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Abstract

This paper provides a constructive proof of Stone representation the-
orem for distributive lattices, in the framework of . Sambin’s formal
topologies. In order to formalize the result wholly inside Martin-1.of’s
Intuitionistic Type Theory, the notion of Stone base is introduced, and it
is proved to be equivalent to that of formal topology in which any cover of
a basic open admits a finite subcover. The main theorem states that the
category of distributive lattices with apartness is equivalent to the cate-
gory of Stone bases. Finally the results are related to those of Johnstone
and to the classical point-set representation.

1 Introduction

The purpose of this paper i1s to analyze the constructive content of Stone rep-
resentation theorem for distributive lattices (cf. [ST]), asserting that any dis-
tributive lattice is isomorphic to the compact opens of a suitable topological
space, called coherent space.

This is done in the setting of formal topologies, which have been introduced
by G. Sambin in [S] with the purpose of developing pointfree topology inside the
constructive foundational framework of Martin-Lof’s Intuitionistic Type Theory,
abbreviated ITT. The demand of expressibility inside I'TT often brings to very
“elementary” definitions and proofs. This is particularly evident in dealing with
Stone representation theory for distributive lattices.

Tt is well known (cf. [J]) that distributive lattices form a category which is
equivalent to the category of coherent frames. It will be shown here that the
category of coherent frames, enriched with an intuitionistic predicate of apart-
ness from 0 corresponding to the positivity predicate of formal topologies, is
equivalent to the category of Stone formal topologies. Stone formal topologies
are formal topologies in which every basic open is compact. Indeed we will prove



that any Stone formal topology is uniquely determined by its behaviour on the
finite subsets of the base. We are thus led to the notion of Stone bases, which
represent the finitary content of Stone formal topologies, with the advantage
of being wholly expressible inside ITT. In fact a cover, which is an infinitary
relation, i.e. a relation between elements and subsets, is replaced by a finitary
cover, which is a relation between elements of types, with no reference to arbi-
trary subsets. So the representation theorem for distributive lattices here takes
the form of an equivalence with the category of Stone bases.

This ground result allows us to obtain the usual pointfree representation via
coherent frames (cf. [J]) simply by “set-theoretic sugaring”.

Finally, in order to obtain the usual point-set Stone representation by means
of coherent spaces, we need to use the Prime Filter Theorem, which is seen to
be equivalent to extensionality of Stone formal topologies.

Coherent spaces arise as spaces of (formal) points on a Stone formal topology,
or equivalently on a Stone base; so we might say that (cf. [SVV]) Stone bases
are to coherent spaces what Information bases are to Scott domains.

Even if we do not use the ITT notation explicitly throughtout the paper, we
have been careful to distinguish which notions are expressible inside ITT and
which are not. The various equivalences, proved outside ITT, tell us that our
notion of Stone base is a good replacement, inside I'TT, of the notion of coherent
frame. We can thus forget about coherent frames, whose treatment in the
constructive context of I'TT would require an awkward amount of specifications,
and retain the simpler notion of Stone base.

We conclude with observing that this work represents a continuation of some

ideas already in [S] and [S2].

2 Stone formal topologies and the category of
Stone bases
We start with some preliminary definitions concerning our approach to pointfree

topology. For references, further details and notation the reader is referred to
[S] (where sometimes a different notation is used), [S2], [SVV].

Definition 2.1 A formal topology is a structure A = (S, -, 1, <4, Pos ) where'

o (S,-,1) is a (formal) base, i.e. a commutative monoid with unit;

o <y is a relation between elements and subsets of S, called (formal) cover,
satisfying:

aclU

a Al re flexivity,

'From now on we will omit subscripts when clear from the context.
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where U <4 V' denotes a derivation x <14 V[ € U] of @ 4 V from the
assumption x €U and U -V ={a-b:acUbeV};

e Posy 1s a predicate, called positivity predicate satisfying:

Pos(a) a4 U

monotonicity,
Posa(U) Y
Posa(a) > a<qa U L
positivity,
a<d4 U

where Posa(U) = (3b € U)Pos4(b).

Formal opens are subsets of S, up to the equivalence U =4 V = U <14 V&V <y
U. Morphisms between formal topologies are the formal counterpart of the
inverse of continuos maps, and thus they are defined as follows:

Definition 2.2 A morphism between formal topologies A = (S,-,1,<14, Pos4)
and B = (T,-,1,<g, Posg) is an application f : S — PT, where PT denotes
the power set of T, such that:

1. f() =51,

2. fla-b) =5 f(a) - f(b);

3. a4 U — fla) < f(U), where f(U) = Uper f(b);
4. Posg(f(a)) = Posg(a).

FEquality of morphisms f,g : A = B is defined by f = g = (Ya € S)(f(a) =5
g(a)).

It is easy to prove that formal topologies and morphisms of formal topologies,
with composition given by (f o g)(a) = f(g(a)) and identity defined by 1(a) =
{a}, form a category, called the category of formal topologies and denoted with
FTop.

In the sequel we will be mostly concerned with a particular full subcategory
SFTop of FTop whose objects are Stone formal topologies, defined below:

Definition 2.3 A formal topology A is said to be Stone if <1 is a Stone cover,
1.e. whenever a < U there exists a finite subset K of U such that a <1 K.



The notation P, .S will be used to denote the collection of finite subsets of S as
defined in [SV]. If S is a set (or a type) in the TTT framework, then so is P, S.

Tt is well known (cf. e.g. [S] for details) that a cover <14 on S is associated
with a closure operator .4 on PS5, defined by AU = {a € S :a <4 U}. Here,
we say that a subset U is A-saturated if AU = U. A bijective correspondence
holds between covers on S and closure operators on PS satisfying the equality
AU - V) = AU N AV. Thus Stone formal topologies can be characterized in
terms of closure operators by the following:

Lemma 2.4 For any formal topology A, A is Stone iff AU = U{AK : K C,
U}.

Proof: A Stone means by definition that « < U — (3K C, U)(a < K), which
is equivalent to a <« U « (3K C, U)(a < K), which is just another way of
expressing the equality AU = U{AK : K C, U}. O

The interest of the above characterization of Stone topologies is that closure
operators satisfying the corresponding condition are a well known object of
study: they are just algebraic closure operators. By a well known result, which
can be provided with a constructive proof, a closure operator C is algebraic if
and only if it is inductive 1.e. the union of directed families of C- saturated
subsets is C-saturated.

One of the aims of this paper is to develop a strictly finitary treatment of
Stone formal topologies. For any cover <1 on S, we define the finite trace <4 of
< as the restriction of < to elements and finite subsets of S:

a<K=a< K (a€8 KEeP,S).

As we shall see, any Stone formal topology is uniquely determined by its be-
haviour on finite subsets, that is by its finite trace.
Our basic definition is obtained by abstraction on finite traces:

Definition 2.5 A Stone base is a quintuple S = (S, -, 1s, <s, Poss) where:
o (S,-,1s) is a (formal) base;

e <5 15 afinitary cover, i.e. a relation between elements and finite subsets
of S formally satisfying the same conditions of covers, 1.e. for any a,b € S

and K, L € P,S:

Z i ﬁ, reflexivity,
% transitivity,
% -right:



e Posg is a predicate on S satisfying monotonicity and positivity w.r.t. <,
ie.:
Posg(a) a< K
(3b € K)Poss(b)
Poss(a) > a < K
a< K

monotonicity,

positivity.

For any formal topology A, the finite trace of <14 determines a Stone base, by
the following:

Proposition 2.6 Let A = (S,-,1,<, Pos) be a formal topology and let <4 be
the finite trace of <. Then the structure S(A) = (S,-,1,<q, Pos) is a Stone
base.

Proof. Straightforward from definitions. As for -R, observe that U -V is finite
whenever U and V' are finite. O

Conversely, we have the following;:

Proposition 2.7 Given a Stone base S = (S, -, 1, <, Pos), let <4 be the mini-
mal cover with trace <, that is the cover inductively generated by taking a <14 K
as axioms whenever a < K and by closing under the rules for cover, i.e. reflex-
wity, transitivity, --left, --right. Then for any a € S and U C S:

a ¢ U iff there exists K C, U such that a < K. (1)
Therefore A(S) = (S, -, 1,<, Pos) is a Stone formal topology.

Proof. Trivially, <1 18 a cover.

Suppose there exists K C, U such that ¢ < K. Then a <4 K by the
axioms; from K C, U it follows by reflexivity K <14 U and hence a <1 U by
transitivity.

The converse is also simple, but it illustrates the method of induction on
covers, in this case on the generation of <14. For axioms and reflexivity the
claim is trivial. Assume a <15 V is obtained from a <5 U and U <14 V by
transitivity. By inductive hypothesis, ¢ < K for some K C, U and for all
x € K, 2 < L, for some L, C, V. By reflexivity, L, < Uzex Lz, hence by
transitivity of <, # < Ugzer Ly for any z € K, hence K < U,ecg L, and finally
a < Ugeg Ly by transitivity. For -L and R the proof is straightforward.

Since by axioms a < K gives a << K, <15 is a Stone cover by (1).

To conclude, it remains only to be shown that Pos satisfies monotonicity
and positivity w.r.t. the cover <14. To prove monotonicity, assume Pos(a) and
a <4 U. Then there exists K C, U such that a < K. By monotonicity of
Pos w.r.t. <, Pos(K) holds, thus a fortiori Pos(U) holds too. Before proving
positivity, define, for all U C S, Ut = {a € U : Pos(a)} and for all a € S let
at = {a}*. Then the premiss of positivity, i.e. Pos(a) — a <15 U is equivalent



to at <14 U. Moreover, from at < a™, we have Pos(a) — a < a™, which, by
positivity of Pos w.r.t. <, gives a < at and therefore a <14 a*. This, together
with a®™ <1 U, yields by transitivity a <t UU. O

Let <1 and <’ be covers on the same base S. We say that <’ is a quotient of
Qifforallae S, U C S,
adlU —=a< U

This relation corresponds to set-theoretic inclusion between the extensions of
< and <, thus we also say that <’ is greater than <1, and write 1<<’. Given
a cover <, let <4 be its finite trace. By proposition 2.6 and 2.7, <, generates
a cover <, which is Stone and therefore does not coincide in general with <.
Indeed < is a quotient of <1.,. In fact, if @ <14, U then there exists K C, U
such that ¢ <4 K and therefore, since <, is a restriction of <, a <« K, thus
a < U. Moreover, <., is the greatest Stone cover of which < is a quotient. In
order to prove this, consider a Stone cover <’ of which < is a quotient. Then
a <’ U implies a <’ K for some K C, U, and therefore also a <« K. Thus, by
definition of trace of a cover, a <, K and by definition of cover generated by a
trace a <4, U.

The cover < coincides with <1, iff < is a Stone cover. In fact, suppose that
<d=<l,. Then < is Stone since <., is Stone by the above remarks. Conversely,
Q<,<< since < is a quotient of << ,. Since <4, is the greatest Stone cover of
which < is a quotient, then also the opposite inequality holds and the conclusion
follows.

We denote <14, with <1, and call it the Stone compactification ? of <I. Then
the above discussion proves the following;:

Proposition 2.8 Any cover < admits a Stone compactification <, which is
the cover induced by ils finite trace, <x,. This is the greatest Stone cover of
which < is a quotient and it coincides with < iff < is a Stone cover.

We also have:

Corollary 2.9 A cover < is a Stone cover iff it is finitarily ariomatizable, i.e.
there erists a relation R between elements and finite subsets of S such that <
coincides with the cover g generated by R, which is obtained from the arioms
a g U whenever R(a,U) holds, by closing under the rules for covers.

For any formal topology A, let A, = AS(A), that is, by definitions of A,
S and <, Ay = (S.-,1, <y, Pos). Then, by propositions 2.6 and 2.7, A, is a
Stone formal topology, called the Stone compactification of A.

Given two formal topologies with the same base monoid and the same posi-
tivity predicate, A = (5,-, 1,4, Pos) and A" = (S,-,1,<’, Pos), we say that A
is a quotient of A’ if the cover <’ is quotient of the cover <.

Summing up we have proved:

2Not to be confused with the familiar Stone-Cech compactification!



Theorem 2.10 Any formal topology A = (S,-,1,<, Pos) admits a Stone com-
pactification A, = (S, -, 1, <w, Pos). This is the greatest Stone formal topology
of which A is a quotient. Moreover A = A, iff A is a Stone formal topology.

An important corollary of the above results is the fact that any Stone formal
topology is determined by its finite trace, which is a relation between elements
and finite subsets of S and is therefore completely expressible inside the foun-
dational framework of ITT.

The definition of morphism between Stone bases is obtained in the natural
way, similarly to the definition of morphism between formal topologies, except
for the fact that an element 1s always mapped into a finite subset of the base.
For any Stone base §, let =g denote the equivalence relation on P,.S defined
by K =s L =K <s L & L <s K. Then we can define:

Definition 2.11 A morphism between two Stone bases S = (S, -, 1s, <s, Poss)
and T = (T, -, 17, <1, PosT) is an application f : S — P,T formally satisfying
the same conditions of morphisms between formal topologies, 1.e.

1 f(ls) =7 17;

2. fla-b) =7 f(a)- f(b);

3. a<s K = f(a) <7 f(K);
4. Post(f(a)) = Poss(a).

Likewise, equality of morphisms f,g :+ S — T is defined by f = ¢ = (Va €
S)(f(a) =7 g(a)).

As for formal topologies, composition of morphisms f: S — 7 and ¢ : 7 — V
is defined by (g o f)(a) = ¢(f(a)) and the identity 1: S — & is the morphism
mapping each element into its singleton, that is 1(a) = {a}. Thus Stone bases
form a category which we denote with SB.

Let SFTop* be the category of Stone formal topologies with coherent mor-
phisms i.e. morphisms from A to B induced by applications mapping elements
of the base of A into finite subsets of the base of B. Then we can prove that
the bijective correspondence determined by A and S between Stone bases and
Stone formal topologies extends to an equivalence between SFTop* and SB.

Observe that any coherent morphism f between Stone formal topologies A
and B is a morphism between the Stone bases S(.A) and S(B). Tn fact, condition
1 and 2 hold since on finite subsets =5 and =g 5) coincide. As for condition 3,
suppose that @ <, K. Then by definition a <4 K. Since f is a morphism in
SFTop*, f(a) <s f(K), and since f(K) is finite, f(a) <1<, f(K). Condition
4 holds trivially since the positivity predicate is the same.

Conversely, any morphism ¢ between Stone bases & and 7 s a morphism
between the Stone formal topologies A(S) and A(T). The proof is trivial,
except for the third condition. In fact, let a <4, U. Then a <s K for some



K C, U and therefore, since g is a morphism of Stone bases, g(a) <<, g(K).
Since g(K) Cw g(U), then g(a) <<, g(U).

Thus A and S extend to functors which are the identity on morphisms
between SB and SFTop*. Then the functor A is a bijection on morphisms,
i.e. 1s full and faithful. Moreover the functor is dense, since for all Stone formal
topologies A, A= A(S(A)).

We have therefore proved:

Theorem 2.12 The category SFTop* of Stone formal topologies with coherent
morphisms is equivalent to the category SB of Stone bases.

Observe that the proof of this equivalence, as well as the proofs of the other
equivalences throughout the paper, 1s constructive since we actually define the
inverse functor, in this case S. Moreover the constructive character of the cate-
gory SB consists in the fact that objects are types and morphisms are functions
between types in ITT. Anyway, it would be easy to give a more general notion
of morphism between Stone bases, with f : S — PT, in such a way that a
category equivalent to the whole of SFTop is obtained.

3 Pointfree representation of coherent frames and
distributive lattices

In this section we will show how Stone bases give a constructive representation
of distributive lattices and relate this with the usual pointfree version of Stone
representation, based on coherent frames (see [J], 11.3.4).

Since Stone bases are endowed with an intuitionistic predicate of positivity,
we will deal with a richer structure than that of distributive lattices, namely
distributive lattices with a predicate which reflects the properties of Pos. We
say that - #0 is a predicate of apartness from 0 in a distributive lattice L if the
following properties hold for a € L and K C,, L:

a#0 a<VK

a#0 = a < VK
(3b € K)(b7£0)

a<vk )

(m),

The name “apartness” is justified by the fact that the predicate - #0 is easily
seen to satisfy the following

—|(a#0) —a= 0, (2)

which is an instance of one of the defining properties of apartness (cf. [TvD]).
Thus a lattice with apartness from 0 has a stable equality to 0, i.e. =—=(a = 0)
holds iff @ = 0 holds. On the other hand, we can prove classically that the
predicate defined by a#0 = —(a = 0) is a predicate of apartness from 0. This is
the coarsest predicate of apartness from 0 since, for every such predicate - #0
and for all a € L, it follows from (2) that a#0 — —(a = 0).



A morphism between distributive lattices with apartness f : (L1,#1) —
(La, #2) is a lattice morphism such that for all @ € Ly, f(a)#20 — a#:10. The
category of distributive lattices with apartness will be denoted with DLat .

Given a distributive lattice with apartness from 0, (L, #), let S; be the
Stone base associated to I, defined by S, = (L, A, 1, <y, Posr), with

a<y; K
Posy (a)

a <VK
a#0.

Conversely, given a Stone base § = (5,-,1, <, Pos), we obtain a distributive
lattice with apartness from 0 defining Sat(S) = {SK : K C,, S}, where SK =
{a € S:a < K}. Then Sat(S), with operations given by

SKVSL
SKASL

= S(KUIL)
= SKNSL
top and bottom S{1} and S@ respectively and apartness SK#0 = Pos(K),
is a distributive lattice with apartness from 0. Sat(S) is called the lattice of
saturated subsets of the Stone base S.

Then we have:

Proposition 3.1 Any distributive lattice L is isomorphic to the lattice of sat-
urated subsets of the Stone base Sy,.

Proof. First observe that any saturated subset of Sp is the saturation of a
singleton, since for all K C,, L, SK = S{VK}. Therefore the map

¢: L —  Sat(Sr)
a —  S{a}

is surjective. Since S{a} = {b € L : b < a}, which will be denoted with | a
for short, ¢ is clearly injective. This map is a morphism of lattices because
dlavd) = S{avbd} = S{a,b} = S{a} Vv §{b}; then ¢ preserves meet since
L(anbd) = ({ a)n(lb). The top is preserved by definition and so does the
bottom since ${0} = S@. Finally ¢ is an isomorphism of lattices with apartness

since for all a € L, S{a}#0 iff Posy,(a) iff a#£0. D

Let f : S — T be a morphism of Stone bases. Then it is easy to prove that
the map
Sat(f): Sat(S) —  Sat(T)
SK — T(f(K))

is a morphism of lattices with apartness, and functoriality is straightforward.
By the above proposition, Sat is a dense functor. Moreover we have:

Lemma 3.2 The functor Sat establishes a bijective correspondence between

SB(S,7) and DLaty(Sat(S), Sat(T)).



Proof: Let f,g €SB(S,T) and suppose Sat(f) = Sat(g). Then for all a € S,
Sat(F)(S{a)) = Sat(g)(S{a)), that is Tf(a) = To(a), ie. f(a) =7 gla). By
definition of equality between coherent morphisms, f = ¢, thus the correspon-
dence is 1-1. As for surjectivity, let h €DLaty(Sat(S), Sat(T)). Since for all
a €S, h(S8{a}) € Sat(T), then we know ? that h(8{a}) = T(K,), for a suitable
finite subset K, of T. Define f : S — P,T by f(a) = K,. Tt is then routine to
verify that f is a morphism of Stone bases. O

The above lemma and theorem 2.12 prove the following:

Theorem 3.3 The category DLaty of distributive lattices with apartness is
equivalent to the category SB of Stone bases with coherent morphisms and to
the category SFTop* of Stone formal topologies with coherent morphisms.

Before going on with the representation of distributive lattices by means of
coherent frames, we introduce the category of frames with apartness from 0.
Due to the presence of arbitrary suprema, the notion of frame cannot be directly
formalized in TTT. This is the reason why we base our approach to pointfree
topology on the equivalent notion of formal topology, which is expressible in
the ITT framework. In fact, we will provide an extension of the representation
theorem for frames (cf. [BS]) by showing that the category of frames with
apartness from 0 is equivalent to the category of formal topologies.

Apartness from 0 in a frame is defined like apartness from 0 in a lattice,
except that arbitrary suprema must be considered, i.e. we require:

a#0 ag\/U( ) a#0 = a < VU
@b e )(b0) a<vo P

Given a predicate - #0 of apartness from 0 on a base S of a frame F, we can
extend it to the whole frame F' by defining, for a € F,

a#:r0 = (Fb € S)(b < a & b#0).

In fact it is easy to prove that for all a € S, a#r0 iff a#0, i.e. - #p0 extends
- #0, and that - # 0 is a predicate of apartness from 0 as well.

We say that a morphisms of frames is a morphism between two given frames
with apartness from 0, (Fy,#1) and (Fa, #2), if for all @ € Sy (base of Fy),
f(@)#20 — a#10. We will denote with Frmy the category thus obtained and
call it the category of frames with apartness.

Let Sat be the functor which associates to a formal topology A = (5,-,1,<
, Pos) the frame of its saturated subsets, Sat(A) = {AU : U C S} with opera-
tions of finite meet and arbitrary join given by

AU AN AV AU N AV,
VierAU; A(UierUi).

8A careful formalization in ITT would substitute Sat(S), which is not a set but a set-
indexed family, with (P (S), =s), which is a set together with an equality relation and which
is isomorphic to Sat(S). In particular, this step of the proof would be more explicit.

10



A base of Sat(A) is given by the saturations of singletons from S, i.e. {A{a}:
a € S}. On such a base a predicate of apartness from 0 defined by:

Af{a}# 540 = Pos(a).

If f : A — Bis a morphism of formal topologies, then Sat(f) : Sat(A) — Sat(B)
is defined by
Sat(f)(AU) = B(f(U))

and it is seen to be a morphism between frames with apartness.

The functor Sat is dense since, for all (F,#) €Frmy, we can construct a
formal topology A such that (F,#) = (Sat(A), #s4). Let S be a base of F
and define, for alla € S, U C S:

a<1U
Pos(a)

a < VU,
a#0.

Then A = (S,-,1,<, Pos) is a formal topology and the map

(Sat(.A),#Sat) — (F7 #)
AU — VU

establishes an isomorphism of frames with apartness. Moreover the assignment

Sat : FTop(A,B) — Frmy(Sat(A),Sat(B))
f — Sat(f)

is a bijection, i.e. Sat is full and faithful. We may thus conclude:

Theorem 3.4 The category of formal topologies FTop is equivalent to the cat-
egory of frames with apartness from 0 Frmy.

We will obtain the equivalence between SFTop* and the category of coherent
frames as a special case of theorem 3.4. We first recall from the literature some
definitions and basic properties concerning coherent frames (cf. [J]).

Definition 3.5 Let F be a frame. We say that an element a of F is compact
(finite) if for every U C F such that a < VU there erists K C, U such that
a <VK.

If Fis the frame of open sets of a topological space, we obtain the usual definition
of compact open. Compact elements of a frame form a join semilattice, in fact
we have:

Lemma 3.6 Let I' be a frame. Then:
1. 0 is compact;

2. If a and b are compact, then a V' b 1s compact.

11



In general, compact elements of a frame are not closed under meet. This fact
justifies the following definition:

Definition 3.7 A frame F is coherent if:
1. The compact elements K(F) of F form a sublattice of F;

2. Fuvery element of F is a join of compact elements, i.e. K(F) generates

F.

Coherent frames can be made into a category CohFrm whose objects are coher-
ent frames and whose morphism f : F; — Iy are coherent morphisms of frames,
i.e. maps preserving finite meets and arbitrary joins and mapping K (F}) into
K (F3). By endowing coherent frames with a predicate of apartness from 0, we
obtain the category CohFrmy of coherent frames with apartness.

We are now going to prove that the equivalence stated in 3.4 restricts to an
equivalence between SFTop* and CohFrmy. This will permit us to use the
notion of Stone formal topology (or equivalently of Stone base) as the version
expressible inside ITT of the notion of coherent frame with apartness from 0.

In order to prove that for any Stone formal topology A, Sat(A) is a coherent
frame, we start with a preliminary lemma characterizing compact elements of
Sat(A) in terms of covers.

Lemma 3.8 Let A be a formal topology and let U € Sat(A). Then U is compact
in Sat(A) iff for all V € Sat(A),

U<V UL

for a suitable finite subset L of V.

Proof: Suppose that U is compact in Sat(A) and assume U < V. Since AV =
VaevA{a}, this hypothesis can be rephrased by the inequality U < V,ev.A{a}
holding in the frame Sat(A). By compactness of U in Sat(A), there exists
L C, V such that U < Vger.A(a), which is equivalent to U < L. Conversely,
let U < VierV;, where Vi € Sat(A). Then U < U;erVi, hence by hypothesis
there exists L C,, U;erV; with U <1 L. Let Iy be the finite subset of I such that
L C Uier,Vi. Then U < U;er, Vi, that is U < Vser, Vi, hence U is compact in
the frame Sat(A). O

As a corollary, let U be compact in Sat(.A). Then there exists K C,, U such
that U = A(K). In fact, by reflexivity, U < U, and thus, by the above lemma,
there exists K C,, U such that U <1 K. Since the opposite cover relation holds
in general, we have U =4 K, that is, as U is A-saturated, U = A(K).

Observe however that the converse need not hold, i.e. U may be the satura-
tion of a finite subset of S without being compact.

Anyway, if the formal topology A is Stone, the saturations of the singletons
are compact, by lemma 3.8 and definition of Stone cover. Thus, by lemma 3.6,
the saturation of any finite subset of S is compact. We may thus conclude:

12



Proposition 3.9 Let A be a Stone formal topology. Then U is compact in
Sat(A) iff there exists K C, U such that U = A(K).

We define Sat, (A) = {AK : K C, S}. Then the following result is easily

obtained:

Proposition 3.10 Let A be a formal topology. Then A is a Stone formal topol-
ogy iff the compact elements of Sat(A) coincide with Sat, (A).

We are now in the position to prove:
Theorem 3.11 For any Stone formal topology A, Sat(A) is a coherent frame.

Proof: Tn order to prove that Sat, (A) is a sublattice of Sat(A), we have to
check closure under finite meet. Of course the top element of Sat(A), A{1},
is compact. Then suppose U, V € Sat,(A). By proposition 3.9, there exist
K C, U and L C, V such that U = AK and V = AL. Recall that in any
formal topology A the equality AU N AV = A(U - V) holds for all U,V C S.
Then UAV =UNV = A(U-V), and also UAV = A(K-L), where K-L C,, U-V.
Therefore, by proposition 3.9 again, U A V' is compact. Finally, by lemma 2.4,
Sat,(A) generates Sat(A). O

Observe that S-saturation and A (S)-saturation coincide on finite subsets of
S, that is for all K C,, S, SK = (A(S))K. Thus the compact elements of the
coherent frame Sat(A(S)) are precisely the elements of Sat(S). Since Sat(S)
generates (by closure under directed unions) the coherent frame with apartness
Sat(A(8)), proposition 3.1 together with theorem 3.11 gives:

Corollary 3.12 Pointfree Stone’s representation theorem for distribu-
tive lattices. Any distributive lattice (with apartness) is isomorphic to the
compact elements of a coherent frame (with apartness).

The reader should notice that the proof of the above pointfree Stone repre-
sentation theorem is completely constructive, and no prime ideal theorem or
equivalents are involved.

We are now in the position to prove the converse of 3.11, i.e. that any
coherent frame with apartness is isomorphic to Sat(A) for a suitable Stone
formal topology A. Let F' be a coherent frame with apartness - #0, and consider
the Stone base 8y, associated to the sublattice I of compact elements of F'. By
the results in section 1, a Stone formal topology A is obtained by defining
A = A(81). Observe that for alla € L, U C I, @ <4 U holds iff there exists
K C, U such that ¢ < VK that is iff a € Z(U), where Z(U) denotes the ideal
generated by U in L. Thus Sat(A) coincides with the frame of ideals on I,
denoted TdI(L). Consider now the map

¢$: F — Sat(A)
a = lra={bel:b<La}l.

13



Since L generates F', ¢ is injective. As for surjectivity, observe that for all A-
saturated subsets AU, AU =] VU since for any b € L, b € AU iff there exists
K C, U such that b < VK iff (by compactness of b) b < VU.

The bijection ¢ is a frame morphism since it is an order preserving map
with order preserving inverse, given by (7) = VI for all T € Idl(L). Tndeed ¢
is a morphism of frames with apartness since for all @ € K(F), ¢(a)#s5q:0 iff
b1 a#54:0 1ff a#r0. We can summarize the above result with the following:

Proposition 3.13 For any coherent frame with apartness I there exists a
Stone formal topology A such that F = Sat(A). Such formal topology A is
given by the topology of ideals on the distributive lattice of compact elements of
F.

If F is the coherent frame of saturated subsets of a Stone formal topology, by
using the characterization of compact elements of Sat(A) provided in 3.10, we
obtain:

Corollary 3.14 If A is a Stone formal topology, the map

¢ :Sat(A) — Tdl(Sat, (A))
U = JU={AK:KC,U)

is a frame isomorphism with inverse Y(I) = VI.

Proposition 3.13 together with theorem 3.11 gives (by observing that coherence
is preserved under frame isomorphism):

Theorem 3.15 Let F be a frame with apartness from 0. Then F is coherent
iff there exists a Stone formal topology A such that F = Sat(A).

By proposition 3.13, Sat : SFTop* — CohFrmy is a dense functor; moreover
it is easy to see that the bijection on morphisms given by theorem 3.4 restricts to

a bijection between SFTop* (A, B) and CohFrmy (Sat(A), Sat(B)). Therefore

we have:

Theorem 3.16 The category CohFrmy of coherent frames with apartness is
equivalent to the category Sftop* of Stone formal topologies with coherent mor-
phisms.

The above result gives, together with theorem 2.12 and theorem 3.3:

Corollary 3.17 The category CohFrmy of coherent frames with apartness is
equwalent to the category SB of Stone bases and to the category DLaty of
distributive lattices with apartness from 0.

Finally, we observe that in all the categories introduced so far, morphisms be-
tween two given objects can be partially ordered pointwise and moreover the
functors yielding the equivalences preserve this order. This means that all the
equivalences are indeed equivalences of 2-categories.
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4 Stone formal spaces and topological represen-
tation

In order to connect our pointfree approach to representation theory with the
traditional one, the notion of point has to be recovered. Since we reverse the
usual conceptual order between points and opens, and take the opens as primi-
tive, points will be defined as particular, well behaved, collections of opens. We
recall here the definition of (formal) point on a formal topology, and specialize
it to the Stone case.

Definition 4.1 Let A= (S,-,1,<, Pos) be a formal topology. A subset o of S
15 said to be a formal point if for all a,b € S, U C S the following conditions
hold:

1. 1€«
g.aEa bEa;
a-bea
3 ac€a alU
CEelU)beaw)
a e
" Pos(a)’

Observe that this definition connects to the usual intuition on points by reading
“a € a” as “a is a point of @”, 1 as the whole space, product as intersection,
“a QU” as “aisincluded in the union of U”, and “Pos(a)” as “a is inhabited”,
that is a positive way of saying that @ is not empty.*

Now let A be a Stone formal topology. Then, by definition, @ <1 U holds iff
there exists a finite subset K of U such that ¢ <« K. Then condition 8 above
can be weakened to the following:

a€Ea a<d K
(Fbe K)b € a)

and thus points can be defined directly in terms of the Stone base S(A).

The definition of formal point of a Stone formal topology can be rewritten
in such a way that it results in the more familiar notion of prime filter on a
suitable lattice.

foralla € S, K C, S.

The notion of filter in a lattice is defined as usual. In a lattice I endowed
with a predicate of apartness from 0, the property that a filter F' is proper is
expressed in a stronger form by

a € I — a#t0.

4For a more exhaustive treatment of this topic cf. [S2].
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As usual, a filter F' is said to be prime if for all a,b; € L
a€Fa<b V.. Vb,— (Fi<n)(b €F).
As announced we have:

Proposition 4.2 There exists an order preserving bijection between formal points
on a Stone formal topology A and prime filters on Sat, (A).

Proof: Let o be a formal point on A and define & = {A{a} : a € a}. Then & is
a prime filter on Sat,, (A). In fact A{1} € & since 1 € a. Tt is closed under meet
since A{a} A A{b} = A{a - b} and « is closed under product. Then suppose
Afa} € & and A{a} < A{b1}V ...V A{b,}, that isa € a and a < {by,...,b,}.
Since « is a formal point, there exists ¢ < n such that b; € «, that is such
that A{b;} € &. Finally, if A{a} € &, then a € «, hence Pos({a}) holds and
therefore A{a}# 54:0.

Similarly one proves that if F' is a prime filter on Sat, (A), then F° = {a €
S : A{a} € F} is a formal point on A. The correspondence is clearly order
preserving and it is bijective since, for all formal points o on A and for all filters
F on Sat, (A), the equalities (&)° = a and F° = F hold by definitions. O

For any formal topology A, the formal space Pt(A) of formal points on A
can be endowed with a topology, called the extensional topology. Define, for
a€s

ext(a) = {a € Pt(A) :a € a}.
The family {ext(a)}acs is a base for a topology on Pt(A). In fact, from defi-
nition of formal point we have ext(1) = P#(.A), thus the whole space is a basic
open, and ext(a) Next(b) = ext(a - b), thus the family is closed under intersec-
tion. If we denote Uperrext(b) with ext(U), then the generic open is of the form
ext(U) for U C S.
Let QPt(A) be the topology so obtained. Then the map

¢: Sat(A) — QPt(A)
U —  ext(U)

is clearly a surjective frame homomorphism, therefore it is a frame isomorphism
iff it is injective. Injectivity of ¢ amounts to the condition

ext(U)=ext(V) 2 U =V

which is equivalent to ext(U) C ext(V) — U C V, which in turn is equivalent
to
ext(a) Cext(V) > a e V. (3)

When condition (3) holds, we say that the formal topology is extensional or has
enough points, since it is classically equivalent to

agV = FaePt(A)(aca & VNa=10)
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which intuitively says that formal points are enough to “separate” different
opens.

If A is a Stone formal topology extensionality can be proved by admitting
classical logic and the prime filter theorem. Indeed, by corollary 3.14 and by
proposition 4.2, respectively characterizing saturated subsets of A as ideals on
Sat,, (A) and points on A as prime filters on Sat,, (A), the above condition holds
iff for all ideals T of Sat,, (A) and for all a € Sat, (A), a & I, there exists a prime
filter F' such that @ € F and F NI = (). The reader may here recognize a well
known non constructive principle (cf. e.g. [G]):

Theorem 4.3 The Prime Filter Theorem. Let I be an ideal of a distributive
lattice L and let a be an element of L such that a ¢ I. Then there exists a prime
filter F of L such that I C L and FNIT =

With the above discussion we have proved:

Theorem 4.4 Any Stone formal topology A is extensional iff the Prime Filter
Theorem holds.

We say that a topological space (X,QX) is sober if it is homeomorphic to the
space of formal points on its frame of opens, that is if X = Pt(QX) where the
right hand side is provided with the extensional topology. A sober space is said
to be coherent (cf. [J]) if the collection K (Q2X) of compact opens of X is closed
under intersection and forms a base for QX . Thus, simply by “adding points”
to our pointfree results of section 3, we obtain:

Theorem 4.5 Stone representation theorem for distributive lattices.
Any distributive lattice with apartness 1s isomorphic to the lattice of compact
opens of a coherent topological space.

Proof. By corollary 3.12 any distributive lattice with apartness L is isomorphic
to the compact elements of a coherent frame with apartness, thus, by proposition
3.10, to the compact saturated subsets of a Stone formal topology A, that is

L= K(Sat(A)).

By theorem 4.4 such an A is extensional and therefore there exists a frame iso-
morphism between Sat(.A) and QPt(A). Since compactness is preserved under
frame isomorphisms (and compact opens of a space X are just the compact
elements of the frame QX) the claim is proved. O

The above result can be formulated in a categorical language. Given two
coherent spaces (X, QX) and (V,QY), amap f: X — Y is called a coherent
mapif f~! is a coherent frame morphism between QY and QX. Coherent spaces
with coherent maps form a category which we denote with CohSpa. By a basic
result in pointfree topology, the category of sober spaces is dual to the category
of spatial frames, that is frames arising from extensional formal topologies. Thus,
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by restriction of the equivalence, the category of coherent spaces with coherent
maps is dual to the category of coherent frames with coherent morphism, which
is spatial by 4.4. Then, by composing this duality with the equivalence given
by theorem 3.17, we have:

Theorem 4.6 The category DLaty of distributive lattices with apartness is
dual to the category CohSpa of coherent spaces with coherent maps.
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