
Proof analysis beyond geometric theories:
from rule systems to systems of rules

Sara Negri

Department of Philosophy
PL 24, Unioninkatu 40 A

00014 University of Helsinki
Finland

sara.negri@helsinki.fi

Abstract

A class of axiomatic theories with arbitrary quantifier alternations is identified and a
conversion to normal form is provided in terms of generalized geometric implications. The
class is also characterized in terms of Glivenko classes as those first-order formulas that do
not contain implications or universal quantifiers in the negative part. It is shown how the
methods of proof analysis can be extended to cover such axioms by means of conversion to
systems of rules. The structural properties for the resulting extensions of sequent calculus
are established and a generalization of the first-order Barr theorem is shown to follow as
an immediate application. The method is also applied to obtain complete labelled proof
systems for logics defined through their relational semantics. In particular, the method
provides analytic proof systems for all the modal logics in the Sahlqvist fragment.

1 Introduction

The central goal of the method of proof analysis is the design of appropriate proof systems that go
beyond pure logic. What the adjective ‘appropriate’ exactly denotes can be often identified with
the property of being analytic, or, more generally, with the property of preserving the structural
features of basic logical calculi and the consequences of analyticity. When the goal is achieved,
one can extract crucial information from the analysis of proofs in a formal inference system
for a given theory, in the same way as in pure logic. In particular, the proof systems can be
used not only as calculi for finding formal derivations, but also for showing the underivability of
certain statements and thus obtaining proofs of independence; further on, they can be used for
establishing conservativity of extensions, faithfulness of embeddings between logical systems,
and in general for results that involve the simultaneous analysis of derivability in different
theories.

The starting point of the investigation is given by an analytic proof system for pure logic,
taken as the basis of the extension procedure. Natural deduction is often the privileged proof
system because it is the one that most closely resembles the human way of making logical
inferences. On the other hand, such naturality works to perfection only with intuitionistic logic,
whereas sequent calculus has a much greater flexibility. Not only can sequent calculi be defined
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in an elegant way also for classical—and sometimes non-classical—logics, but usually they come
with properties that allow their direct use as systems of automated deduction; the latter is the
case for the remarkable class of G3 sequent calculi.

When sequent calculi are used for the analysis of mathematical theories, a first limitation is
encountered: if the theories are formulated as axioms, or equivalently as axiomatic sequents, full
elimination of cuts is lost. What one can obtain is a generalized Hauptsatz that reduces all cuts
in derivations to cuts on axioms, so analyticity is not preserved. If instead axioms appear as
assumptions in the antecedent of sequents, full cut elimination is maintained, but analyticity in
root-first proof search fails because there is usually an infinity of instances of universal axioms
to choose from.

In earlier work, we have shown how the problem can be overcome by converting axioms into
rules of inference. The method allows full cut elimination for all classical theories with universal
axioms and for intutionistic theories with universal axioms without implications in the negative
part, that is, axioms equivalent to conjunctions with conjuncts of the form ∀x(P1& . . .&Pn ⊃
Q1 ∨ . . . ∨ Qm), where the Pi and the Qj are atomic formulas, and with a degenerate form
where n or m can be zero and thus replaced by > or ⊥. The idea is to convert axioms into
rules of sequent calculus in such a way that the logical content of the axiom is replaced by the
meta-linguistic meaning of sequent rules. Such rules can be formulated so that the active and
principal formulas occur only on the left or only on the right part of sequents. If the left rule
scheme paradigm is chosen, conjunction on the left is replaced by the commas in the antecedents
of sequents in the conclusion and disjunction on the right by a plurality of premisses in the rule,
each with one of the disjuncts as in the rule:

Q1,Γ→ ∆ . . . Qm,Γ→ ∆

P1, . . . , Pn,Γ,→ ∆
RL

The sequent → ∀x(P1& . . .&Pn ⊃ Q1 ∨ . . . ∨Qm) is clearly derivable by the rule.
If the right rule scheme is instead chosen, we have a plurality of premisses each with one of

the conjuncts in the succedent, and a conclusion with commas in the succedent to replace the
disjunction:

Γ→ ∆, P1 . . . Γ→ ∆, Pn

Γ,→ ∆, Q1, . . . , Qm
RR

Again, the sequent → ∀x(P1& . . .&Pn ⊃ Q1 ∨ . . . ∨Qm) is derivable by the rule.
The universal quantifier does not occur explicitly in the conversion to either the left or the

right rule schemes because the rules have an inherently universal interpretation. In this way,
the added rules do not interfere with the conversion step of the procedure of cut elimination.
Also other structural properties such as the height-preserving admissibility of contraction are
preserved with an appropriate formulation of the rules. All the details of the procedure and
several examples and applications are found in Negri and von Plato (1998 and 2001, chapter 6).

Later, we have shown that the axiom-as-rules method can be extended to geometric theories
(Negri 2003). Geometric theories are theories with ∀∃-axioms of the form ∀x1 . . . ∀xn(A ⊃ B)
where A and B are geometric formulas, that is, formulas that contain no ⊃ nor ∀. Such ax-
ioms, known as geometric implications, can be equivalently written as conjunctions of universal
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closures of formulas of the form

P1& . . .&Pm ⊃ ∃y11 . . . ∃y1kM1 ∨ . . . ∨ ∃yn1 . . . ∃ynl
Mn

Here the Pi are atoms, the Mj conjunctions of atoms, and the variables y do not occur in the
Pi. Geometric implications are transformed into rules by the same guidelines as for universal
axioms. In addition, the existential quantifier disappears in the conversion through a condition
on the existential variables: in left rules, we have a variable condition stating that these variables
should not appear anywhere else in the rule (cf. Section 3 below). It is then seen that all the
structural properties of the basic sequent calculi are maintained by the addition of rules that
arise from geometric implications.

A first striking application of the method of conversion of geometric axioms into rules was
a trivialization of the Barr theorem, a central result of constructive mathematics by which
a classical proof of a geometric implication in a geometric theory can be transformed into a
constructive proof. It turned out that in a cut-free system of sequent calculus with any collection
of geometric rules, a classical proof of a geometric implication is already a constructive proof
(cf. Negri 2003 and Negri and von Plato 2011). Although the term ‘geometric’ for these
axiomatizations does not originate from geometry but from category theory, geometric theories
and their proof-theoretic treatment through the geometric rule scheme have been employed for
a formalization of Euclidean geometry in Avigad et al. (2009) and for projective and affine
geometry in Negri and von Plato (ch. 10, 2011).

A second striking application of geometric axioms stems from the fact that they cover the
defining properties, formulated in terms of relational semantics, of the most common systems of
modal logics. As such, they have been particularly useful for the proof-theoretical investigation
of modal logic for labelled systems of deduction. They have thus been used to obtain analytic
deductive systems for modal logic, through systems of natural deduction in Simpson (1994) and
systems of sequent calculus in Negri (2005).

A dual of the class of geometric theories is given by the class of co-geometric theories.
These are theories axiomatized by formulas of the form (called co-geometric implications)
∀x1 . . . ∀xn(A ⊃ B) where A and B are co-geometric formulas, that is, formulas that con-
tain no ⊃ nor ∃. Co-geometric implications can be written in the following equivalent way:
They are conjunctions of universal closures of formulas of the form

∀z1 . . . ∀zn(∀x1M1& . . .&∀xnMn ⊃ P1 ∨ . . . ∨ Pm)

Here the Mj are conjunctions of atoms. Variable conditions are dual to those for the geomet-
ric implications and consequently the corresponding rule is a right rule. The duality between
rules of geometric and of co-geometric theories is useful to transfer proof-theoretic results from
a geometric to a co-geometric theory. Such transfer occurs when the basic notions of a the-
ory are replaced by their duals, as in the passage from axiomatizations based on equality to
axiomatizations based on apartness (cf. Negri and von Plato 2005, 2011 ch. 9).

The way the logical constants get eliminated in the axiom-to-rules conversion can be sum-
marized as the table that follows: In the first column we have the logical constant with its
polarity in the axiom, in the second the corresponding meta-linguistic connector in left rules
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and in the third the one in the right rule. The first three lines give the correspondence for
universal axioms, the fourth and the fifth for geometric and co-geometric axioms, respectively,
the sixth has been open so far, and the last, the property of Noetherianity stating that every
chain of accessible elements is eventually stationary, has been obtained through the use of labels
(Negri 2005, Dyckhoff and Negri 2013):

Logical constant/property Left rule Right rule

negative & , branching

positive ∨ branching ,

positive ⊃ split in conclusion/premiss split in premiss/conclusion

positive ∃ (geometric axiom) variable condition —

negative ∀ (cogeometric axiom) — variable condition

quantifier alternations beyond ∀∃ ? ?

Noetherianity labels labels

The applicability of the method of proof analysis to logics characterized by a relational semantics
has brought a wealth of applications to the proof theory of non-classican logics, including
provability logic (Negri 2005), substructural logic (Negri 2008), intermediate logics (Dyckhoff
and Negri 2012), conditional logics (Olivetti et al. 2007), description logics (de Paiva et al.
2011), systems for collective intentionality (Hakli and Negri 2011), and dynamic logics such as
the logic of public announcement (Negri and Maffezioli 2010) and the epistemic logic of programs
(Maffezioli and Naibo 2013). In all these applications, the geometric rule scheme suffices for
the extra mathematical rules; however, for provability logics, the characterizing condition is
not first order and the property of Noetherianity is absorbed into the calculus by means of a
suitable modification of the rules for the modality.

Recently, we investigated the principles of the verificationist theory of truth by the methods
of proof analysis and studied how the ground logic, either classical or intuitionistic, affects their
liability to paradoxes. The study, focused on the well known Church-Fitch paradox, brought
forward a new challenge to the method of conversion of axioms into rules. The knowability
principle, which states that whatever is true can be known, is rendered in a standard multi-
modal alethic/epistemic language by the axiom A ⊃ ♦KA. This axiom corresponds, in turn,
to the frame property ∀x∃y(xRy&∀z(yRKz ⊃ x 6 z)) where R, RK, and 6 are the alethic,
epistemic, and intuitionistic accessibility relations respectively. This frame property goes be-
yond the scheme of geometric implication and therefore the conversion into rules cannot be
carried through with the usual rule scheme for geometric implications. In this specific case,
we succeeded with a combination of two rules that make up a system of rules linked together
by the requirement of appearing in a certain order in the derivation and by a side condition
on the eigenvariable. The resulting calculus enjoyed all the structural properties of the ground
logical system and led to definite answers to the questions raised by the Church-Fitch para-
dox by means of a complete control over the structure of derivations for knowability logic (cf.
Maffezioli, Naibo, and Negri 2012).

The generalization and systematization of the method of system of rules is the main task in
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this article. After some preliminaries, we shall provide in Section 3 an extension of the axiomatic
class of geometric theories, the class of generalized geometric implications. We shall prove
through an operative conversion to normal form that they can also be characterized in terms
of Glivenko classes as those first-order formulas that do not contain implications or universal
quantifiers in the negative part. As an intermediate step to giving the system of rules that
correspond to generalized geometric implications, we shall demonstrate the conversion procedure
on a simple example from a first-order relational axiomatization of lattices. The system of rules
for generalized geometric implications will then be defined and the equivalence with the axioms
proved. In Section 4 we shall establish the structural properties for the extensions with systems
of rules, admissibility of cut, weakening, and contraction. As an immediate application, we shall
provide in Section 5 an extension of Barr’s theorem. In Section 6 we shall connect the extension
of the axiom-as-rules method to the labelled proof theory of non-classical logic and provide a
proof of completeness of the proof systems obtained by enriching the ground labelled calculus
G3K with systems of rules for the frame properties. We shall then use the characterization in
terms of Glivenko classes to prove that generalized geometric implications contain the class of
Kracht’s formulas, i.e. the class of frame correspondents of Sahlqvist formulas. It follows that
the corresponding systems of rules provide analytic proof systems for all the modal logics in the
Sahlqvist fragment.

2 Preliminaries

We refer to Negri and von Plato (1998, 2001) for the necessary background on sequent calculus
and its extension with nonlogical (alias mathematical) rules. The sequent calculus we shall be
using here is the contraction- and cut-free sequent calculus G3. We list below the rules for its
classical version G3c and the modifications for obtaining its intuitionistic version G3im. Here
the letter “m” stands for multi-succedent.
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G3c
Initial sequents:

P,Γ→ ∆, P

Logical rules:

A,B,Γ→ ∆

A&B,Γ→ ∆
L&

Γ→ ∆, A Γ→ ∆, B

Γ→ ∆, A&B
R&

A,Γ→ ∆ B,Γ→ ∆

A ∨B,Γ→ ∆
L∨

Γ→ ∆, A,B

Γ→ ∆, A ∨B R∨

Γ→ ∆, A B,Γ→ ∆

A ⊃ B,Γ→ ∆
L⊃

A,Γ→ ∆, B

Γ→ ∆, A ⊃ B R⊃

⊥,Γ→ ∆
L⊥

A(t/x),∀xA,Γ→ ∆

∀xA,Γ→ ∆
L∀

Γ→ ∆, A(y/x)

Γ→ ∆,∀xA R∀

A(y/x),Γ→ ∆

∃xA,Γ→ ∆
L∃

Γ→ ∆,∃xA,A(t/x)

Γ→ ∆,∃xA R∃

G3im

A ⊃ B,Γ→ A B,Γ→ ∆

A ⊃ B,Γ→ ∆
L⊃

A,Γ→ B

Γ→ ∆, A ⊃ B R⊃

Γ→ A(y/x)

Γ→ ∆,∀xA R∀

In the initial sequents, P is any atomic formula. Greek upper case Γ, ∆ stand for multisets of
formulas. The restriction in R∀ is that y must not occur free in Γ, ∆, ∀xA (Γ, ∀xA for G3im).
The restriction in L∃ is that y must not occur free in ∃xA,Γ,∆. We may summarize these
conditions by the requirement that y must not occur free in the conclusion of the two rules.

All the structural rules (weakening, contraction and cut) are admissible in G3c and in G3im.
The calculi are thus complete for classical and intuitionistic first order logic, respectively.

3 Generalized geometric theories as systems of rules

We recall that a formula in the language of first-order logic is called geometric if it does not
contain ⊃ or ∀. A geometric implication is a formula of the form

∀x(A ⊃ B)

where A and B are geometric formulas. A geometric theory is a theory axiomatized by geometric
implications.
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It is known (cf., e.g., Simpson 1994 or Palmgren 2002) that any geometric implication can
be reduced to a conjunction of formulas of the form:

∀x(&Pi ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn) GA

Here the Pi range over a finite set of atomic formulas and all the Mj are conjunctions of atomic
formulas and the variables in the vector yj are not free in the Pi. We shall call a formula of type
GA a geometric axiom. Let Mj be Qj1 & . . . &Qjkj

where Qjl are atomic formulas. With a slight

abuse of notation, we shall use the vector notation for multisets of formulas instead of lists, and
write P for the multiset P1, . . . , Pk and Qj for Qj1 , . . . , Qjkj

. We shall also sometime for better

readability omit the vector notation for lists of variables and denote by Qj(zj/yj) the result of
the substitution of the variables yj by zj in each of the Qjl , that is, Qj1(zj/yj), . . . , Qjkj

(zj/yj).

The rule scheme that corresponds to the geometric axiom GA is

Q1(z1/y1), P ,Γ→ ∆ . . . Qk(zk/yk), P ,Γ→ ∆

P ,Γ→ ∆
GRS

Here the variables yi are called the replaced variables of the scheme, and the (lists of) variables
zi the proper variables or eigenvariables of the scheme. The scheme has the condition that
the proper variables are not free in P ,Γ,∆. We shall call a rule scheme of the above form a
geometric rule scheme, GRS for short.

As explained in Negri and von Plato (1998), the principal formulas P1, . . . , Pm of the scheme
must be repeated in the antecedent of each premiss for proving the rule of contraction admissible.
We recall also another condition, the closure condition, which has to be satisfied to obtain
admissibility of contraction for extensions: It can happen that a substitution in the atoms of a
rule produces duplications among the formulas Pi. Then in order to ensure that contraction is
admissible in the system, we need to add the contracted rule, that is, we must make sure that
the following condition is satisfied:

Closure condition: Given a system with geometric rules, if it has a rule with an instance of
form

Q1(y1/x1), P1, . . . , Pm−2, P, P,Γ⇒ ∆ . . . Qn(yn/xn), P1, . . . , Pm−2, P, P,Γ⇒ ∆

P1, . . . , Pm−2, P, P,Γ⇒ ∆

then also the rule

Q1(y1/x1), P1, . . . , Pm−2, P,Γ⇒ ∆ . . . Qn(yn/xn), P1, . . . , Pm−2, P,Γ⇒ ∆

P1, . . . , Pm−2, P,Γ⇒ ∆

has to be included in the system.

The condition is unproblematic because the number of rules to be added to a given system of
nonlogical rules is finite. The closure condition will always be assumed in the extension by rules.

The notion of geometric axiom will be taken as the base case in the inductive definition of a
generalized geometric axiom. So we take GA0 to be GA and GRS0 to be GRS. We then define

GA1 ≡ ∀x( &Pi ⊃ ∃y1 & GA0 ∨ . . . ∨ ∃ym & GA0)
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Next we define by induction

GAn+1 ≡ ∀x( &Pi ⊃ ∃y1 & GAk1 ∨ . . . ∨ ∃ym & GAkm)

Here & GAi denotes a conjunction of GAi-axioms and k1, . . . , km 6 n.
The following holds:

Proposition 3.1. Generalized geometric implications do not contain negative occurrences of
implications nor of universal quantifiers.

Proof: By induction on the generation of generalized geometric implications. Formulas of type
GA0 clearly do not contain negative occurrences of implications nor of universal quantifiers. For
the inductive step, the conclusion follows from the observation that the components for which
the inductive hypothesis holds are in the positive part of GAn+1 and the construction does not
add any negative implication nor any negative universal quantifier. QED

The above lemma indeed gives a characterization of generalized geometric implications in terms
of “Glivenko classes” (cf. Orevkov 1968), because we can prove the following

Theorem 3.2. Any first-order formula A that does not contain negative occurrences of impli-
cations nor of universal quantifiers is intuitionistically (and even minimally) equivalent to a
conjunction of generalized geometric implications and can be converted to equivalent generalized
geometric rules.

Proof: We shall give an operative procedure for proving the result, by a root-first decomposition
of the given first-order formula in the sequent calculus G3im. The procedure will at the same
time provide the canonical form of A as a conjunction of generalized geometric implications and
a system of rules that corresponds to A. The latter part is postponed after the formal definition
of the generalized geometric rule scheme in Subsection 3.2.

Start with the sequent → A as a root in a proof-search tree. Observe that because of the
assumptions on A, the possible rules that are applicable are L&, R&, L∨, R∨, R⊃, R∀, L∃,
R∃. Among these, we consider the invertible ones. Rules R⊃ and R∀ are classically invertible
and they are invertible in G3im only for single-succedent conclusions, but the root-first proof
search can, in the presence of disjunction and positive existentials, produce a multisuccedent
sequent, so they are applied root-first only if there is an empty right context. Rule R∃ is
not even classically invertible (invertibility in the G3-calculi is obtained artificially through the
repetition of the principal formula in its premiss). All the other rules, namely L&, R&, L∨,
R∨, L∃, are both classically and intuitionistically invertible.

After applying all the invertible steps we obtain the following decomposition:

{Pi → ∃yi,1Ai,1, . . . ,∃yi,niAi,ni}i=1,...,k....
→ A

In the upper sequents, all the Pi are multisets of atomic formulas. By the invertibility of the
rules, the search tree provides a derivation of the equivalence of A with the conjunction of the
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formulas &Pi ⊃ ∃yi,1Ai,1 ∨ . . . ∨ ∃yi,niAi,ni . The detailed proof is done along the lines of the
proof of Theorem 3.1.4 (conjunctive normal form for propositional classical logic) in Negri and
von Plato (2001). Formula A is a generalized geometric implication if each of the Ai,j is.

The procedure is then repeated for each of the formulas Ai,j by a root-first proof search with
all the available invertible rules. Each of these has the same original restrictions on implications
and universal quantifiers and is a proper subformula of A, thus the procedure terminates and
the claim is proved by well-founded induction. QED

In Negri (2003), we have established an equivalence between axiomatic systems based on geomet-
ric axioms and contraction- and cut-free sequent systems with geometric rules. The equivalence
can be extended by a suitable definition of systems of rules for generalized geometric axioms.
Here the word “system” is used in the same sense as in linear algebra where there are systems
of equations with variables in common, and each equation is meaningful and can be solved only
if considered together with the other equations of the system. In the same way, the systems of
rules considered here will consist of rules connected to each other by some variables and will in
addition be subject to the condition of appearing in a certain order in a derivation.

3.1 From generalized geometric axioms to rules and back: An example.

Before proceeding to the definition of GRSn, we consider a simple and well known example of
an axiom that belongs to the first step of our extension beyond the geometric axioms, the class
GA1. Consider the axiom of join semi-lattices:

∀xy∃z((x 6 z& y 6 z) &∀w(x 6 w& y 6 w ⊃ z 6 w)) lub-A

Observe that the axiom can be equivalently written in the form

∀xy∃z∀w((x 6 z& y 6 z) & (x 6 w& y 6 w ⊃ z 6 w))

One thus recognizes this as an axiom of the form GA1, with the first antecedent of atomic
formulas empty.

It will be clear, however, that it is convenient to push the quantifiers as deep as possible
into the formula, so we consider the first form of the axiom for the conversion into a system of
rules.

In the case of the axiom for join semilattices the system of rules consists of the following
two rules of existence and uniqueness of the least upper bound:

x 6 z, y 6 z,Γ→ ∆

Γ→ ∆
lub-E

z 6 w, x 6 w, y 6 w,Γ→ ∆

x 6 w, y 6 w,Γ→ ∆
lub-U

Rule lub-E has the condition that z is fresh (i.e., not in the conclusion of the rule), whereas
rule lub-U has the condition that in a derivation it should always be applied above (but not
necessarily immediately above) rule lub-E . This means that any derivation that uses rule lub-U
must have a branch of the form:
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(1)

z 6 w, x 6 w, y 6 w,Γ′ → ∆′

x 6 w, y 6 w,Γ′ → ∆′
lub-U

....
D....

x 6 z, y 6 z,Γ→ ∆

Γ→ ∆
lub-E

The condition is that z is not free in Γ,∆.
Observe that a system of rules departs from the usual handling of variables used in the (left)

regular or geometric rule scheme, where the variables are implicitly universal unless subject to a
variable condition, which makes them existential. Here we have the standard convention of the
geometric rule scheme for the lower rule (and specifically, x and y are universal, z existential),
but in the upper one only the variable w that did not appear in the lower rule is implicitly
universal.

We may use the notation familiar from linear algebra to indicate systems of rules. In the
case of system of rules for join semilattices we have the system:

lub-U

lub-E

Here, unlike in linear algebra, the order of the lines in the system of rules matters, and the
convention is that the order is the same as the order of occurrence in a derivation imposed
by the side condition. Alternatively, we shall use the more compact notation 〈lub-E, lub-U 〉 to
indicate a system of rules, with the convention that the latter rule in the derivation is written
first, with the order suggested by the order of quantifiers in the generalized geometric axiom.

As an illustration of the transition from a GA1 axiom to a GRS1 system of rules, we show
that the system G3c (G3im) extended by axiom lub-A and the structural rules is equivalent
to G3c (G3im) extended by the system of rules 〈lub-E, lub-U 〉.

First, given the system of rules 〈lub-E, lub-U 〉, axiom lub-A is derivable as follows:

x 6 z, y 6 z → x 6 z x 6 z, y 6 z → y 6 z

x 6 z, y 6 z → x 6 z& y 6 z
R&

z 6 w, x 6 z, y 6 z, x 6 w, y 6 w → z 6 w
x 6 z, y 6 z, x 6 w, y 6 w → z 6 w lub-U

x 6 z, y 6 z, x 6 w& y 6 w → z 6 w
L&

x 6 z, y 6 z → x 6 w& y 6 w ⊃ z 6 w R⊃

x 6 z, y 6 z → ∀w(x 6 w& y 6 w ⊃ z 6 w)
R∀

x 6 z, y 6 z → x 6 z& y 6 z&∀w(x 6 w& y 6 w ⊃ z 6 w)
R&

x 6 z, y 6 z → ∃z(x 6 z& y 6 z&∀w(x 6 w& y 6 w ⊃ z 6 w))
R∃

→ ∃z(x 6 z& y 6 z&∀w(x 6 w& y 6 w ⊃ z 6 w))
lub-E

→ ∀x∀y∃z(x 6 z& y 6 z&∀w(x 6 w& y 6 w ⊃ z 6 w))
R∀

Observe that the conditions of the system of rules are respected.
Conversely, we show that any derivation that uses the system of rules 〈lub-E, lub-U 〉 can be

transformed into one with axiom lub-A and cuts.
A derivation in the theory for join semi-lattices can use rule lub-E in isolation, whereas any

use of lub-U subsumes a use of lub-E further down. The transformation has to be performed
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for both rules, lub-E subject to the eigenvariable condition, and lub-U subject to the condition
of the system of rules. For the former, we assume a derivation that contains lub-E in isolation,
i.e. contains the step

....
x 6 z, y 6 z,Γ→ ∆

Γ→ ∆
lub-E

This is transformed as follows:

→ ∀xy∃z(x 6 z& y 6 z&∀w(x 6 w& y 6 w ⊃ z 6 w))

→ ∃z∀w(x 6 z& y 6 z& (x 6 w& y 6 w ⊃ z 6 w))
Der

→ ∃z(x 6 z& y 6 z)
Der

....
x 6 z, y 6 z,Γ→ ∆

x 6 z& y 6 z,Γ→ ∆
L&

∃z(x 6 z& y 6 z),Γ→ ∆
L∃

Γ→ ∆
Cut

Here and below we have denoted with Der a sequence of omitted steps in the purely logical
calculus. The transformation for lub-U used in conjunction with lub-E as in (1) above is as
follows:

→ ∀xy∃z(x6 z & y6 z &∀w(x6w & y6w ⊃ z6w))

→ ∃z(x6 z & y6 z &∀w(x6w & y6w ⊃ z6w))
Der

z6w, x6w, y6w,Γ′ → ∆′

x6w, y6w, x6w & y6w ⊃ z6w,Γ′ → ∆′ Der

x6w, y6w,∀w(x6w & y6w ⊃ z6w),Γ′ → ∆′ L∀

....
D′
....

x6 z, y6 z, ∀w(x6w & y6w ⊃ z6w),Γ→ ∆

x6 z & y6 z, ∀w(x6w & y6w ⊃ z6w),Γ→ ∆
L&

x6 z & y6 z &∀w(x6w & y6w ⊃ z6w),Γ→ ∆
L&

∃z(x6 z & y6 z & ∀w(x6w & y6w ⊃ z6w)),Γ→ ∆
L∃

Γ→ ∆
Cut

Here D′ is obtained from D by weakening with ∀w(x 6 w& y 6 w ⊃ z 6 w).

3.2 The generalized geometric rule scheme.

We shall now proceed with the definition of the generalized geometric rule scheme for GAn

axioms for any n. The definition is by induction on n. The base case, namely the geometric
rule scheme, has been given in Negri (2003) (see also Negri and von Plato 2011, ch. 8). The
example above shows how the generalized geometric rule scheme is obtained in the special case
of n = 1. We observe that in the example considered above there is an occurrence of the
existentially quantified variables which is not in the scope of the inner universal quantifier. The
occurrence of this variable allows to isolate the E-part of the system of rules from the U-part.
This is not however generally the case, and we may have to deal with a situation in which the
existential variable is in the scope of an inner universal quantifier, as in the axiom of terminal
elements in a preorder:

∃x∀y(x 6 y ⊃ x = y) Term

11



In order to isolate the introduction of the existential variable from the universal clause, we put
the axiom into the equivalent form:

∃x(x = x&∀y(x 6 y ⊃ x = y)) Term′

The equivalence is granted by the fact that we assume to be working within a system of first-
order logic with equality; the system can be presented as a cut-free system of sequent calculus
as in Negri and von Plato (2001).

Next we proceed to the translation of the axiom into a system of rules as follows:

x = y, x 6 y,Γ′ → ∆′

x 6 y,Γ′ → ∆′....
x = x,Γ→ ∆

Γ→ ∆

The condition is that x does not appear free in Γ, ∆.
With this proviso, we are now ready to give the general rule scheme for axioms of the form

GAn for an arbitrary n.
We consider, to start with, the case of GA1. The scheme GRS1 is as follows:

(2)

Γ′1 → ∆′1....
D1

0....
Γ′′1 → ∆′′1....
D1
....

z1 = z1, P ,Γ→ ∆ . . .

Γ′m → ∆′m....
Dm

0....
Γ′′m → ∆′′m....
Dm

....
zm = zm, P ,Γ→ ∆

P ,Γ→ ∆

Here zi are eigenvariables in the last inference step, the derivations indicated by Di
0 use rules of

the form GRS0(zi) that correspond to the geometric axioms GA0(zi/xi) in addition to logical
rules, and the Di use only logical rules.

Observe that the scheme accounts for both of the cases we have considered in the above
examples, the first in which the existential variable can be isolated as in lub-A, where P is
x 6 z, y 6 z and the zi = zi are absent, and the second, such as in axiom Term, where there are
no atoms P and the existential variable x is declared by the equality x = x in the equivalent
axiom Term′ before conversion rules. Since a generalised geometric implication has several
layers and in each one of the two situations may occur, the rule scheme has to be given in a
form that accounts for both of them.

The scheme GRSn+1 is defined inductively, once the schemes GRSki have been defined for
ki 6 n and with the same conditions as above, as follows

12



(3)

Γ′1 → ∆′1....
D1

k1....
Γ′′1 → ∆′′1....
D1
....

z1 = z1, P ,Γ→ ∆ . . .

Γ′m → ∆′m....
Dm

km....
Γ′′m → ∆′′m....
Dm

....
zm = zm, P ,Γ→ ∆

P ,Γ→ ∆

We are now in a position to complete the proof of Theorem 3.2 by giving the system of rules
that corresponds to a formula A without implications or universal quantifiers in the negative
part.

Proof of Theorem 3.2, second part: Observe that each block of invertible steps of the
decomposition of A defines an additional layer in the inductive definition of a system of rules.
If GRS(Ai,j) are the systems of rules that correspond to Ai,j , then the following scheme gives
the system of rules that corresponds to A:

....
GRS(Ai,1)....

yi,1 = yi,1, Pi,Γ→ ∆ . . .

....
GRS(Ai,ni)....

yi,ni = yi,ni , Pi,Γ→ ∆

Pi,Γ→ ∆

Here the variables yj,nj are eigenvariables, i.e. not in Pi,Γ,∆. QED

We introduce a little bit of compact notation for denoting system of rules. This is done
inductively. For n = 0, GRSn is GRS0, the usual geometric rule scheme. For n = 1 we have the
system

GRS1 =


GRS0(z1), . . . ,GRS0(zm)

z1, . . . , zm

Here the zi are the eigenvariables of the last step of the system; these are included in the
parametric variables (those other than the eigenvariables) of the rule schemes GRS0. For n+ 1
we have the system

GRSn+1 =


GRSk1(z1), . . . ,GRSkm(zm)

z1, . . . , zm

Here for all i = 1, . . . ,m we have ki 6 n. The set of eigenvariables of the system is given by
the zi together with the eigenvariables of the systems GRSki(zi). We observe that each zi may
indeed indicate a vector of variables, but the vector symbol is omitted.

Because of the equivalence of the geometric rule scheme and geometric axioms (cf. Negri
2003), we know that by the use of rules that belong to the scheme GRS0(zi), we can derive
& GA0(zi/xi), and conversely that a derivation that uses the scheme GRS0(zi) can be converted
into a purely logical derivation from the same assumptions, with & GA0(zi/xi) added in the
antecedent of the conclusion.

We are now in a position to prove:
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Proposition 3.3. Axiom schemes of the form GA1 are derivable in G3c (G3im) extended by
a rule scheme of the form GRS1. Conversely, any (cut-free) derivation that uses rule schemes of
the form GRS1 can be converted into (cut-free) derivations with the same assumptions and with
conclusion weakened with GA1 in the antecedent of conclusion, and therefore in a derivation
with cuts in the system extended by axioms in the class GA1.

Proof: For the first part, consider the derivation

....
→ & GA0(z1/y1)

z1 = z1, P → & GA0(z1/y1)
L-Wk

z1 = z1, P → ∃y1 & GA0

R∃

z1 = z1, P → ∃y1 & GA0, . . . ,∃ym & GA0

R-Wk
. . .

....
→ & GA0(zm/ym)

zm = zm, P → & GA0(zm/ym)
L-Wk

zm = zm, P → ∃ym & GA0

R∃

zm = zm, P → ∃y1 & GA0, . . . ,∃ym & GA0

R-Wk

P → ∃y1 & GA0, . . . ,∃ym & GA0

Ex

P → ∃y1 & GA0 ∨ . . . ∨ ∃ym & GA0

R∨

→ P ⊃ ∃y1 & GA0 ∨ . . . ∨ ∃ym & GA0

R⊃

→ ∀x( &P ⊃ ∃y1 & GA0 ∨ . . . ∨ ∃ym & GA0)
R∀

The dotted parts are derivations in the system with the rule scheme GRS0 that correspond to
the geometric axioms GA0(zi/yi). These are determined as in section 3 of Negri (2003). Ex
indicates the existential part of GRS1.

For the converse, we have to show that given the premisses of GRS1 as in (2) above, we can
derive its conclusion modulo left weakening with axioms in GA1. We have:

Γ′1 → ∆′1....
D1

0
′

....
& GA0,Γ

′′
1 → ∆′′1....

D1′
....

y1 = y1, & GA0, P ,Γ→ ∆

y1 = y1 & & GA0, P ,Γ→ ∆
L&

∃y1(y1 = y1 & & GA0), P ,Γ→ ∆
L∃

. . .

Γ′m → ∆′m....
Dm

0
′

....
& GA0,Γ

′′
m → ∆′′m....

Dm′
....

ym = ym, & GA0, P ,Γ→ ∆

ym = ym & & GA0, P ,Γ→ ∆
L&

∃ym(ym = ym & & GA0), P ,Γ→ ∆
L∃

∃y1(y1 = y1 & & GA0) ∨ . . . ∨ ∃ym(ym = ym & & GA0), P ,Γ→ ∆
L∨

&P ⊃ ∃y1(y1 = y1 & & GA0) ∨ . . . ∨ ∃ym(ym = ym & & GA0), P ,Γ→ ∆
Der

∀x( &P ⊃ ∃y1(y1 = y1 & & GA0) ∨ . . . ∨ ∃ym(ym = ym & & GA0)), P ,Γ→ ∆
L∀

Here the derivations Di
0
′
are obtained from the Di

0 by the known equivalence of geometric axioms
and geometric rules and the derivations Di′ are obtained from the Di by left weakening with
&GA0(zi/yi). The conclusion follows by a cut with the axiom scheme GA1. QED
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Clearly, the proof of the above theorem can be restated as a proof of the inductive step for the
proof of correspondence between axiom schemes GAn and rule schemes GRSn. We therefore
have:

Theorem 3.4. Equivalence of axiomatic systems and systems of rules. For all n,
axiom schemes of the form GAn are derivable in G3c (G3im) extended by rule schemes of the
form GRSn. Conversely, any cut-free derivation that uses rule schemes of the form GRSn can
be converted into cut-free derivations with the same assumptions and with conclusion weakened
with GAn in the antecedent of conclusion, and therefore in a derivation with cuts in the system
extended by axioms in the class GAn.

Remark. We conclude this section with the analysis of an example that shows that the class
GA1 need not contain quantifier alternations; in fact there are purely propositional axioms that
are in GA1 but not in GA0. An example is the linearity axiom (P ⊃ Q) ∨ (Q ⊃ P ), with the
corresponding system of rules of the form

Q,P,Γ′ → ∆′

P,Γ′ → ∆′....
D1
....

Γ→ ∆

P,Q,Γ′′ → ∆′′

Q,Γ′′ → ∆′′....
D2
....

Γ→ ∆
Γ→ ∆

Lin

The correspondence of the above system of rules with the linearity axiom follows as a special
case from the correspondence between rule schemes of the form GRSn and axiom schemes GAn,
but we show it for completeness in this special case. First the axiom is derivable from the
system of rules added to G3im as follows:

Q,P → Q

P → Q

→ P ⊃ Q,Q ⊃ P R⊃

→ (P ⊃ Q) ∨ (Q ⊃ P )
R∨

P,Q→ P

Q→ P

→ P ⊃ Q,Q ⊃ P R⊃

→ (P ⊃ Q) ∨ (Q ⊃ P )
R∨

→ (P ⊃ Q) ∨ (Q ⊃ P )
Lin

Second, we show that given the premisses of Lin we can derive its conclusion through cuts with
the axiomatic sequent → (P ⊃ Q) ∨ (Q ⊃ P ) and with sequents derived in pure logic:

→ (P ⊃ Q) ∨ (Q ⊃ P )

....
P, P ⊃ Q→ Q Q,P,Γ′ → ∆′

P, P ⊃ Q,Γ′ → ∆′
Cut

....
D1′

....
P ⊃ Q,Γ→ ∆

....
Q,Q ⊃ P → P P,Q,Γ′′ → ∆′′

Q,Q ⊃ P,Γ′′ → ∆′′
Cut

....
D2′

....
Q ⊃ P,Γ→ ∆

(P ⊃ Q) ∨ (Q ⊃ P ),Γ→ ∆
L∨

Γ→ ∆
Cut
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Here D1′ and D2′ are obtained from D1 and D2 by left weakening with P ⊃ Q and Q ⊃ P ,
respectively1.

A simple argument shows that rule Lin is analytical, i.e. P and Q are found among the
subformulas of the conclusion. Consider Q and the derivation D2 of the right premiss of the
rule. Either there are no other applications of linearity or, if there are, either Q is always
a side formula or is a principal formula in some of them. In the first two cases, it is found
as a subformula of the conclusion, else if it is principal somewhere we choose among the two
branches of linearity the one in which it does not disappear in the upper inference line. Since
the derivation is a finite objects, and in particular, there is only a finite number of applications
of linearity, Q cannot disappear altogether. In an identical way, one concludes that P cannot
disappear2.

A typical, non-degenerate example of an axiom in GA1 is the continuity axiom of analysis,
∀ε∃δ(∀x(x ∈ B(δ) ⊃ f(x) ∈ B(ε))).

4 Admissibility of structural rules

In analogy with the extension by geometric rules, we shall denote by G3cGT (resp. G3imGT)
the extension of G3c (resp. G3im) by systems of rules that follow the generalized geometric
rule scheme. Likewise, in defining the extension, care has to be paid to the closure condition
to maintain the admissibility of the rule of contraction. In order to show that the systems
G3cGT and G3imGT are complete with respect to the classical and intuitionistic generalized
geometric theory GT , respectively, we need to extend the results on Negri (2003) from systems
with the geometric rule scheme to systems with systems of rules. The leading idea for the
extension is that it is not enough to prove results of height-preserving admissibility, but there
should be stronger “system-preserving” admissibilities. This is needed to guarantee that the
transformations used in proving height-preserving admissibility of substitution, weakening and
contraction, as well as admissibility of cut, transform a correct derivation into another correct
derivation, that is, into one in which the added rules respect the conditions on the eigenvariables.
We include for completeness the otherwise routine proofs.

Lemma 4.1. System-preserving substitution. Given a derivation of Γ → ∆ in G3cGT
(G3imGT, resp.), with x a free variable in Γ,∆ and a term t free for x in Γ,∆ not containing

1This example suggests a possible connection with the method of hypersequents, where linearity is translated
by the rule of communication

G | ∆1,Γ1 → Π1 G | ∆2,Γ1 → Π2

G | ∆2,Γ1 → Π1 | ∆1,Γ2 → Π2

and the identification of two branches that lead to the same conclusion in the sequent calculus derivation by the
rule of external contraction G | Γ→∆ | Γ→∆ | H

G | Γ→∆ | H
between identical components of an hypersequent (cf. Avron 1996

for the presentation of the method of hypersequents for non-classical logics with the specific analysis of linearity
on p. 9, and Ciabattoni, Galatos and Terui 2008 for other extensions of hypersequents by rules.

2This proof of analyticity may bring to mind the proof of the subterm property for the theory of linear order,
which also originates from the idea that the only way to have a term disappear from a derivation would be to have
an infinite derivation (Theorem 7.9 in Negri and von Plato 2011 or Theorem 6.3 in Negri, von Plato, Coquand
2004).
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any of the eigenvariables in the derivation, we can find a derivation of Γ(t/x) → ∆(t/x) in
G3cGT (G3imGT, resp.) with the same height and system structure.

Proof: By induction on the height of the given derivation, considering the last rule applied.
If the last rule is a scheme of the form GRS0, the proof goes as in Negri (2003), with the
additional observation that the structure is voidly preserved. If the last rule is of the form
GRSn+1 (with the notation as in the definition of the scheme), we apply the inductive hypothesis
to the conclusions of the rules GRSk1(zi), which gives derivations of Γ′′i (t/x) → ∆′′i (t/x) and
conclusions zi = zi(t/x), P ,Γ(t/x)→ ∆(t/x), which is the same as zi = zi, P ,Γ(t/x)→ ∆(t/x)
by the hypothesis on t and x. QED

Theorem 4.2. The rules of weakening

Γ→ ∆
A,Γ→ ∆

LW
Γ→ ∆

Γ→ ∆, A
RW

are height- and system-preserving admissible in G3cGT and in G3imGT.

Proof: By induction on the height of the derivation of the premiss, as in Negri and von Plato
(1998). In case the last step is of the form GRSn and A contains some of its eigenvariables,
the substitution lemma is applied to the eigenvariables of the system of rules to have new
free variables not clashing with those in A. The conclusion is then obtained by applying the
inductive hypothesis and the geometric rule scheme. QED

The proof of admissibility of the contraction rules for G3cGT and G3imGT requires the
use of inversion lemmas for all those rules that do not copy the principal formula into their
premisses. Again, here as in the other admissibilities above, we need to establish the stronger
height and system preserving inversion. All the inversion lemmas for the propositional rules
that hold for G3c and G3im hold for the extension by systems of rules, for the same reason as
for the geometric rule scheme, that is, the fact that systems of rules have only atomic formulas
as principal and active formulas. For the inversions of L∃ and R∀, we need to add a condition
on the variable to avoid clashes with the eigenvariables of the systems of rules in the derivation.

Let `n Γ→ ∆ denote a derivation of the sequent Γ→ ∆ in G3cGT, with derivation height
bounded by n. We have:

Lemma 4.3. Inversion for quantifier rules.
(i) If `n ∃xA,Γ → ∆ and y is not among the eigenvariables of the systems of rules in the
derivation, then `n A(y/x),Γ→ ∆, with the same system structure.
(ii) If `n Γ → ∆, ∀xA and y is not among the eigenvariables of the systems of rules in the
derivation, then `n Γ→ ∆, A(y/x), with the same system structure.

Proof: (i) Similar to the proof of Lemma 3 in Negri (2003), with the additional observation
of system preserving admissibility for all cases. The new case, in which the last rule in the
derivation of ∃xA,Γ → ∆ is the last step in a system of rules GRSn, is treated, variable-wise,
in the same way as the case of geometric rules as last step.
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(ii) Similar to (i). QED

We remark that a similar statement holds for G3imGT, with (ii) modified to an empty ∆.
By Lemma 4.1, we are allowed to assume the following:

Purity condition. In a derivation in G3cGT (G3imGT) the sets of proper variables (eigen-
variables) of the generalized geometric rules are pairwise disjoint and appear only in the subtrees
of the derivation above such rules.

Theorem 4.4. The rules of contraction

A,A,Γ→ ∆

A,Γ→ ∆
LC

Γ→ ∆, A,A

Γ→ ∆, A
RC

are admissible and height- and system-preserving in G3cGT and in G3imGT.

Proof: For left contraction, the proof is by induction on the height of the derivation of the
premiss. If it is an initial sequent or a zero-premiss rule, the conclusion is also an an initial
sequent or a zero-premiss rule. If the last rule is a propositional rule, then A,Γ→ ∆ follows as
in theorem 3.2 of Negri and von Plato (1998). If it is L∀, we apply the induction hypothesis
to the premiss of the rule, and then the rule, and similarly if it is L∃ with A not principal
in it. If it is L∃ with A ≡ ∃xB and premiss B(y/x), ∃xB,Γ → ∆, by the variable condition
on the generalized geometric rule scheme, y /∈ Γ,∆, so y is not among the eigenvariables in
any geometric rule in the derivation of B(y/x),∃xB,Γ → ∆ (or even of the whole derivation
if we assume the pureness condition), so we can apply the inversion lemma for L∃ instantiated
to y and obtain a derivation of B(y/x), B(y/x),Γ → ∆. By the induction hypothesis, we
get B(y/x),Γ → ∆ and by L∃, ∃xB,Γ → ∆. The rest of the proof is similar to the proof for
geometric extensions as detailed in Negri (2003). In particular, nothing more than the same care
with variables that was already needed for that proof is needed to establish system-preserving
admissibility in the extensions with generalized geometric rules. QED

Theorem 4.5. The cut rule
Γ→ ∆, A A,Γ′ → ∆′

Γ,Γ′ → ∆,∆′
Cut

is admissible and system-preserving in G3cGT and in G3imGT.

Proof: Also this proof has the same structure as the corresponding proof in Negri (2003), with
an induction on the length of A with subinduction on the sum of the heights of the derivations
of Γ → ∆, A and A,Γ′ → ∆′. Here we have to check that the additional requirement of
preservation of system structure is met by that procedure. We observe that, in general, the
permutation of cuts preserves the system structure, because if a step (a mathematical rule)
is followed in the original derivation by another step (another mathematical rule such as one
that removes eigenvariables), this order is maintained after the permutation. In addition, the
pureness condition guarantees that the permutation does not introduce spurious variables that
could interfere with the variable condition of the generalized geometric rule scheme.
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To illustrate the argument for one specific conversion type, we shall consider in detail the
case in which the left premiss of cut is the conclusion of a generalized geometric rule and the
cut formula A principal in it. In this case A is necessarily an atomic formula and therefore it
cannot be principal in the left premiss of cut:

Γ′′ → ∆′′, A

Γ→ ∆, A
R

Γ1 → ∆1....
D1

k1....
Γ′1 → ∆′1....
D1
....

z1 = z1, A, P ,Γ
′ → ∆′ . . .

Γm → ∆m....
Dm

km....
Γ′m → ∆′m....
Dm

....
zm = zm, A, P ,Γ

′ → ∆′

A,P ,Γ′ → ∆′
GGRS

P ,Γ,Γ′ → ∆,∆′
cut

The derivation is converted as follows:

Γ′′ → ∆′′, A

Γ1 → ∆1....
D1

k1....
Γ′1 → ∆′1....
D1
....

z1 = z1, A, P ,Γ
′ → ∆′ . . .

Γm → ∆m....
Dm

km....
Γ′m → ∆′m....
Dm

....
zm = zm, A, P ,Γ

′ → ∆′

A,P ,Γ′ → ∆′
GGRS

P ,Γ′′,Γ′ → ∆′′,∆′
cut

P ,Γ,Γ′ → ∆,∆′
R

Observe that in case rule R is a rule with variable conditions, the purity condition is used to
guarantee that the new context does not contain any of the eigenvariables of the rules. QED

5 Generalized first-order Barr’s theorem

The first-order Barr theorem is a conservativity result stating that if a geometric implication is
provable classically in a geometric theory, then it is provable intuitionistically. We can extend
this result, with generalized geometric implications in place of geometric ones. The generaliza-
tion can be attempted both in the theory part and in the conservative class; however, it is seen
immediately that generalized geometric implications do not fall under the possible extensions
of the conservative class. A counterexample is (A ⊃ B) ∨ (B ⊃ A). This is in GA1 and has a
level 1 disjunction and is provable classically but not intuitionistically. We can, on the other
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hand, liberalize the theory part to the whole class of generalized geometric theories and obtain
the following result:

Theorem 5.1 (Generalized first-order Barr’s theorem). For all n, if a geometric implication
is derivable in G3c +GRSn, it is derivable in G3im +GRSn.

Proof: Nothing to prove. Any derivation uses only rules from GRSn and logical rules. Because
of the shape of the conclusion, none of the rules that violates the intuitionistic single-succedent
restrictions (i.e., the classical multisuccedent R ⊃, R∀) can have been used, so the derivation is
already an intuitionistic one. QED

The conclusion of the above theorem can be strengthened to a conservativity over minimal logic
if an additional assumption is added, namely that the geometric implication does not contain ⊥
in the negative part. The reason is that the derivation will not contain ⊥ in any antecedent of
sequents, and a fortiori the rule L⊥ of intuitionistic logic cannot have been used. We recall (cf.
e.g. Troelstra and Schwichtenberg 2000 or Negri 2003) that a multi-succedent sequent calculus
G3mm for minimal logic is obtained from G3im by replacing L ⊥ with the initial sequent
⊥,Γ→ ∆,⊥.

By the characterization of generalized geometric implications in terms of Glivenko classes
and the conversion of generalized geometric implications into generalized geometric rules in
Theorem 3.2, the above results can be restated as follows:

Theorem 5.2. Suppose that Γ is a multiset of formulas that do not contain ⊃ or ∀ in the
negative part, and that A is a geometric implication. If G3c` Γ→ A, then G3im` Γ→ A. If
in addition A does not contain ⊥ in the negative part, then G3mm` Γ→ A

6 Labelled systems with systems of rules

So far, the most general classes of logics defined through their Kripke semantics, and thus
amenable to a formulation in term of labelled systems, have been those characterized by geo-
metric frame conditions and by the Noetherian condition. These include all the intermediate
interpolable logics (Dyckhoff and Negri 2012), all the common systems of normal modal logics
and the provability logics of Gödel-Löb and of Grzegorczyk (cf. Negri 2005, Dyckhoff and Negri
2013). They do not include certain intermediate logics such as the Kreisel-Putnam logic (cf.
Dyckhoff and Negri 2012) and knowability logic (cf. Maffezioli, Naibo and Negri 2012), both
characterized by frame conditions in GA1.

We are now in a position to extend labelled deduction to all modal (and multimodal) logics
with frame conditions that are generalized geometric implications.

The formulation of these systems is obtained as follow:

1. Start with a basic labelled modal system, such as the system for classic modal logic G3K
(as in Negri 2005), or the system for intuitionistic modal logic G3I (as in Negri and von
Plato 2011 or Dyckhoff and Negri 2012), or a multimodal system (as in Hakli and Negri
2011, Maffezioli, Naibo and Negri 2012).
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2. Add the frame properties in the form of generalized geometric rules for accessibility rela-
tions.

The methodological difference with respect to the method exposed in Negri (2005) is that
the extra rules for labels can be systems of rules that correspond to generalized geometric
implications.

The proofs of the structural properties of the system thus obtained is extended almost
routinely to all the systems obtained. A bit of care is needed in the soundness part of the proof
of completeness. We sketch the argument for the case of an extension with a rule in GGR1 to
illustrate the subtle point.

We first recall some definitions, starting with the table of rules of G3K:

Initial sequents:

x : P,Γ→ ∆, x : P xRy,Γ→ ∆, xRy

Propositional rules:

x : A, x : B,Γ→ ∆

x : A&B,Γ→ ∆
L&

Γ→ ∆, x : A Γ→ ∆, x : B

Γ→ ∆, x : A&B
R&

x : A,Γ→ ∆ x : B,Γ→ ∆

x : A ∨B,Γ→ ∆
L∨

Γ→ ∆, x : A, x : B

Γ→ ∆, x : A ∨B R∨

Γ→ ∆, x : A x : B,Γ→ ∆

x : A ⊃ B,Γ→ ∆
L⊃

x : A,Γ→ ∆, x : B

Γ→ ∆, x : A ⊃ B R⊃

x :⊥,Γ→ ∆
L⊥

Modal rules:

y : A, x : �A, xRy,Γ→ ∆

x : �A, xRy,Γ→ ∆
L�

xRy,Γ→ ∆, y : A

Γ→ ∆, x : �A
R�

xRy, y : A,Γ→ ∆

x : ♦A,Γ→ ∆
L♦

xRy,Γ→ ∆, x : ♦A, y : A

xRy,Γ→ ∆, x : ♦A
R♦

Rules R� and L♦ have the condition that y is not in the conclusion.

Table. The system G3K

In the first initial sequent, P is an arbitrary atomic formula. As remarked in Negri (2005), no
rule removes an atom of the form xRy from the right-hand side of sequents, and such atoms
are never active in the logical rules, therefore initial sequents of the form xRy,Γ → ∆, xRy
can as well be left out from the calculus without impairing completeness of the system. Such
initial sequents are needed only for deriving properties of the accessibility relation, namely, the
extra axioms corresponding to the rules for R given below. Then extra axioms are included
in the system in the form of rules for the accessibility relation. They follow the regular or the
geometric rule scheme recalled in the Introduction and in Section 3 above. For example, the
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rules that correspond to axiom T (�A ⊃ A) and 4 (�A ⊃ ��A) are obtained by the conversion
of the frame properties of reflexivity and transitivity, respectively, and have the form

xRx,Γ→ ∆

Γ→ ∆
Ref

xRz, xRy, yRz,Γ→ ∆

xRy, yRz,Γ→ ∆
Trans

The full strength of the geometric rule scheme is instead used for converting axioms, such as
2 (♦�A ⊃ �♦A) that corresponds to directness, a geometric frame condition with existential
variables, ∀xyz(xRy&xRz ⊃ ∃w(yRw&zRw); the rule to be added to G3K is

yRw, zRw, xRy, xRz,Γ→ ∆

xRy, xRz,Γ→ ∆
Dir

where w is a fresh variable.
We can go further and consider not just frame properties that correspond to geometric

axioms, but also frame properties that correspond to generalized geometric implications. For
example, the modal axiom A ⊃ ♦�♦A corresponds to the frame property

∀x∃y(xRy&∀z(yRz ⊃ zRx))

The property is in GA1 and the corresponding system of rules has the form
zRx, yRz,Γ→ ∆

yRz,Γ→ ∆

xRy,Γ→ ∆

Γ→ ∆

with the condition is that y is not free in Γ,∆ and the side condition discussed in Section 3.1
on the order of application of the rules in a derivation, namely that whenever the upper rule is
applied on any branch it is followed by the lower one, as in

zRx, yRz,Γ′ → ∆′

yRz,Γ′ → ∆′....
xRy,Γ→ ∆

Γ→ ∆

The reader can check that A ⊃ ♦�♦A is derivable in G3K extended by the above system of
rules.

We shall extend the use of the terminology in Negri (2005) and denote by G3K∗ any
extension of G3K with rules that follow the generalized geometric rule scheme.

Definition 6.1. Let K be a frame with an accessibility relation R that satisfies the properties
∗. Let W be the set of variables (labels) used in derivations in G3K∗. An interpretation of
the labels W in frame K is a function [[·]] : W → K. A valuation of atomic formulas in frame
K is a map V : AtFrm→ P(K) that assigns to each atom P the set of nodes of K in which P
holds; the standard notation for k ∈ V(P ) is k  P .
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Definition 6.2. A sequent Γ→ ∆ is true for an interpretation and a valuation in K if
for all labelled formulas x : A and relational atoms yRz in Γ, whenever [[x]]  A and [[y]]R[[z]] in
K, then for some w : B in ∆, [[w]]  B. A sequent is valid if it is true for every interpretation
and every valuation in a frame.

Theorem 6.3. If the sequent Γ→ ∆ is derivable in G3K∗, then it is valid in every frame with
properties ∗ ranging over generalized geometric axioms.

Proof. Given a valuation V in a frame K, we show that each rule preserves the truth for the
evaluation, from which the result follows by induction. For a generalized geometric axiom GAn,
n > 0, the proof is supplemented by an induction on n. The base case, with n = 0 has already
been proved (cf. Theorem 11.27 in Negri and von Plato 2011 or Theorem 5.3 in Negri 2009). We
show the case n = 1. For simplicity we assume that GA1 is of the form ∀x( &Pi ⊃ ∃yGA0) and
we consider the last rule in the derivation. The cases of initial sequents, propositional rules,
modal rules, and mathematical rules without eigenvariables, are dealt with as in the above
mentioned proofs.

If the sequent is a conclusion of the rule system that corresponds to GA1, we have

Γ′ → ∆′....
D0....

Γ′′ → ∆′′....
D....

y = y, P ,Γ→ ∆

P ,Γ→ ∆

Suppose that the premiss is true for V and consider an interpretation [[·]] such that all the
frame relations xRy hold under the interpretation and for all formulas z : A in Γ, [[z]]  A. In
particular, all the relations Pi hold in the frame under the interpretion, so by GA1, there is k
in the frame such that GA0(k) holds. Then we have

1. By the induction on the first parameter, the conclusions of GRS0(k) is true.

2. The sequent y = y, P ,Γ→ ∆ is true for all interpretations that verify the antecedent and
with [[y]] ≡ k. Observe that such an interpretation can be obtained as an extension of the
one we started with, because by the variable condition y /∈ Γ,∆. So there is w : B ∈ ∆
such that [[w]]  B as requested.

We observe that the proof is generalized to an arbitrary axiom in the class GA1 by considering
as many branches that start with the eigenvariables yi as there are disjunctions of conjunctions
of GA0 in the axiom and for each branch as many applications of rules in GRS0(yi) as there
are conjuncts in each of GRS0(yi). The inductive step for n + 1 is done exactly in the same
way, with GAn and GRSn in place of GA0 and GRS0. QED
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The completeness part of the completeness proof does not present any difference with respect
to the proof for geometric extensions: the reduction tree and the countermodel construction are
defined as in the proof of theorem 11.28 of Negri and von Plato (2011), by considering closure
with respect to all systems of rules rather than just all rules. We thus obtain the following
theorem, where G3K∗ denotes any extension of G3K by generalized geometric rules and the
properties ∗ are the corresponding frame rules:

Theorem 6.4. Let Γ → ∆ be a sequent in the language of G3K∗. Then either the sequent is
derivable in G3K∗ or it has a Kripke countermodel with properties ∗.

The completeness theorem then follows as a corollary:

Corollary 6.5. If a sequent Γ→ ∆ is valid in every Kripke model with the frame properties ∗,
then it is derivable in the system G3K∗.

The question then naturally arises on the expressive power of this extension: Which classes
of non-classical logics does the method capture? A well known class is that of modal logics
axiomatized by Sahlqvist formulas. We can indeed easily show that the method provides a
complete proof system of each modal logic in this fragment. To prove this claim, we first
recall from Blackburn et al. (2001) a characterization of frame properties that correspond to
Sahlqvist formulas, given in terms of Kracht formulas. Before giving the definition, we recall
that a restricted universal quantifier ∀r is of the form

∀ryA(x, y) ≡ ∀y(xRy ⊃ A(x, y))

and a restricted existential quantifier ∃r is of the form

∃ryA(x, y) ≡ ∃y(xRy&A(x, y))

Restricted quantifiers, either universal or existential, are denoted by Qr. Formulas are, as usual,
assumed to be clean, i.e. to satisfy the property that no variable is both free and bound and no
two distinct occurrences of quantifiers bind the same variable (formulas with this property are
sometimes called pure). A variable in such a formula is inherently universal if it is either free or
bound by a restricted universal quantifier which is not in the scope of an existential quantifier.
Kracht formulas are first order (clean) formulas with the following properties:

1. Restrictedly positive, i.e., built from atomic formulas and negation of atomic formulas
using only &, ∨, and restricted quantifiers.

2. Every atomic subformula is either of the form z = z or z 6= z, or else it contains at least
one inherently universal variable.

In particular, we observe that the restrictors xRy of restricted quantifiers are atomic formulas.
We can then proceed in two ways to show that Kracht formulas are indeed a special case of
generalized geometric implications. The first way is to use a conversion the normal form for
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Kracht formulas, as detailed in Blackburn et al. (2001, p. 171): it consists of conjunctions of
formulas of the form

∀rx1 . . . ∀rxnQr
1y1 . . . Q

r
mymA(x1, . . . , xn, y1, . . . , ym)

where A is quantifier free and its atomic subformulas are either of the form z = z, or z 6= z or
contain one of the variables xi. Then we can prove by induction on n and m that such formulas
are indeed generalized geometric implications.

The second way is to observe that the very definition of Kracht formulas implies that they
do not contain negative occurrences of ⊃ or ∀ because they are built from atoms and negations
of atoms using &, ∨, and Qr. By Theorem 3.2 they can thus be converted to conjunctions of
generalized geometric implications and to systems of generalized geometric rules.

We have thus proved:

Proposition 6.6. Every Kracht formula is equivalent to a conjunction of generalized geometric
implications.

By Theorem 6.4, systems of rules for generalized geometric implications provide complete
proof systems for the frame classes they correspond to, and thus, by Theorem 3.59 in Blackburn
et al. (2001), they provide complete analytic proof systems for any modal logic axiomatized by
Sahlqvist formulas.

7 Concluding remarks and related work

We have extended the method of proof analysis beyond the boundaries of geometric theories and
highlighted a class of axioms for which the method works with equally strong structural results.
The class is of particular relevance for the proof theory of modal logic because it includes the
first-order formulas that correspond to modal axioms in the Sahlqvist fragment. The general
locality of the rules has to be abandoned but the conditions that connect inference steps in a
system of rules seem manageable enough because they involve only eigenvariables and the order
of certain mathematical rules in a derivation. The manageability is confirmed by an application
in epistemic logic that preceded and motivated this general investigation and involved a proper
extension of the class of geometric axioms. We plan to investigate further applications of the
method to the proof theory of non-classical logic, especially multimodal logics for which the
frame conditions are found in the classes GAn for n ≥ 1. Frame conditions for a certain modal
axiom are found by a heuristic method of root-first proof search in a basic labelled calculus.
We plan to formalize these insights to develop a general method to establish correspondence
results.

A conservativity results of classical over intuitionistic theories of the kind stated by our
generalization of the first-order Barr theorem has been obtained in Ishihara (2000). The result
is obtained by inductively defining four classes Q, R, J , and K of formulas, and proving that if a
formula in K is classically provable from a collection of formulas in Q, then it is intuitionistically
provable from the collection. It can be easily shown that the class Q contains the class of
generalized geometric implications and the class K contains the class of geometric implications,
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and thus the result includes our Theorem 5.1. We point out, however, that whereas Ishihara’s
proof is obtained by a proof transformation through several intermediate lemmas that use
the Gödel-Gentzen translation, our proof is reduced to a triviality and shows that a classical
derivation in the theory obtained through the extension by rules is already an intuitionistic
derivation. We have presented generalized geometric implications as normal forms for a certain
Glivenko class of formulas. We point out that our conservativity result is not included in those
of Orevkov (1968). On the other hand, a complete and simple reconstruction by means of G3
sequent calculi of the seven conservativity classes of Orevkov’s work will appear in a separate
paper (Negri 2014).

Another conservativity result related to our generalization of Barr’s theorem has been pre-
sented by Schwichtenberg and Senjak (2013): they proved that if A is a formula without im-
plications and Γ consists of formulas that contain disjunctions and falsity only negatively and
implications only positively, then classical derivability implies minimal derivability. Their proof
uses natural deduction and a method of elimination of stability axioms. In comparison, our
conservativity result (Corollary 5.2) uses a cut-free sequent calculus, allows disjunctions in the
positive part of formulas in Γ (but no universal quantifiers in the negative part), and is obtained
with no effort as an immediate consequence of cut elimination.

The results of this article have been presented at the meeting on Proof Theory and Construc-
tive Mathematics in Oberwolfach and at the meeting in honour of Roy Dyckhoff in StAndrews,
both in November 2011. I wish to thank the organizers of those meetings who invited me
to present my work (Michael Rathjen and Stéphane Graham-Lengrand, respectively) and the
participants (especially Didier Galmiche, Hajime Ishihara, Grisha Mints, Ieke Moerdijk, Peter
Schroeder-Heister, Peter Schuster, Helmut Schwichtenberg, and Alex Simpson) and in addition
Agata Ciabattoni for useful comments and discussions related to the topic of this work. I also
wish to thank Roy Dyckhoff for many stimulating exchanges during our collaboration over the
years. Last but not least I thank the two referees for their careful reading and feedback on the
manuscript.
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