1β = and 0r = . 

 

The welfare measure 

Our welfare measure is the consumption equivalent variation. It gives the percentage 

increase in consumption in all periods that is needed in a benchmark case to make the 

expected lifetime welfare as high as in a comparison case. For instance, in order to 

compute the welfare cost of not taking aggregate mortality risk into account, we first 

solve the consumer problem with rational expectations. Then, we solve the 

consumer's problem assuming that she makes her decisions based on either mean (or 

median) mortality rates only. Next, we generate a large number N of randomly drawn 

aggregate mortality paths. Finally, we compute the increase in consumptions needed 

to make average lifetime utilities equal in the two cases. 

More formally, consider simulation i = 1,…, N with a mortality path 

1{ }i T
t tY = . Let i

tc denote the optimal consumption level in simulation i, in age t, given 

rational expectations. Similarly, let i
tc� denote the optimal consumption at age t when 



the consumer makes her decisions based on point forecasts alone.5 The consumption 

equivalent variation measuring the welfare cost of using the median mortality rates 

instead of having rational expectations about future mortality is a scalar x such that 

 

1 1

1 1 1 11 1

( ) ( ) ( ) ((1 ) )
t tN T N T

i s i i s i
s s t s s t

i t i ts s

S Y u c S Y u x cβ β
− −

= = = == =

= +�� ��∏ ∏ �  (14.8) 

Results 

The welfare cost of not taking aggregate mortality risk into account 

How important is it for the consumer to take aggregate mortality risk into account? In 

the first two rows of Table 14.2 we display the welfare cost of making savings 

decisions based on point forecasts alone rather than having rational expectations about 

future mortality. The first row (‘constant’) corresponds to the case where the 

consumer receives only the period 1 point forecast. The second row (‘adjust’) 

corresponds to the case where the consumer updates her savings plan every period 

based on the most recent point forecast. The results are shown for different values of 

the risk aversion parameter. 

 

[Table 14.2 HERE] 

 

The welfare cost of using just the period 1 point forecast rather than 

having rational expectations varies between 0.51% and 0.62% in terms of a 

consumption equivalent variation depending on the degree of risk aversion. The 

interpretation is that in order to make the expected lifetime utility of a consumer with 

only period 1 point forecast equal to that of a consumer that takes the uncertainty fully 

into account, we need to increase the consumption in the low information case by 

0.51%-0.62% in every period. As we explained above, the point forecasts are based 

on median mortality. We could also consider expected mortality. In experiments not 

reported here, we found that that would result into slightly smaller welfare costs. 

The welfare cost of not taking aggregate mortality risk into account is 

dramatically smaller when the consumer is allowed to update her life cycle savings 

plan based on the most recent point forecasts. It then ranges between just 0.05% and 

0.06% of consumption. This is a remarkably small welfare cost. In terms of expected 
                                                 
5 In the case where the consumer learns only the period 1 point forecast, the consumption path is 
independent of the aggregate mortality path.  



lifetime utility, it is not important for the consumer to take the uncertainty related to 

aggregate mortality into account. It suffices that she periodically updates her beliefs 

about future mortalities based on the most recent point estimates and reconsiders her 

savings plan accordingly. 

It is perhaps worth noting that the relationship between the welfare cost 

of not having rational expectations and the risk aversion is non-monotonic. This is 

probably related to the fact that given our utility function, a high risk aversion means 

also a low intertemporal elasticity of substitution. A risk-averse consumer reacts to 

aggregate mortality risk by saving more at young ages (the so called precautionary 

savings motive, cf. Kimball, 1990). On the other hand, even when consumers fail to 

take aggregate mortality risk into account, consumers with higher risk aversion, and 

hence a low elasticity of intertemporal substitution, save more because they want a 

smoother consumption profile at old ages when the survival probabilities are low. In 

other words, consumers with a high risk aversion parameter act as if they had a strong 

precautionary savings motive, even when they do not take the risk into account at all. 

An interesting extension of this analysis would be to consider a more general utility 

function where we can separate risk aversion and the intertemporal elasticity of 

substitution. 

So far, we have discussed the expected or average welfare loss from not 

taking aggregate mortality risk fully into account. Figure 14.2 displays the 

distribution of welfare losses resulting from making savings decisions based on the 

period 1 point forecast rather than rational expectations. Here we assume 3σ = . The 

figure shows clearly that even though for most aggregate mortality paths the welfare 

difference is relatively small, in some cases having rational expectations would have 

improved welfare substantially. The largest welfare gains are equivalent to about 5% 

in consumption in every period. 

Figure 14.2 also shows that there is a probability of approximately 25% 

that the low information solution is better than the rational expectations solution (the 

welfare ‘cost’ is negative). This is to be expected for a range of mortality paths that 

are near to what we expect based on the point forecast, because adjustment to random 

changes in early years sometimes leads to erroneous adjustments regarding saving for 

later life. However, we also see that in all cases the gain is 0.6%, or less. (This result 



is not an absolute bound, of course, as it depends on the sample size used in 

simulation. However, it is clear that the probability of greater gains is less than 1%.) 

 

[Figure 14.2 HERE]  

 

Figure 14.3 shows how the welfare cost stemming from using only the 

period 1 point forecast rather than having rational expectations is related to the 

average lifetime of a cohort. As one would expect, the welfare cost is highest in the 

cases where average lifetime is very different from the expected one (which is about 

14.1 model periods).  

 

[Figure 14.3 HERE]  

 

Figure 14.4 displays the distribution of welfare costs resulting from 

using updated point forecasts rather than having rational expectations. The 

distribution is very different from that in figure 14.2. Even the largest welfare costs 

are now rather small, around 0.6%, and the distribution is rather symmetric. 

 

[Figure 14.4 HERE]   

 

Figure 14.5 shows how this welfare cost is related to the average 

lifetime of a cohort. Just like in the lowest information case, the updating method is 

better than rational expectations in (the rather unlikely) high mortality cases. For low 

mortality cases the reverse is true. In cases of expected mortality both approaches can 

dominate, but rational expectations sometimes produce fairly substantial gains over 

the updating method. 

 

[Figure 14.5 HERE] 

  

 

Perfect foresight vs. rational expectations 

A number of studies (e.g. Lassila and Valkonen, 2006; Fehr and Haberman, 2006) 

consider the implications of demographic uncertainty using numerical general 

equilibrium models. However, as discussed earlier most of these analyses assume 



perfect foresight over future demographics. Therefore, it is of interest to try to see 

how important, or problematic, this assumption is. To analyse this issue, we compare 

the consumer's savings problem with rational expectations to the one in which the 

consumer has access to a ‘crystal ball’ that tells the future aggregate mortality rates 

precisely, but does not reveal her own lifetime. 

Table 14.3 displays the average welfare gain from having perfect 

foresight instead of just rational expectations. The welfare gain following from perfect 

foresight is perhaps surprisingly small: it ranges from 0.16% to 0.19% in terms of 

consumption. One can argue that the normative solution to decision problems of the 

type we consider is obtained via rational expectations. Hence, the welfare costs 

computed here are measures of the welfare cost of aggregate mortality risk. Since this 

cost is small, the perfect foresight assumption appears to be a reasonable proxy for 

rational expectations in this context. 

 

[Table 14.3 HERE] 

 

Figure 14.6 shows the distribution of welfare gains resulting from 

having perfect foresight rather than rational expectations. Comparing Figures 14.2 and 

14.6 shows that while using only the initial point forecast may lead to substantial 

welfare losses (around 5% in consumption), having perfect foresight instead of 

rational expectations never increases welfare dramatically (the gain in consumption is 

typically less than 2.5%). 

 

[Figure 14.6 HERE] 

 

Figure 14.7 shows how the welfare gain of having perfect foresight over 

rational expectations is related to the average lifetime of a cohort. Again, the welfare 

gain is highest in cases where aggregate mortality is very high. However, the link 

between average lifetime and the welfare gain is relatively weak. 

 

[Figure 14.7 HERE] 

Bracketing Rational Expectations 

 A consumer who has access to a ‘crystal ball’ is never worse off than 

those with less information. This has to hold even pathwise. Similarly, the rational 



expectations solution must always yield a higher average utility than that obtainable 

in the low information settings. Thus, forecast updating solution and the perfect 

foresight solution can be used to bracket the rational expectations solution. The result 

can be read from Tables 14.2 and 14.3. Depending on the level of risk aversion, the 

rational expectations solution is in a band of width ≤ 0.25% above the updating 

solution, when average utility is used as the measure. 

Although this goes a long way towards understanding the nature of the 

rational expectations solution, it is clear that other types of utility (or loss) functions 

may weigh subsets of the data in a manner that is different from the one we use.  For 

example, Alho, Lassila and Valkonen (2006) consider combinations of pension 

contribution rates and replacement rates that may be viewed as being politically 

acceptable (or they belong to the viable region) in the sense that if contribution rates 

would become too high, the workers would refuse to pay them, or if replacement rates 

would be too low, higher pensions would be demanded by the elderly.  This directs 

attention to the joint distribution of the contribution rates and replacement rates, not 

just to their expected values. 

Thus, it is also of interest to see how well the updating solution and the 

crystal ball solution can bracket the rational expectations solution for different levels 

of life expectancy, for example. It would be too much to ask for a pathwise bound, but 

we can look for bounds for conditional expectations. In the model at hand the relevant 

determinant seems to be the average lifetime of the cohort, so in Figure 14.8 we 

display nonparametric estimates6 of average gain of the ‘crystal ball’ solution, and of 

the updating solution, over rational expectations, as a function of the average 

lifetimes. 

 

[Figure 14.8 here; to be added] 

 

The finding is that for low average lifetimes the gap between the ‘crystal 

ball’ solution and the updating solution is wider than the average gap, near the 

expected average lifetimes it is narrower, and for high average lifetimes it grows 

again. Perhaps one implication is that for mortality paths close to the expected 

development the rational expectations solution can be bracketed quite closely with the 

                                                 
6 Estimates were obtained by the LOWESS smoother of Cleveland (1981). 



perfect foresight and updating solutions. Note, however, that for low life 

expectancies, even forecast updating produces utilities that are higher than those given 

by the rational expectations solution. The reason appears to be the precautionary 

savings motive. Both the consumer with rational expectations and a consumer 

believing in updated point forecast save, on average, too much in cases where 

longevity is low. However, the consumer with rational expectations saves more than 

the one following the forecast updating procedure because the former takes 

uncertainty into account with additional precautionary savings.  

 

Conclusions 

We have analyzed the importance of aggregate mortality risk using a standard life 

cycle model with a consumption-savings decision under different informational 

settings. We draw three types of conclusions. 

Regarding the effect of different informational assumptions our main 

findings are as follows: Firstly, the expected welfare cost of aggregate mortality risk 

is small for a consumer who knows the probability law and takes it rationally into 

account. That is, her expected lifetime utility would increase only little had she access 

to a ‘crystal ball’ that reveals future mortality rates without error. Secondly, a 

consumer who does not take the uncertainty related to future mortality into account at 

all, but makes her savings decisions based on the most recent point forecasts alone, 

loses very little compared to a consumer who takes the predictive distribution of 

future mortalities rationally into account. This is probably due to the fact that 

idiosyncratic uncertainty dominates an individual’s longevity. (In contrast, aggregate 

uncertainty dominates the uncertainty of a pension institution, for example.)   Thirdly, 

a consumer who makes all her savings decisions based on the point forecast available 

at the beginning of her adult life, suffers substantial welfare losses for extreme 

mortality paths relative to a consumer having rational expectations. - Intuitively, these 

results are all related to the fact that the consumer's information about her life 

expectancy improves over time. By adjusting her savings decisions as new 

information arrives, she can get relatively close to the perfect foresight solution even 

if she does not take the uncertainty into account. 

An important numerical finding is that the forecast updating formulation 

produced utilities that are perhaps surprisingly close to the rational expectations 

solution. This suggests that a promising direction of future research is to develop 



computational tools that allow the forecast updating approach to be implemented in 

the OLG settings used in pension analyses. One step in this extension has already 

been taken by the development of a computer program FPATH7 that computes 

numerical approximations to future population forecasts that are conditional to 

population development up to their respective jump-off times. 

 An observation that arises from our having considered different 

informational assumptions in a stochastic setting, is that there is merit in considering 

the whole distribution of utility outcomes, in addition to expected utility. This can 

reveal patterns of utility gains that are not easily detected by intuition alone. In a 

similar vein, we note that rational expectations solutions can sometimes be bracketed 

by seemingly crude formulations, like here the perfect foresight and the forecast 

updating formulations for mortality outcomes that are not too far removed from the 

expected one. 

Finally, an important task for future research is to extend the present 

analysis to a set-up that includes an unfunded pension system. As shown by Lassila 

and Valkonen (2006) and Weale (2006), demographic uncertainty makes the 

sustainability of public pension systems very uncertain. Although our numerical 

estimates suggest that consumer’s welfare losses that are due to not taking into 

account aggregate uncertainty in mortality are not very large, the ‘viability’ issues we 

mentioned suggest that the possibility of structural change should be considered. 

Thus, the ultimate utility depends on the design of the pension system. If the system 

includes transparent rules that specify how the benefits and contributions are adjusted 

with changes in demographics, individuals may prepare for structural change, by 

adjusting their savings plans correspondingly. However, unfunded (Pay-As-You-Go) 

pension systems typically do not include such rules, and pressures for structural 

change may suddenly mount to a point when cost pressures are politically deemed 

unacceptable. Thus, in practice, failing to take demographic uncertainty into account 

(via additional precautionary saving) may result in much larger welfare losses for the 

consumer than the loss we have considered.  
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Figure 14.1 Histogram of average lifetimes in 10,000 simulations 
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Figure 14.2 Welfare costs of using period one point forecast rather than having 
rational expectations 
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Figure 14.3 Welfare costs of constant expectations vs. rational expectations as a 
function of average lifetimes 
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Figure 14.4 Welfare costs of updated point forecasts vs. rational expectations 
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Figure 14.5 Welfare costs of updated point forecasts vs. rational expectations as a 
function of average lifetimes 
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Figure 14.6 Welfare gains of having perfect foresight vs. rational expectations 



 

 0

 0.5

 1

 1.5

 2

 2.5

 12  12.5  13  13.5  14  14.5  15  15.5  16

C
on

su
m

pt
io

n 
eq

ui
va

le
nt

 v
ar

ia
tio

n 
(%

)

Average lifetime of the cohort  
Figure 14.7 Welfare gains of perfect foresight vs. rational expectations as a function 
of average lifetimes 
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Figure 14.8 Average welfare gains of perfect foresight vs. rational expectations (upper 
curve), and average welfare gains of using updated point forecasts vs. rational 
expectations (lower curve) as a function of average lifetimes. 
 



 
 
 
 
 
Age Model age m b median survival prob. 
20-64 1-9 0 0 1 
65-69 10 0.026 0.100 0.955 
70-74 11 0.044 0.100 0.931 
75-79 12 0.072 0.100 0.886 
80-84 13 0.119 0.078 0.806 
85-89 14 0.190 0.061 0.671 
90-99 15 0.283 0.044 0.481 
95-99 16 0.404 0.029 0.280 
100-104 17 0.577 0.029 0.172 
105-109 18 � 0 0 
Table 14.1 Parameter values for the mortality process and the median survival 
probabilities 
 
 

 Risk aversion 

Expectations �=1 �=3 �=5 

Constant 0.52% 0.62% 0.51% 

Adjust 0.04% 0.06% 0.05% 

Table 14.2: The welfare cost of not taking aggregate mortality risk into account under 

low information alternatives. 

 

 

Risk aversion 

�=1 �=3 �=5 

0.16% 0.19% 0.16% 

Table 14.3: The welfare gain of having perfect foresight vs. rational expectations 

 


