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Abstract. A labelled sequent calculus is proposed for Priorean linear
time logic, the rules of which reflect a natural closure algorithm de-
rived from the fixed-point properties of the temporal operators. All the
rules of the system are finitary, but proofs may contain infinite branches.
Soundness and completeness of the calculus are stated with respect to a
notion of provability based on a condition on derivation trees: A sequent
is provable if and only if no branch leads to a ‘fulfilling sequent,’ the
syntactical counterpart of a countermodel for an invalid sequent. Decid-
ability is proved through a terminating proof search procedure, with an
exponential bound to the branches of derivation trees for valid sequents,
calculated on the length of the characteristic temporal formula of the
endsequent.

1 Introduction

What is commonly known as unary propositional linear time logic (LTL) is the
future-oriented reflexive version of Priorean linear time logic: Only the future
operators G, F and T are considered in unary LTL, and G and F have the
intuitive meanings of ‘it is and will always be the case’ and ‘it is or will be
the case’, respectively. LTL is known to be decidable [13]. Decidability has been
established by several authors [15], [6], [7] through 2-phase tableau systems: In
such systems, after the construction of the tableau graph, a second phase is
required in order to check whether every eventuality formula has been satisfied.

In [11] a tableau system has been proposed, in which the termination of proof
search can be determined locally, but the system covers only a limited fragment
of LTL. In [12] a decision procedure for the whole logic has been achieved through
a tableau calculus in which the second phase is incorporated into the rules by
annotating sets of formulas with history information. However, this system con-
tains a loop rule which hides a non-local closing condition: In fact, whereas the
rules of the system act top-down, the “the result part [...] is synthesized bottom-
up (from children to parents)” (p. 286), thus it is necessary to inspect previous
nodes in order to verify if there is a loop. In [4] there are local rules with history
annotation; Decidability of the calculus is not explicitly stated and would require
a similar non-local closing condition in the form of a loop check.

In [2] a labelled sequent calculus G3LT for reflexive Priorean linear time was
defined through the method of internalization of the possible world semantics



within the syntax of sequent calculi, as developed by the second author in [8, 9].
The calculus has all the structural rules admissible, but it requires an infinitary
rule to the effect that between any two points there are only finitely many other
points. By replacing the infinitary rule with two weaker finitary rules a system
for non-standard discrete frames was obtained and a conservativity result for an
appropriate fragment of the original calculus proved.

In the present work, a labelled calculus G3LTcl is defined, the rules of which
are justified by a closure algorithm that exploits the fixed-point properties of
temporal operators, as proposed for example in [5]. All the rules of the system
G3LTcl are finitary, however, proofs generally require infinite descent in the
sense of [3]. Admissibility of cut for G3LTcl is not established syntactically but
as a consequence of completeness. This is unproblematic, because the calculus is
conceived as an instrument for establishing decidability of Priorean linear time.

Decidability is proved through a terminating proof search procedure: If a
sequent is not a theorem of Priorean linear time logic, then root-first applica-
tion of the rules of G3LTcl leads, by the use of labels, to another sequent that
supplies an immediate and simple construction of a countermodel. If, on the
other hand, we start with a derivable sequent, a finite bound allows to trun-
cate any potentially infinite branch. This establishes at the same time a direct
proof of completeness with respect to Kripke semantics. The definition of proofs
in G3LTcl is completely local, and termination is determined with no need of
checking previous parts of the derivation because every sequent keeps all the
information required.

The calculus G3LTcl contains also past temporal operators and the decision
procedure is given in the strong form of an explicit bound on proof search, al-
though the absence of a global condition on derivations imposes an exponential
size on it. We remark, however, that the main purpose of this paper is not to
establish decidability, but to illustrate a very general method through its uni-
form application to linear temporal logic. Although a proof-theoretic approach
is followed, the use of labels permits to formalize model-theoretic arguments and
to obtain direct proofs of validity and completeness.

The paper is organized as follows: In Section 2 we give the definition of
the fixed-point proof system G3LTcl; In Section 3 we identify the proofs in
the system; We prove soundness in Section 4 and completeness in Section 5;
Decidability through termination of proof search is established in Section 6. For
background, and the treatment of Until and Since that have not been included
here, we refer to the first author’s Ph.D. thesis [1]. For a concise illustration of
the general method employed in this work, including the system G3LT, see [2].

2 A fixed-point proof system

The presence of induction constitutes an intrinsic obstacle to the possibility
of establishing decidability of Priorean linear time logic through a terminating
proof-search procedure. In this paper, we present a labelled calculus G3LTcl

for Priorean linear time. All the rules are finitary, but proofs generally require



arguments by infinite descent in the sense of [3]. In a temporal frame for Priorean
linear time, between any two points there are only finitely many other points,
therefore any model that appeals to an infinite increasing or decreasing sequence
of points between two instants can be ignored. The proof-theoretic counterpart
of that occurs, for example, when root-first applications of the rules do never
realize a future formula x : FB in the antecedent with a labelled formula y : B
and a finite chain x ≺ y0, . . . , yn ≺ y.

A particular class of sequents, which correspond to the syntactic counterparts
of countermodels for unprovable purely logical sequents (defined below), is iden-
tified and used for giving a sound and complete definition of proofs in G3LTcl.
Termination of proof search is then obtained thanks to the analogy of the rules
of the calculus to the algorithm that produces saturated subsets of formulas.

The basic idea is to formulate a labelled calculus G3LTcl from the fixed-point
properties of temporal operators:

GA ⊃⊂ TA & TGA FA ⊃⊂ TA ∨TFA

HA ⊃⊂ YA & YHA PA ⊃⊂ YA ∨YPA

In a standard proof of decidability for LTL, as given for example in [13], [14], [5],
a countermodel for an invalid sentence is constructed as a relational structure
where a saturated set of closure formulas ∆ is the immediate successor of a
saturated set of closure formulas Γ if A ∈ ∆ whenever TA ∈ Γ , and a fairness
condition is satisfied, namely that all the eventualities of the form FA are fulfilled
at some point. Here the notion of (≺-)saturated label (see Definitions 11, 12)
will be defined in order to identify the class of sequents which correspond to
countermodels for invalid sequents.

In initial sequents, φ is either an atomic formula or a formula prefixed by T
or Y. The propositional rules are identical to those of G3LT in [2]. Repetition of
the principal formula in the premisses of RGcl, LFcl, RHcl and LPcl is required
for the definition of fulfilling sequent (see Definition 19). If the flow of time is
linear and unbounded, the next-time operator T and the previous-time operator
Y satisfy the following, where x ≺ y means that x is the immediate predecessor
of y (or y the immediate successor of x):

x  TA iff for all y, x ≺ y implies y  A, iff for some y, x ≺ y and y  A
x  YA iff for all y, y ≺ x implies y  A, iff for some y, y ≺ x and y  A

In analogy with the rules for the quantifiers, the universal semantic explanation
for T and Y would give a variable condition in the right rule, whereas the
existential semantic explanation would give a variable condition in the left rule.
Because of linearity, both explanations are available, and the rules for T and
Y can conveniently be formulated in the form given in Table 1, which uses the
universal semantic explanation for the left rule and the existential explanation
for the right one. Thus, no variable condition is required.

The calculus G3LTcl does not permit syntactic cut elimination. This is be-
cause the rules for T and Y are given in a non-harmonious way, that is, the left
and the right rules are justified by different semantical explanations. However, it



is precisely because of this particular choice of rules that the essential properties
of G3LTcl hold. Also, we will show that the system without cut is complete, and
thus prove that G3LTcl is closed with respect to cut.

The notion of derivability in the calculus G3LTcl is defined in the standard
way: A derivation is an initial sequent, or an instance of L⊥, or is obtained by an
application of a logical or mathematical rule to the derivation(s) concluding its
premiss(es). In Section 3 we shall introduce a generalized notion of provability
in G3LTcl, which admits derivation trees with infinite branches.

Table 1. The rules of the calculus G3LTcl

Initial sequents and L⊥

x : φ, Γ ⇒ ∆, x : φ x : ⊥, Γ ⇒ ∆
L⊥

Fixed-point rules

x : TA, x : TGA, Γ ⇒ ∆

x : GA, Γ ⇒ ∆
LGcl

Γ ⇒ ∆, x : GA, x : TA Γ ⇒ ∆, x : GA, x : TGA

Γ ⇒ ∆, x : GA
RGcl

x : TA, x : FA, Γ ⇒ ∆ x : TFA, x : FA, Γ ⇒ ∆

x : FA, Γ ⇒ ∆
LFcl

Γ ⇒ ∆, x : TA, x : TFA

Γ ⇒ ∆, x : FA
RFcl

x : YA, x : YHA, Γ ⇒ ∆

x : HA, Γ ⇒ ∆
LHcl

Γ ⇒ ∆, x : HA, x : YA Γ ⇒ ∆, x : HA, x : YHA

Γ ⇒ ∆, x : HA
RHcl

x : YA, x : PA, Γ ⇒ ∆ x : YPA, x : PA, Γ ⇒ ∆

x : PA, Γ ⇒ ∆
LPcl

Γ ⇒ ∆, x : YA, x : YPA

Γ ⇒ ∆, x : PA
RPcl

Tomorrow and Yesterday rules

x ≺ y, y : A, x : TA, Γ ⇒ ∆

x ≺ y, x : TA, Γ ⇒ ∆
LT

x ≺ y, Γ ⇒ ∆, x : TA, y : A

x ≺ y, Γ ⇒ ∆, x : TA
RTcl

y ≺ x, y : A, x : YA, Γ ⇒ ∆

y ≺ x, x : YA, Γ ⇒ ∆
LY

y ≺ x, Γ ⇒ ∆, x : YA, y : A

y ≺ x, Γ ⇒ ∆, x : YA
RYcl

Mathematical rules:

y ≺ x, Γ ⇒ ∆

Γ ⇒ ∆
L-Ser

x ≺ y, Γ ⇒ ∆

Γ ⇒ ∆
R-Ser

Rules L-Ser and R-Ser have the condition that y is not in the conclusion.

A rule is height-preserving admissible if, whenever its premiss(es) is (are)
derivable, also its conclusion is derivable with the same bound on the derivation
height; A rule is height-preserving invertible if, whenever its conclusion is deriv-
able, also its premiss(es) is (are) derivable with the same bound on the derivation
height. The proofs of the following structural results are detailed in [1].

Proposition 1. Substitution of labels is height-preserving admissible in G3LTcl.
All the rules of G3LTcl are height-preserving invertible. Weakening and contrac-
tion are height-preserving admissible in G3LTcl.

Definition 2. In an instance of rule R-Ser (resp. L-Ser) with active formula
x ≺ y (resp. y ≺ x), the label x is called side label.



Lemma 3. A derivation in G3LTcl can be transformed into a derivation with all
instances of R-Ser and L-Ser applied on side labels that appear in the conclusion
of the rule.

Root-first proof search can, without loss of generality, be restricted to mini-
mal derivations, that is, derivations which cannot be shortened through height-
preserving admissibility of contraction or other local modifications: In particular,
applications of rules that produce duplications of atoms when read from con-
clusion to premisses can be dispensed with by height-preserving admissibility of
contraction. The same holds if a duplication occurs modulo fresh replacement of
eigenvariables, so we have:

Lemma 4. In a minimal derivation in G3LTcl, rule R-Ser (resp. L-Ser) need
not be applied on a relational atom x ≺ y (resp. y ≺ x) if its conclusion contains
an atom x ≺ z (resp. z ≺ x) in the antecedent.

Lemma 5. The rules L-Ser and R-Ser permute up with respect to all the rules
of G3LTcl in case their eigenvariable is not contained in the active formula(s)
of the latter.

Lemma 6. On any branch of a minimal derivation in G3LTcl, a given temporal
rule with the repetition of the principal formula(s) in the premiss(es) need not
be applied more than once on the same formulas.

A purely logical sequent is a sequent that contains no relational atoms and
in which every formula is labelled by the same variable. Every purely logical
sequent Γ ⇒ ∆ with all its formulas labelled by x corresponds to a characteristic
formula ∧Γ x ⊃ ∨∆x, where Γ x = {A | x : A ∈ Γ}, and similarly ∆x. With this
identification, the rules of the system G3LTcl, read root first, correspond to the
algorithm for producing the saturated subsets of closure formulas from a given
formula.

Definition 7. The set cl(A) of closure formulas of a formula A is defined in-
ductively as follows:

– B ∈ cl(A) for every subformula B of A;
– TB and TGB ∈ cl(A) if GB ∈ cl(A);
– TB and TFB ∈ cl(A) if FB ∈ cl(A);
– YB and YHB ∈ cl(A) if HB ∈ cl(A);
– YB and YPB ∈ cl(A) if HB ∈ cl(A).

Lemma 8. Let |A| be the number of subformulas of A. The cardinality of cl(A)
is linearly bounded by |A|, namely |cl(A)| ≤ 3 · |A|.

Proof. By induction on the length of A.

Corollary 9. The number of subsets of cl(A) is at most 23|A|.

The definition of a satured set of formulas is an extension of the classical
definition, obtained for the temporal modalities from their fixed-point properties.



Definition 10. A set S of formulas is saturated if the following conditions are
satisfied:

– ⊥ is not in S;
– For every formula B, it is not possible that both B and ¬B are in S;
– ¬¬B in S implies that B is in S;
– B&C in S implies that both B and C are in S;
– ¬(B&C) in S implies that either ¬B or ¬C is in S;
– B ∨ C in S implies that B or C is in S;
– ¬(B ∨ C) in S implies both ¬B and ¬C are in S;
– B ⊃ C in S implies that either ¬B or C is in S;
– ¬(B ⊃ C) in S implies that both B and ¬C are in S;
– GB in S implies that both TB and TGB are in S;
– ¬GB in S implies that either ¬TB or ¬TGB is in S;
– FB in S implies that TB or TFB is in S;
– ¬FB in S implies that both ¬TB and ¬TFB are in S;
– HB in S implies that both YB and YHB are in S;
– ¬HB in S implies that either ¬YB or ¬YHB is in S;
– PB in S implies that YB or YPB is in S;
– ¬PB in S implies that both ¬YB and ¬YPB are in S.

The notions of saturated and ≺-saturated label in a sequent are then given
as follows:

Definition 11. A label x in Γ ⇒ ∆ is saturated if the set Γ x∪∆x is saturated,
where Γ x{B | x : B ∈ Γ}, ∆x = {B | x : B ∈ ∆}, and B ≡ ¬B if B 6= ¬C,
B ≡ C otherwise.

Definition 12. A label x in Γ ⇒ ∆ is ≺-saturated if it is saturated and:

– x : TB in Γ (∆) implies that, if x ≺ y is in Γ , then y : B is in Γ (∆);
– x : YB in Γ (∆) implies that, if y ≺ x is in Γ , then y : B is in Γ (∆).

3 Proofs in G3LTcl

In this Section we shall define the proofs in G3LTcl through the identification of
a particular class of sequents, which can be considered finite syntactical coun-
terparts of countermodels for invalid sequents.

Given a purely logical sequent Γ ⇒ ∆, we start a proof search by applying
root-first the rules of G3LTcl for the propositional connectives and for G, F, H,
and P, whenever possible. When x becomes saturated, we apply once the rules
R-Ser and L-Ser with side label x, thus introducing new labels y and y′ and
the accessibility relations x ≺ y and y′ ≺ x. By Lemma 5 we are allowed to
postpone the application of the rules for seriality until no more logical rule can
be applied, and by Lemmas 3 and 4 we do not need to apply a seriality rule with
side label z, if z is not a label in the sequent or the antecedent already contains
an atom z ≺ z′ (resp. z′ ≺ z). Next, we apply the rules LT and RTcl (resp. LY



and RYcl) on the formulas with T (resp. Y) as their outermost operator until
x becomes ≺-saturated. Note that by Lemma 6, we need not apply more than
once a temporal rule on the same principal formula(s). We repeat the procedure
with the formulas marked by y and y′. We continue as before with all the labels
possibly introduced by R-Ser and L-Ser, and so on. This procedure motivates
the following definition:

Definition 13. A pre-proof of a purely logical sequent in G3LTcl is a (possibly
infinite) tree obtained by applying root-first the logical and mathematical rules of
the calculus, whenever possible.

Before giving the definition of a proof in G3LTcl, we need some prelimi-
nary notions. We shall construct the syntactic counterpart of a countermodel
from a failed proof search and therefore define syntactic entities through their
correspondence to a Kripke model for Priorean linear time.

Definition 14. A discrete linear temporal frame F = (K,≺K, <K) is a linearly
ordered set, with the order relation <K defined as the transitive closure of the
immediate successor relation ≺K, functional and unbounded in both directions.

Definition 15. Let F = (K,≺K, <K) be a discrete linear temporal frame. An
evaluation of atomic formulas in a frame is a map V : AtFrm → P(K), assigning
to any atom P the set of instants in which P holds. The standard notation
for k ∈ V(P ) is k  P . Evaluations are extended to arbitrary formulas by the
following inductive clauses:

For all k ∈ K, it is not the case that k  ⊥ (abbr. k 1 ⊥);
k  A&B if k  A and k  B;
k  A ∨B if k  A or k  B;
k  A ⊃ B if k  A implies k  B;
k  GA (resp. k  HA) if for all k′, k <K k′ (resp. k′ <K k) implies k′  A;
k  FA (resp. k  PA) if for some k′, k <K k′ (resp. k′ <K k) and k′  A

k  TA (resp. k  YA) if for all k′, k ≺K k′ (resp. k′ ≺K k) implies k′  A

The definition of evaluation of formulas justifies the notion of interpretation of
the labels of a sequent and of validity for labelled formulas and relational atoms
in a discrete linear temporal frame:

Definition 16. Let F = (K,≺K, <K) be a linear discrete frame with accessibil-
ity relations <K and ≺K. Let W be the set of labels used in the derivation of the
sequent Γ ⇒ ∆ in G3LTcl. An interpretation of the labels from W in K is a
function [[·]] : W → K. A countermodel to Γ ⇒ ∆ is a discrete linear temporal
frame (K,≺K, <K) together with an interpretation and an evaluation that vali-
dates all the formulas and relational atoms in Γ and no formula in ∆; Namely,
for all labelled formulas z : A and relational atoms x ≺ y in the antecedent,
[[z]]  A and [[x]] ≺K [[y]] but for no w : B in the succedent [[w]]  B



The semantic explanations for the possibility-like temporal operators F, P
and the definition of the order relation <K as the transitive closure of the im-
mediate successor relation ≺K justify the following notion of future and past
witness. We use the standard symbol for syntactic identity “x ≡ y” to denote
that x and y are the same syntactic object.

Definition 17. Given a labelled formula z : FB in the antecedent of a sequent
Γ ⇒ ∆ (resp. z : GB in the succedent), we say that a label z′ is a future witness
for z : FB (resp. z : GB) if z′ : B is in Γ (resp. z′ : B is in ∆) and the relational
atoms z ≺ z0, . . . , zn−1 ≺ zn ≡ z′ are in Γ for some n.
Given a labelled formula z : PB in the antecedent of a sequent Γ ⇒ ∆ (resp.
z : HB in the succedent), we say that a label z′ is a past witness for z : PB
(resp. z : HB) if z′ : B is in Γ (resp. z′ : B is in ∆) and the relational atoms
z′ ≺ z0, . . . , zn−1 ≺ zn ≡ z are in Γ for some n.

In the syntactic object that corresponds to a Priorean linear time model, we
have to ensure that every possibility-like formulas is realized by some label:

Definition 18. A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent
Γ ⇒ ∆ is a future loop if zj marks exactly the same formulas as the label zi

and, for every labelled formula zq : FB in Γ (resp. zq : GB in ∆) with i ≤ q ≤ j,
there exists zk such that i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zj

the future looping label with respect to zi.
A chain zi ≺ zi+1, . . . , zj−1 ≺ zj (with j ≥ i + 1) in a sequent Γ ⇒ ∆ is a past
loop if zi marks exactly the same formulas as the label zj and, for every labelled
formula zq : PB in Γ (resp. zq : HB in ∆) with i ≤ q ≤ j, there exists some
variable zk such that i ≤ k ≤ j and zk : B is in Γ (resp. in ∆). We call zi the
past looping label with respect to zj.

A root-first proof search succeeds when a derivation is found, namely all the
leaves of the derivation tree are initial sequents or instances of L⊥. However,
a failed proof search does not in general ensure that an endsequent Γ ⇒ ∆ is
invalid unless a countermodel can be constructed from it. Here comes into play
the notion of fulfilling sequent for a purely logical sequent Γ ⇒ ∆:

Definition 19. Let the sequent Γ ∗ ⇒ ∆∗ be obtained by root-first proof search
from the purely logical sequent Γ ⇒ ∆ (with all its formulas labelled by x). Then,
Γ ∗ ⇒ ∆∗ is a fulfilling sequent if the following conditions are satisfied:

(i) Every label in it is ≺-saturated;
(ii) It contains a chain of relational atoms z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x,

z0 ≺ z1, . . . , zn−1 ≺ zn, such that for some i with −m < i ≤ 0 the subchain
z−m ≺ z−(m−1), . . . , zi−1 ≺ zi is a past loop, and for some j with 0 ≤ j < n,
the subchain zj ≺ zj+1, . . . , zn−1 ≺ zn is a future loop;

(iii) Every labelled formula z : FB in Γ ∗ (resp. z : GB in ∆∗) is either
witnessed by a future witness label z′, or has z inside a future loop;

(iv) Every labelled formula z : PB in Γ ∗ (resp. z : HB in ∆∗) is either wit-
nessed by a past witness label z′, or has z inside a past loop.



Intuitively, a fulfilling sequent corresponds to a structure constituted by a
(possibly empty) linear chain with two simple loops at the ends, with the left
and the right loop obtained by identifying the first and the last label of the past
and of the future loop, respectively.

In Section 4 we shall prove that, given a model for Priorean linear time, it
is possible to extract the corresponding fulfilling sequent, and in Section 5 we
shall show how to linearize the future and the past loop in order to obtain an
appropriate model.

Proposition 20. Let Γ ′ ⇒ ∆′ be obtained by applying root-first the rules of
G3LTcl from the purely logical sequent Γ ⇒ ∆ with x as the uniform label that
marks all the formulas in the latter. Then Γ ′ ⇒ ∆′ contains a unique chain
z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn with zi different from
zj for i 6= j.

Proof. Since the root sequent Γ ⇒ ∆ is purely logical, the result follows by
Lemmas 3, 4 and the fact that only seriality rules can introduce relational atoms.

While searching for a fulfilling sequent, we want to find one as small as pos-
sible. Therefore we should try to avoid useless circles, namely those exploring
instants reachable as well through a more direct path. This motivates the fol-
lowing definition:

Definition 21. Let Γ ′ ⇒ ∆′ be obtained by applying root-first the rules of
G3LTcl from the purely logical sequent Γ ⇒ ∆ with x as the uniform label
that marks all the formulas in the latter. A chain y0 ≺ y1, . . . , yn−1 ≺ yn (resp.
y−n ≺ y−(n−1), . . . , y−1 ≺ y0) with y0 ≡ x in Γ ′ ⇒ ∆′ is roundabout if it
contains labels yi, yj with 0 ≤ i < j ≤ n such that yi and yj mark the same
formulas, yi ≺ yi+1, . . . , yj−1 ≺ yj is not the future loop (resp. the past loop)
and either j = i + 1 or for every yk with i < k < j there exists some yl such
that l > j (resp. l < i) and yk and yl mark the same formulas. We say that the
subchain yi ≺ yi+1, . . . , yj−1 ≺ yj is dispensable. A fulfilling sequent is reduced
if it does not contain dispensable subchains.

Note that by Definition 21 a chain can be roundabout also in the case that yi

and yj mark no formulas.

Theorem 22. If a proof search for a purely logical sequent Γ ⇒ ∆ (with all its
formulas labelled by x) leads to a fulfilling sequent Γ ∗ ⇒ ∆∗, then it also leads
to a reduced fulfilling sequent.

Proof. (Sketch) Note that for every label z introduced by R-Ser (resp. L-Ser)
a labelled formula z : C in Γ ∗ ⇒ ∆∗ either is introduced by applying root-
first the rules LT and RTcl (resp. LY and RYcl) or is the result of root-first
application of the other rules on a formula introduced in the former way. If the
chain z0 ≺ z1, . . . , zn−1 ≺ zn with x ≡ z0 contains a dispensable subchain
zi ≺ zi+1, . . . , zj−1 ≺ zj , then the labels zi and zj mark the same formulas;
Therefore zj+1 : B is introduced by LT (resp. RTcl) with principal formulas



zj ≺ zj+1, zj : TB iff zi+1 : B can be introduced by LT (resp. RTcl) with
principal formulas zi ≺ zi+1, zi : TB. Given a set of formulas marked by a label
z, the rules of G3LTcl explore different subsets of closure formulas that possibly
≺-saturate z: While applying root-first the rules of G3LTcl we have to continue
along the branch in which the label zi+1 is ≺-saturated by the same subset
of closure formulas that ≺-saturates zj+1 in the original fulfilling sequent. By
choosing the appropriate premiss of a branching rule whenever a roundabout
chain is met, we finally reach the desired reduced fulfilling sequent.

Definition 23. A pre-proof of a purely logical sequent is a proof if no branch
in it leads to a fulfilling sequent. A sequent is provable if there is a proof for it.

Every G3LTcl derivation is a G3LTcl proof, but the converse does not hold.
Observe that, contrary to the definition of proof in cyclic calculi for induction
and infinite descent of [3], our definition in G3LTcl is completely local, i.e. there
is no need of checking previous parts of the tree: At any step of the proof search
we simply have to consider the sequents introduced by root-first application of
the rules and check if they are initial sequents, fulfilling sequents, or neither.

4 Soundness

Soundness for G3LTcl cannot be proved simply by showing that the initial se-
quents and the rules of the system are sound because, by Definition 23, proofs in
G3LTcl can contain infinitely long branches. Therefore, we prove soundness by
contraposition: If there exists a countermodel for Γ ⇒ ∆, then the corresponding
proof search should contain a fulfilling sequent and so Γ ⇒ ∆ is unprovable in
G3LTcl. Thus, the absence of a fulfilling sequent in a derivation tree is a global
soundness condition for a proof.

Some preliminary results concerning standard models are needed: We have
to prove that, given a countermodel M for A, it is possible to extract a fulfilling
sequent all the labels of which mark ≺-saturated sets of closure formulas of A.
The lemmas below show how to construct a future and a past loop fromM. In the
following, we write s6 Ks′ if s = s′ or s <K s′ in a model M = (K,≺K, <K,).

Lemma 24. Let M = (K,≺K, <K,) be a model for Priorean linear time and
suppose that, for some instant w, w 1 A. Then for some s such that w6 Ks,
there exists s′ such that s <K s′, s and s′ satisfy the same subset H ⊆ cl(A),
and for every t if s6 Kt6 Ks′ and t  FB and FB ∈ cl(A) (resp. t 1 GB and
GB ∈ cl(A)) there exists u such that s6 Ku6 Ks′ and u  B (resp. u 1 B).

Proof. Since every model for Priorean linear time is isomorphic to the integers,
there are infinitely many instants greater than w. However, by Corollary 9, there
are only 23|A| subsets of cl(A). By an application of Ramsey’s Theorem, for some
instant(s) greater than w there exist infinitely many instants satisfying the same
subset H of closure formulas of A. Let s be the first instant of the infinite set of
instants s0 <K s1 <K s2 <K s3 <K . . . all satisfying the same subset H ⊆ cl(A)



and such that w6 Ks. Let s6 Kt and t  FB and FB ∈ cl(A) (resp. t 1 GB
and GB ∈ cl(A)). If there exists a u such that u  B and s6 Ku6 Kt, we are
done. Otherwise, since t  FB (resp. t 1 GB), there exists some u such that
t <K u and u  B (resp. u 1 B). Since, by hypothesis, there are infinitely many
instants greater than s satisfying H, but u can be reached from t by finitely many
iterations of the relation ≺K, for some i = 1, 2, . . ., we have s <K u6 Ksi. For
every i there are only finitely many closure formulas of A of the form FB (resp.
GB) validated (resp. invalidated) by an instant t such that s6 Kt6 Ksi, and for
every such t we can find a k and a u such that s6 Ku6 Ksi+k and u  B (resp.
u 1 B). Since the set of closure formulas of A is finite, the process eventually
ends with the determination of a s′ such that s <K s′ and for every t if s6 Kt6 Ks′

and t  FB and FB ∈ cl(A) (resp. t 1 GB and GB ∈ cl(A)) there exists u
such that s6 Ku6 Ks′ and u  B (resp. u 1 B).

Lemma 25. Let M = (K,≺K, <K,) be a model for Priorean linear time such
that for some instant w, w 1 A. Then for some instant s such that s6 Kw,
there exists s′ such that s′ <K s, s and s′ satisfy the same subset H ⊂ cl(A)
and for every t if s′6 Kt6 Ks and t  PB and PB ∈ cl(A) (resp. t 1 HB and
HB ∈ cl(A)) there exists u such that s′6 Ku6 Ks and u  B (resp. u 1 B).

Proof. Analogous to the proof of Lemma 24.

Lemma 26. All the rules of G3LTcl are sound.

Proof. The case of the initial sequents and the propositional rules is straight-
forward. The rules for G, F, H and P are sound by definition, since they are
justified by their fixed-point interpretations. Similarly, the rules for T and Y are
justified by their semantic explanations, and the mathematical rules correspond
to the frame properties of left and right seriality for ≺.

Theorem 27. If a purely logical sequent Γ ⇒ ∆ (with all its formulas labelled
by x) has a countermodel, then it is not provable in G3LTcl.

Proof. Let us suppose that there exists a countermodel M = (K,≺K, <K,) for
the purely logical sequent Γ ⇒ ∆, namely there exists w ∈ K such that [[x]] = w
and w 1 ∧Γ x ⊃ ∨∆x. By Lemma 26, every countermodel for the conclusion of
any of the rules of G3LTcl is a countermodel for (at least one of) the premiss(es).
By choosing the appropriate branch we eventually find a sequent with a chain

z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn

every label of which matches an instant in the corresponding position in M. To
show that this sequent is a fulfilling sequent for Γ ⇒ ∆, we have to check that
the conditions of Definition 19 are satisfied:

(i) By induction on the length of formulas, it is easy to prove that evey label
z appearing in the tree can be ≺-saturated by applying the rules root-first;

(ii) The presence of a future and a past loop follows from Lemmas 24 and
25, and the fact that we can go on applying right and left seriality rules and
introduce new labels until the conditions of the lemmas are satisfied;



(iii) If the formula z : FB (resp. z : GB) is in the antecedent (resp. succe-
dent), then [[z]]  FB (resp. [[z]] 1 GB). Therefore, either there exists an instant
s such that [[z]] <K s and s  B (resp. s 1 B), and for some z′, [[z′]] = s and z′

is the future witness of z : FB (resp. z : GB), or [[z]] falls under the conditions
of Lemma 24, and thus z is inside a future loop;

(iv) If the formula formula z : PB (resp. z : HB) is in the antecedent (resp.
succedent), then [[z]]  PB (resp. [[z]] 1 HB). Therefore, either there exists an
instant s such that s <K [[z]] and s  B (resp. s 1 B), and for some z′, [[z′]] = s
and z′ is the past witness of z : PB (resp. z : HB), or [[z]] falls under the
conditions of Lemma 25, and so z is inside a past loop.

5 Completeness

Completeness is also proved by contraposition: If Γ ⇒ ∆ is not provable in
G3LTcl, i.e. if the root-first proof search leads to a fulfilling sequent, then a
countermodel for Γ ⇒ ∆ can be constructed. Our completeness result follows
the method in [10]. However, the definition of fulfilling sequents allows to consider
only finite objects, and not (possibly) infinite reduction tree; Furthermore, the
presence of the fixed-point rules for the temporal operators requires additional
work in proving the inductive steps for temporal formulas, since we cannot appeal
directly to the semantic explanations for the corresponding operators.

Let us consider the standard frame F = (K,≺K, <K) for Priorean linear
time, with K = {si | i ∈ Z}, si ≺K si+1 and si <K sj for i < j. Given a
fulfilling sequent Γ ∗ ⇒ ∆∗ for the purely logical sequent Γ ⇒ ∆, we construct a
countermodel M by defining an appropriate interpretation for the set of labels
in Γ ∗ ⇒ ∆∗ into the domain K as follows: We put [[x]] = s0 if x is the label
that marks all the formulas in Γ ⇒ ∆, and for every label z if the relational
atoms x ≡ z0 ≺ z1, . . . , zn−1 ≺ zn ≡ z are in Γ , we put [[z]] = sn. Analogously,
if z ≡ z−n ≺ z−(n−1), . . . , z−1 ≺ z0 ≡ x are in Γ , we put [[z]] = s−n. We evaluate
the atomic formulas by putting [[z]]  P if z : P is in Γ ∗ and [[z]] 1 P if z : P
is in ∆∗. Furthermore, if zn+l is the future looping label with respect to zn,
[[zn+l]] = sn+l and [[zn]] = sn, then for every instant sn+m·l+q (with m ≥ 0 and
0 ≤ q ≤ l − 1) we put sn+m·l+q  P if zn+q : P is in Γ ∗ and sn+m·l+q 1 P if
zn+q : P is in ∆∗. Analogously, if z−(n+l) is the past looping label with respect
to z−n, [[z−(n+l)]] = s−(n+l) and [[z−n]] = s−n, then for every instant s−(n+m·l+q)

(with m ≥ 0 and 0 ≤ q ≤ l − 1) we put s−(n+m·l+q)  P if z−(n+q) : P is in Γ ∗

and s−(n+m·l+q) 1 P if z−(n+q) : P is in ∆∗.

Lemma 28. M is a countermodel for Γ ∗ ⇒ ∆∗.

Proof. By definition, if z ≺ z′ is in Γ ∗, then [[z]] ≺K [[z′]]. We have to show that,
for arbitrary formulas B, if z : B is in Γ ∗, then [[z]]  B, and if z : B is in ∆∗,
then [[z]] 1 B . We proceed by induction on the length of the formula B. If B is
an atomic formula P and z : P is in Γ ∗, then [[z]]  P by construction. If z : P
is in ∆∗, then [[z]] 1 P by construction. Since z is ≺-saturated, z : P cannot
be both in Γ ∗ and in ∆∗. If B ≡ ⊥, then it cannot be in Γ ∗ by definition of



fulfilling sequent. If z : ⊥ is in ∆∗, then [[z]] 1 ⊥ by Definition 15. The case of
propositional connectives is straightforward. We consider in detail only the cases
of B ≡ TC and B ≡ GC, all the other cases being analogous.

If B ≡ TC and z : TC is in Γ ∗ (resp. ∆∗), then we have two cases: (i) If
the label z is not the future looping label zf , then it is connected to it by a
chain z ≡ zn+l−i ≺ zn+l−(i−1), . . . , zn+l−1 ≺ zn+l ≡ zf and, since the label
zn+l−i is ≺-saturated, we have zn+l−(i−1) : C in Γ ∗ (resp. ∆∗). Therefore, by
construction, we have [[zn+l−i]] ≺K [[zn+l−(i−1)]] and by inductive hypothesis
[[zn+l−(i−1)]]  C (resp. [[zn+l−(i−1)]] 1 C). So [[z]]  TC (resp. [[z]] 1 TC).
(ii) If z is the future looping label, then by definition for no label z′ the atom
z ≺ z′ is in Γ ∗. However, we have some label zn such that x ≡ z0 ≺ z1,
. . . , zn−1 ≺ zn, zn ≺ zn+1, . . . , zn+l−1 ≺ zn+l ≡ z are in Γ ∗ for l > 0 and zn

marks the same formulas as z; In particular zn : TC is in Γ ∗ (resp. ∆∗). Since
zn is ≺-saturated, zn+1 : C is in Γ ∗ (resp. ∆∗). By construction [[z]] = sn+l, so
[[z]] ≺K sn+l+1 and, by construction and inductive hypothesis, sn+l+1  C (resp.
sn+l+1 1 C). Therefore [[zn+l]]  TC (resp. [[zn+l]] 1 TC).

If B ≡ GC and z : GC is in Γ ∗, then, since z is ≺-saturated, both z : TC
and z : TGC are in Γ ∗, and, if the label z ≺ z′ is in Γ ∗, both z′ : C and z′ : GC
are in Γ ∗. Therefore, by repeating this argument, we have that for every z′′, if
z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′′ are in Γ ∗ for some i, j ≥ 0, then z′′ : C and
z′′ : GC are in Γ ∗. Note that, if z is the future looping label or z′′ is inside a
future loop zm ≺ zm+1, . . . , zn−1 ≺ zn (with n > m) both zk : C and zk : GC
are in Γ ∗ for every m ≤ k ≤ n. By inductive hypothesis, for every s, if [[z]] <K s
then s  C, therefore [[z]]  GC.

If z : GC is in ∆∗ then, by Definitions 18 and 19, we have two cases: (i)
There exists some future witness label z′ such that z′ : C is in ∆∗ and the atoms
z ≺ zi, . . . , zi+j−1 ≺ zi+j ≡ z′ are in Γ ∗ for some i, j ≥ 0. So, by construction
and inductive hypothesis there is some s = [[z′]] such that [[z]] <K s and s 1 C,
so [[z]] 1 GC. (ii) z is inside a future loop zn ≺ zn+1, . . . , zn+i−1 ≺ zn+i ≡ z,
zn+i ≺ zn+i+1, . . . , zn+l−1 ≺ zn+l (with l ≥ i). Then there exists some label z′

such that either zn ≡ z′ or the atoms zn ≺ zn+1, . . . , zn+q−1 ≺ zn+q ≡ z′ are in
Γ ∗ for 0 ≤ q ≤ i and the formula z′ : C is in ∆∗. By construction [[z′]] = sn+q, so
[[z]] <K sn+l+q and, by inductive hypothesis, sn+l+q 1 C. Therefore [[z]] 1 GC.

By the following result, every countermodel for the fulfilling sequent Γ ∗ ⇒ ∆∗

is a countermodel for the corresponding endsequent Γ ⇒ ∆:

Lemma 29. All the rules of G3LTcl preserve countermodels, that is, a coun-
termodel for (at least one of) the premisses is a countermodel for the conclusion.

Proof. Immediate for the rules for T and Y and for the rules of seriality. For the
propositional rules, by definition of validity for the propositional connectives.
For the rules for G, F, H and P, by their fixed-point interpretation.

Theorem 30. If the purely logical sequent Γ ⇒ ∆ has no countermodels, then
it is provable in G3LTcl.



Corollary 31. Provability of purely logical sequents in G3LTcl is closed with
respect to cut.

Proof. By soundness of the cut rule and completeness of G3LTcl.

6 Termination of proof search

In root-first application of the rules of G3LTcl, two possibilities arise: (i) The
proof search terminates because we find a fulfilling sequent or because every
branch leads to an initial sequent or an instance of L⊥; (ii) The proof search
does not terminate and, by König’s Lemma, there is at least one infinite branch.

However, we can truncate a potentially infinite proof search as shown below.
By Theorem 22, if Γ ⇒ ∆ is not provable, then the proof search leads to a
reduced fulfilling sequent. Whenever a branch leads to a sequent with a round-
about chain, we can drop that branch and start a new one: If every branch in
the proof search for Γ ⇒ ∆ leads to either an initial sequent or a sequent with
a roundabout chain, then Γ ⇒ ∆ is provable in G3LTcl.

Lemma 32. Suppose that the proof search for a purely logical sequent Γ ⇒ ∆,
with all the formulas labelled by x, leads to a sequent Γ ′ ⇒ ∆′: If the chain
y−m ≺ y−(m−1), . . . , y−1 ≺ y0 ≡ x and the chain x ≡ y0 ≺ y1, . . . , yn−1 ≺ yn are
not roundabout then the number of labels has an exponential bound on the order
of the length of A ≡ ∧Γ x ⊃ ∨∆x, namely m,n ≤

∑23|A|

i=1 i.

Proof. (Sketch) We recall here that the rules of G3LTcl reflect the closure algo-
rithm that from a formula A gives the set of its closure formulas and, by Corollary
9, the number of subsets of closure formulas of A is at most 23|A|. Let us consider
the longest case of a non-roundabout chain y0 ≺ y1, . . . , yn−1 ≺ yn such that for
every k with 0 ≤ k ≤ n, yk labels a subset of closure formulas of A. It contains
a first subchain y0 ≺ y1, . . . , yi−2 ≺ yi−1 such that i = 23|A| and every subset of
closure formulas of A is labelled by some yk, for 0 ≤ k ≤ i− 1. Then we have a
second subchain yi ≺ yi+1, . . . , yi+j−2 ≺ yi+j−1, such that j = 23|A|−1 and every
subset of closure formulas of A except one is marked by yk for i ≤ k ≤ i + j− 1.
Thus, the subchain in the l+1st position contains j = 23|A|− l labels, that mark
the same subsets of cl(A) marked by the members of the chain in the lth po-
sition, except one. Summing up the numbers of the members of each subchain,
we finally obtain that n =

∑23|A|

i=1 i. The same argument applies to the chain

y−m ≺ y−(m−1), . . . , y−1 ≺ y0, therefore m =
∑23|A|

i=1 i.

Theorem 33. Proof search for G3LTcl terminates.

Proof. Let us suppose that the proof search for the purely logical sequent Γ ⇒ ∆
(with all its formulas labelled by x) does not terminate. Since every rule of
G3LTcl has a finite number of premisses, any derivation tree is finitely branching,
so by König’s Lemma there is at least one infinite branch. Obviously it cannot
lead to an initial sequent, nor to a conclusion of L⊥, nor to a fulfilling sequent,



because otherwise it would be finite. We have to show that it contains a sequent
with a roundabout chain. Note that the endsequent contains a finite number
of formulas: The logical rules for connectives and for temporal operators can
introduce only a finite number of new formulas, and by Lemma 6 temporal
rules cannot be applied more than once with the same principal formula(s).
Furthermore, by Lemmas 3 and 4 we need not apply a seriality rule with side
label z, if z is not a label in the sequent or the antecedent already contains
an atom z ≺ z′ (resp. z′ ≺ z). Consequently, an infinite branch should contain
a sequent with an infinite ≺-chain. However, by Lemma 32 if a chain is not
roundabout, then it is finite and exponentially bounded on the order of the
length of the formula corresponding to the endsequent Γ ⇒ ∆. Therefore, any
potentially infinite branch can be truncated as soon as a sequent is met that
contains a chain z−m ≺ z−(m−1), . . . , z−1 ≺ z0 ≡ x, z0 ≺ z1, . . . , zn−1 ≺ zn with

m >
∑23|∧Γ x⊃∨∆x|

i=1 i or n >
∑23|∧Γ x⊃∨∆x|

i=1 i.
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