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Abstract. Proofs and countermodels are the two sides of completeness proofs,
but, in general, failure to find one does not automatically give the other. The lim-
itation is encountered also for decidable non-classical logics in traditional com-
pleteness proofs based on Henkin’s method of maximal consistent sets of for-
mulas. A method is presented that makes it possible to establish completeness
in a direct way: For any given sequent either a proof in the given logical sys-
tem or a countermodel in the corresponding frame class is found. The method
is a synthesis of a generation of calculi with internalized relational semantics,
a Tait-Schütte-Takeuti style completeness proof, and procedures to finitize the
countermodel construction. Finitizations for intuitionistic propositional logic are
obtained through the search for a minimal derivation, through pruning of infinite
branches in search trees by means of a suitable syntactic counterpart of semantic
filtration, or through a proof-theoretic embedding into an appropriate provability
logic. A number of examples illustrates the method, its subtleties, challenges,
and present scope.
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1. Introduction
The duality of proofs and counterexamples, or more generally, refutations, is ubi-
quitous in science, but involves distinctions often blurred by the rhetoric of ar-
gumentation. More crisp distinctions between proofs and refutations are found in
mathematics, especially in well defined formalized fragments.

Every working mathematician knows that finding a proof and looking for a
counterexample are two very different activities that cannot be carried on simulta-
neously. Usually the latter starts when the hope to find a proof is fading away, and
the failed attempts will serve as an implicit guide to chart the territory in which to
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look for a counterexample. No general recipe is, however, gained from the failures,
and a leap of creativity is required to find a counterxample, if such is at all obtained.

In logic, things are more regimented because of the possibility to reason within
formal analytic calculi that reduce the proving of theorems to automatic tasks. Usu-
ally one can rest upon a completeness theorem that guarantees a perfect duality
between proofs and countermodels. So in theory. In practice, we are encountered
with obstacles: completeness proofs are often non-effective (non-constructive) and
countermodels are artificially built from Henkin sets or Lindenbaum algebras, and
thus far away from what we regard as counterexamples. Furthermore, the canoni-
cal countermodels provided by traditional completeness proofs may fall out of the
intended classes and need a model-theoretic fine tuning with such procedures as
unravelling and bulldozing.

The question naturally arises as to whether we can find in some sense “con-
crete” countermodels in the same automated way in which we find proofs. Refu-
tation calculi (as those in [Ferrari, Fiorentini and Fiorino, 2012], [Goranko, 1994],
[Pinto and Dyckhoff, 1995], [Skura, 2011]) produce refutations rather than proofs
and can be used as a basis for building countermodels. These calculi are sepa-
rate from the direct inferential systems, their rules are not invertible (root-first,
the rules give only sufficient conditions of non-validity) and sometimes the deci-
sion method through countermodel constructions uses a pre-processing of formu-
las into a suitable normal form (as in [Larchey-Wendling, 2002]). As pointed out
in [Goré and Postniece, 2010] in the presentation of a combination of a derivation
and a refutation calculus for bi-intuitionistic logic, these calculi often depart from
Gentzen’s original systems, because the sequent calculus LI or its contraction-free
variant LJT [Dyckhoff, 1992] have rules that are not invertible; thus, while pre-
serving validity, they do not preserve refutability. Prefixed tableaux in the style of
Fitting, on the other hand, restrict the refutations to relational models, and counter-
models can be read off from failed proof search. As remarked in [Fitting, 2012], the
tree structure inherent in these calculi makes them suitable to a relatively restricted
family of logics and, furthermore, the non-locality of the rules makes the extraction
of the countermodel not an immediate task.

We shall present a method for unifying proof search and countermodel con-
struction that is a synthesis of a generation of calculi with internalized semantics
(as presented in [Negri, 2005] and in chapter 11 of [Negri and von Plato, 2011]),
a Tait-Schütte-Takeuti style completeness proof [Negri, 2009] and, finally, a pro-
cedure to finitize the countermodel construction. This final part is obtained either
through the search for a minimal, or irredundant, derivation (a procedure employed
to establish decidability of basic modal logics in [Negri, 2005] and formalized in
[Galmiche and Salhi 2011] for a hybrid sequent system for intuitionistic logic), a
pruning of infinite branches in search trees through a suitable syntactic counterpart
of semantic filtration (a method employed in [Boretti and Negri, 2009] for Priorean
linear time logic and in [Garg, Genovese and Negri, 2012] for multi-modal logics)
or through a proof-theoretic embedding into an appropriate provability logic that
internalizes finiteness in its rules, as in [Dyckhoff and Negri, 2013].
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The emphasis here is on the methodology, so we shall present the three stages
in detail for the case of intuitionistic logic. Our starting point is G3I, a labelled
contraction- and cut-free intuitionistic multi-succedent calculus in which all rules
are invertible. The calculus is obtained through the internalization of Kripke se-
mantics for intuitionistic logic: the rules for the logical constants are obtained by
unfolding the inductive definition of truth at a world and the properties of the ac-
cessibility relation are added as rules, following the method of “axioms as rules” to
encode axioms into a sequent calculus while preserving the structural properties of
the basic logical calculus [Negri and von Plato, 1998, Negri, 2003]. The structural
properties guarantee a root-first determinism, with the consequence that there is no
need of backtracking in proof search. Notably for our purpose, all the rules of the
calculus not only preserve the existence of countermodels because of invertibility,
but are such that the countermodel defined on any suitable terminal node in a failed
proof search gives a Kripke countermodel to the endsequent.

The methodology of generation of complete analytic countermodel-producing
calculi will be also illustrated for the following (families of) logics and extensions:
Intermediate logics and their modal companions; intuitionistic multi-modal logics;
provability logics; knowability logic; logics with frame properties beyond geometric
theories that cover all the Sahlqvist fragment. We shall conclude with a discussion
on open problems and further directions.

2. Formal Kripke semantics in contraction-free sequent calculi
As said above, our purpose is to determine a calculus that allows the automati-
zation not only of proof search, but also of countermodel constructions when the
search for a proof fails. Our essential building block is the sequent calculus for
classical propositional logic G3c, introduced in [Ketonen, 1944] and successively
improved and extended by Kleene, Dragalin, Troelstra (cf. the notes to chapter 6 of
[Negri and von Plato, 2011] for a detailed historical discussion). Here, as well as in
the rest of the paper, sequents are expression of the form Γ → ∆ where Γ,∆ are
multisets of formulas.

Initial sequents:

P,Γ→ ∆, P

Logical rules:
A,B,Γ→ ∆

A&B,Γ→ ∆
L&

Γ→ ∆, A Γ→ ∆, B

Γ→ ∆, A&B
R&

A,Γ→ ∆ B,Γ→ ∆

A ∨B,Γ→ ∆
L∨

Γ→ ∆, A,B

Γ→ ∆, A ∨B R∨

Γ→ ∆, A B,Γ→ ∆

A ⊃ B,Γ→ ∆
L⊃

A,Γ→ ∆, B

Γ→ ∆, A ⊃ B R⊃

⊥,Γ→ ∆
L⊥
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Table 1. The calculus G3c

Observe that in initial sequents P denotes an atomic formula. This detail is essential
in establishing the following property:

Property 1. All the rules of G3c are invertible, with height-preserving inversion.

Height-preserving invertibility of a rule means that whenever a sequent that matches
the conclusion of a rule is derivable with derivation height n then also the cor-
responding premisses are derivable with at most the same derivation height. For
example, for the case of conjunction we have

If `n Γ→ ∆, A&B, then `n Γ→ ∆, A and `n Γ→ ∆, B

and similarly for the other rules. By the property, the calculus can be used to de-
compose a task, the verification of provability of a sequent, into simpler tasks, the
verification of provability of less complex sequents. This is done in a deterministic
way with respect to the formulas that appear in the contexts. In calculi with inde-
pendent contexts, the context in the conclusion is split in the premisses, in a way
which is arbitrary in root-first proof search. Here the same context of the conclusion
appears in both premisses, that is we have:

Property 2. All the rules have shared contexts.

Property 3. The structural rules of weakening and contraction

Γ→ ∆
A,Γ→ ∆

LW
Γ→ ∆

Γ→ ∆, A
RW

A,A,Γ→ ∆

A,Γ→ ∆
LC

Γ→ ∆, A,A

Γ→ ∆, A
RC

are height-preserving admissible in G3c.

In the following we will use the abbreviation hp-invertible for height-preserving
invertible. Similarly hp-admissible will stand for height-preserving admissible.

A lot of emphasis has been posed, since Gentzen’s work, on the eliminability of cut
in sequent calculi to guarantee the subformula property, or more generally, analytic-
ity of the calculus (through reduction of cut to analytic cut, cf. [D’Agostino, 1990]),
but eliminability, or admissibility of the other structural rules is just as crucial. The
desirability of the above properties is clear from the point of view of root-first proof
search: a rule such as weakening, root-first, removes a formula but it is not known
which formula may have to be removed, so backtracking would be needed. Con-
traction instead duplicates formulas, but there is no a priori indication on which
formulas the rule should be applied, nor on the number of times a formula has to be
duplicated, so a proof search could fail just because of missing applications of the
rule. Having the rules admissible avoids these problems altogether. We also have:

Property 4. The rule of cut

Γ→ ∆, A A,Γ′ → ∆′

Γ,Γ′ → ∆,∆′
Cut

is admissible in G3c.
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Finally, we observe that the rules have multisuccedent sequents, with a multiset of
formulas on the right hand side of the sequent arrow. This feature allows a uniform
treatment of classical and intuitionistic logic, because the latter can be obtained just
by modifying the rules of implication as follows:

A ⊃ B,Γ→ A B,Γ→ ∆

A ⊃ B,Γ→ ∆
L⊃

A,Γ→ B

Γ→ ∆, A ⊃ B R⊃

Table 2. Implication rules for the intuitionistic calculus G3im

Formally, the calculus G3im has the same structural properties as those of G3c listed
above, with the exception of invertibility of the rules for implication. For these, we
have only invertibility of L⊃ with respect to its right premiss, however the rule can
be made invertible by retaining the context ∆ in the succedent of its left premiss (cf.
pf. 3.7.3 of [Troelstra and Schwichtenberg, 2000]). Also for the properties which
are maintained, the rules of implication cause drawbacks that hinder their good con-
sequences for proof search: First, even if contraction stays admissible, the repetition
of the principal formulas in the left premiss of L⊃ is a relic of contraction itself.
Second, the removal of the context in the left premiss of L ⊃ and in R ⊃ makes
backtracking necessary. We refer to chapter 5.3 of [Negri and von Plato, 2001] for
an in-depth discussion of the subtleties of the calculus, the motivations for the form
of the above rules, the determination of its properties, and the variants in the litera-
ture.

An alternative way to use the calculus as a building block to develop other
calculi, rather than modifying in an ad hoc way its rules, is to develop richer and
more general calculi. This can be done is several different ways which can be di-
vided into two main groups, one that maintains the standard syntax of sequents
but enriches its language with constants for semantic entities such as accessibility
and forcing relations, another that avoids any explicit reference to semantics but
uses a more structured syntax: standard sequents are enriched by new binders in
addition to the usual commas in display calculi [Wansing, 2002], or replaced by
objects which encode a graph structure, such as generalizations of hypersequents
[Avron, 1996, Baaz et al., 2003, Ciabattoni et al., 2008] including nested sequents
[Kashima, 1994], tree-sequents [Cerrato, 1996], tree-hypersequents [Poggiolesi, 2010]
and deep sequents [Brünnler, 2009, Stewart and Stouppa, 2005]. For the purpose of
a parallel construction of proofs and countermodels, we are more interested in sys-
tems in which the semantics is made explicit in the syntax of the calculus. There are
further choices that can be made, such as building upon a system of natural deduc-
tion, as in Labelled Deductive Systems [Gabbay, 1996, Russo, 1995] or in labelled
natural deduction [Fitch, 1966, Simpson, 1994, Basin, Matthews and Viganò, 1998],
of sequent calculus, as in [Mints,1997, Viganò, 2000, Kushida and Okada, 2003,
Castellini, 2005], or of tableaux, as in [Fitting, 2012, Catach, 1991, Nerode, 1991,
Goré, 1998, Massacci, 2000, Orlowska and Golińska Pilarek, 2011]. There are also
choices concerning the extent of the labelling, that can remain external to formu-
las, as in the previous labelled calculi, or brought deep inside, as in hybrid logic
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[Blackburn, 2000], where nominals are treated as “first-class citizens”, with the
scope of modalities extended upon them.

Because of its good proof-search properties, we shall use as a ground logical
system the contraction-free sequent calculus G3c, to be extended by the relational
or Kripke semantics. The extended syntax thus includes labels x, y for worlds of a
Kripke frame, expressions of the form x : A for the truth of a proposition in a world,
and xRy for relations between worlds. We shall also use 6 when the accessibility
relation is a preorder. The rules of the calculus will then become a way to perform
a systematic check of validity (i.e. truth in every world for every interpretation) of a
formula or a sequent. We then obtain the rules for the logical constants by unfolding
the inductive definition of forcing, or truth, of a formula at a world.

The truth conditions for conjunction and disjunction just move the explanation
of the connective to the meta-level, that is

x  A&B ⇐⇒ x  A and x  B

This gives the rules

x : A, x : B,Γ→ ∆

x : A&B,Γ→ ∆
L&

Γ→ ∆, x : A Γ→ ∆, x : B

Γ→ ∆, x : A&B
R&

The rules for disjunction are obtained in a similar way. The assumption that falsity is
never forced at any world becomes the labelled correspondent of ex falso quodlibet,
namely the zero-premiss rule

x :⊥,Γ→ ∆
L⊥

For intuitionistic implication, we have

x  A ⊃ B ⇐⇒ for all y, x6 y and y  A implies y  B

It gives the following right rule with variable condition that y is fresh, i.e., not in the
conclusion of the rule:

x6 y, y : A,Γ→ ∆, y : B

Γ→ ∆, x : A ⊃ B R⊃

The left rule is
x6 y, x : A ⊃ B,Γ→ ∆, y : A x6 y, y : B, x : A ⊃ B,Γ→ ∆

x6 y, x : A ⊃ B,Γ→ ∆
L⊃

To specify a system of intuitionistic logic we need to give the properties of the
accessibility relation which we know by the semantics to be a preorder, i.e., reflexive
and transitive. These properties are included in the calculus in a way that does not
interfere with the admissibility of the structural rules, namely as rules of inference
of a suitable form (cf. [Negri and von Plato, 1998]). Further, we need to ensure that
the forcing relation is monotone with respect to the preorder, or in other words,
that truth is persistent. It turns out that it is enough to impose monotonicity on the
forcing of atomic formulas to ensure monotonicity of forcing on arbitrary formulas.
This property is then expressed as an initial sequent. The resulting system is as
follows, with the condition that y must not be in Γ,∆ in rule R⊃:
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Initial sequents:
x6 y, x : P,Γ→ ∆, y : P

Propositional rules:
x : A, x : B,Γ→ ∆

x : A&B,Γ→ ∆
L&

Γ→ ∆, x : A Γ→ ∆, x : B

Γ→ ∆, x : A&B
R&

x : A,Γ→ ∆ x : B,Γ→ ∆

x : A ∨B,Γ→ ∆
L∨

Γ→ ∆, x : A, x : B

Γ→ ∆, x : A ∨B R∨

x6 y, x : A ⊃ B,Γ→ ∆, y : A x6 y, x : A ⊃ B, y : B,Γ→ ∆

x6 y, x : A ⊃ B,Γ→ ∆
L⊃

x :⊥,Γ→ ∆
L⊥

x6 y, y : A,Γ→ ∆, y : B

Γ→ ∆, x : A ⊃ B R⊃

Order rules:
x6 x,Γ→ ∆

Γ→ ∆
Ref

x6 z, x6 y, y 6 z,Γ→ ∆

x6 y, y 6 z,Γ→ ∆
Trans

Table 3. The system G3I

The system G3I has the same structural properties as G3c, namely:

Proposition 2.1. 1. All the rules of G3I are height-preserving invertible.
2. The rules of Weakening and Contraction are height-preserving admissible in

G3I.
3. The Cut rule is admissible in G3I.

In a labelled system, a rule of substitution of labels is also often useful
Γ→ ∆

Γ(y/x)→ ∆(y/x)
Subst

We have:

Proposition 2.2. The rule of substitution of labels is height-preserving admissible
in G3I.

For a proof of the above results, see [Dyckhoff and Negri, 2012] or chapter 12 of
[Negri and von Plato, 2011].

Before proceeding with the details of our completeness proof, we observe that
G3I does not have the restriction of a single-succedent premiss in rule R ⊃, yet
the calculus does not become classical because of this liberalization: Consider the
following proof search for tertium non datur1

?
x6 x, y 6 y, x6 y, y : P → x : P, y :⊥

x6 y, y : P → x : P, y :⊥
Ref ∗

→ x : P, x : ¬P
R⊃, y fresh

→ x : P ∨ ¬P R∨

1Observe that negation is defined in terms of implication and the asterisk is used to denote repeated (here
two) applications of a rule.
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Clearly, no rule is applicable to x6 x, y 6 y, x6 y, y : P → x : P, y :⊥, nor does
the sequent match an initial one, therefore proof search stops there. The additional
information that decorates the sequent tells more than unprovability, it explicitly
provides a Kripke countermodel: it is easy to see that in the structure consisting of
two reflexive nodes, x and y, with x6 y, with the valuation x 1 P , and y  P , is
such that x 1 P ∨ ¬P and therefore is a countermodel to P ∨ ¬P . We shall see
in the next section that it is not necessary to perform any such check: By Theorem
3.5 and its finitization in Section 3.1, a terminal node in a failed proof search gives
a Kripke countermodel for the formula/sequent at the root of the proof search tree.
The calculus is thus a countermodel-producing calculus.

3. Direct Kripke completeness for intermediate logics
The methodology of countermodel-producing calculi doesn’t work just for intuition-
istic and classical propositional logic, but for a wide variety of logics characterized
by suitable frame conditions in their relational semantics. Since our focus is on in-
tuitionistic logic but the method is easily extended in a broader context, we shall
present the proof in detail for intermediate logics, which also indicates the way to
generalizations or adaptations to other non-classical logics, following the approach
of [Negri, 2009] for modal logics. For intermediate logics, we shall use the formal-
ism of labelled sequent calculi presented in [Dyckhoff and Negri, 2012]. We just
recall here that the method covers all intermediate logics the frame conditions of
which are expressed by geometric implications, that is, sentences of the form

∀z(A ⊃ B)

whereA andB are formulas that don’t contain ⊃ , ¬ , or ∀. Geometric implications
have a useful normal form consisting of conjunctions of geometric axioms, which
are formulas of the form

∀z(P1& . . .&Pm ⊃ ∃x(M1 ∨ · · · ∨Mn))

where each Mj is a conjunction of atomic formulas, Qj1 , . . . , Qjkj
and z and x are

sequences of bound variables. Assuming for simplicity that the sequence x of bound
variables has length 1 and, without loss of generality, that no xi is free in any Pj ,
geometric axioms are turned into rule schemes, called geometric rule schemes

Q1(y1/x1), P ,Γ→ ∆ . . . Qn(yn/xn), P ,Γ→ ∆

P ,Γ→ ∆
GRS

Here Qj and P indicate the multisets of atomic formulas Qj1 , . . . Qjkj
and P1, . . . ,

Pm, respectively, and the eigenvariables y1, . . . , yn of the premisses are not free in
the conclusion.

Observe that in order to maintain admissibility of contraction in the exten-
sions with geometric rules, the formulas P in the antecedent of the conclusion
of the scheme have (as indicated) to be repeated in the antecedent of each of the
premisses. In addition, whenever an instantiation of free parameters in atoms pro-
duces a duplication (two identical atoms) in the conclusion of a rule instance, say
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P1, . . . , P, P, . . . , Pm,Γ → ∆, there is a corresponding duplication in each pre-
miss. The closure condition imposes the requirement that the rule with the duplica-
tion P, P contracted into a single P is added to the system of rules. For each axiom
system, there is only a bounded number of possible cases of contracted rules to be
added, very often none at all, so the condition is unproblematic.

For example, from the frame condition of connectedness ∀xyz(xRy&xRz ⊃
yRz ∨ zRy) one obtains the rule scheme:

xRy, xRz, yRz,Γ→ ∆ xRy, xRz, zRy,Γ→ ∆

xRy, xRz,Γ→ ∆

The closure condition imposes that the rule
xRy, yRy,Γ→ ∆ xRy, yRy,Γ→ ∆

xRy,Γ→ ∆

or its equivalent
xRy, yRy,Γ→ ∆

xRy,Γ→ ∆

be part of the system, but this is just a special case of the rule of reflexivity, so no
rule has to be added to G3I.

We remark that the closure condition is part of the uniform extension method
that provides complete contraction-free calculi and it will be always assumed. We
also notice that it is not a way to smuggle contractions on atomic formulas. In fact,
the following result holds:

Proposition 3.1. Let R be a frame rule, c(R) the contracted instance that arises
from the closure condition. If c(R) is an instance of contraction, it is hp-admissible
in the system extended with those rules arising from the closure condition that are
not instances of contraction.

Proof. Cf. Proposition 3 in [Hakli and Negri, 2011]. QED

We shall indicate with G3I∗ any extension of G3I by rules that follow the geomet-
ric rule scheme GRS. Examples of such extensions are given in the second (frame
property) and third column (corresponding rule) of Table 5 in Section 4. More can
be found in [Dyckhoff and Negri, 2012] where complete labelled sequent calculi for
intermediate logics are obtained by adding to G3I the frame properties that corre-
spond to the characterising axioms of each intermediate system.

Definition 3.2. Let K be a frame with an accessibility relation R that satisfies the
geometric properties ∗. Let W be the set of variables (labels) used in derivations in
G3I∗. An interpretation of the labels W in frame K is a function [[·]] : W → K. A
valuation of atomic formulas in frameK is a map V : AtFrm→ P(K) that assigns
to each atom P the set of nodes of K in which P holds; the standard notation for
k ∈ V(P ) is k  P .

Valuations for intuitionistic Kripke semantics are requested to satisfy the mono-
tonicity property: kRk′ and k  P imply k′  P . They are extended to arbitrary
formulas by the following inductive clauses:
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k  ⊥ for no k,
k  A&B if k  A and k  B,
k  A ∨B if k  A or k  B,
k  A ⊃ B if for all k′, from kRk′, from k′  A follows k′  B.

Definition 3.3. A labelled formula x : A (resp. a relational atom yRz) is true for an
interpretation [[·]] and a valuation V in a frame K iff [[x]]  A (resp. [[y]]R[[z]] in K)
(where  is based on V). We also say that [[·]] makes the formula (or atom) true for
V . A sequent Γ→ ∆ is true for an interpretation [[·]] and a valuation V in the frame
(K,R) if, whenever for all labelled formulas x : A and relational atoms yRz in Γ
it is the case that [[x]]  A and [[y]]R[[z]], then, for some w : B in ∆, [[w]]  B. A
sequent is valid in a frame if it is true for every interpretation and every valuation in
the frame.

Theorem 3.4. If the sequent Γ → ∆ is derivable in G3I∗, then it is valid in every
frame with the properties ∗.

Proof. Let V be a valuation in a frame K. We prove that each inference rule pre-
serves truth for V , from which the result follows by induction.

For the zero-premise inference rules, we consider the two cases. If Γ → ∆
is an initial sequent, then Γ contains some x6 y, x : P and ∆ contains y : P , so
the claim is obvious: whatever the values of [[x]] and [[y]], the monotonicity property
ensures the truth of the sequent for [[·]] and V . Likewise, sequents with x :⊥ in the
LHS are inevitably true for V , since for no interpretation do we have [[x]]  ⊥ .

If Γ→ ∆ is a conclusion of a rule for & or ∨, let (for example) the rule be L&
with the premiss x : A, x : B,Γ′ → ∆. Assume that, for every interpretation [[·]] and
valuation V , this premiss is true. Since [[x]]  A&B is equivalent to [[x]]  A and
[[x]]  B, we obtain the truth of the conclusion. A similar way of reasoning covers
the other rules for & and ∨.

If Γ→ ∆ is a conclusion ofR⊃, with the premiss xRy, y : A,Γ′ → ∆′, y : B
(with ∆ ≡ x : A ⊃ B,∆′ and y not in Γ,∆), assume by the induction hypothesis
that the premiss is true for V . Let [[·]] be any interpretation that makes all labelled
formulas and relational atoms in the antecedent Γ of the conclusion true for V .
Without loss of generality we can suppose it makes none of those in ∆′ true for V ,
so we can concentrate on x : A ⊃ B. Let k be an arbitrary element of K such that
[[x]]Rk holds in K and with k  A; we have to show that k  B Let [[·]]′ be the
interpretation identical to [[·]] except possibly on y, where we set [[y]] ≡ k. Clearly
[[·]]′ makes true for V all formulas and relational atoms in xRy, y : A,Γ (because
[[x]]Rk, k  A and y is not in Γ). By our assumption (specialised to [[·]]′), [[·]]′ makes
some formula in ∆′, y : B true for V . By our supposition, it cannot be in ∆′; so it
must be y : B, as required.

If Γ → ∆ is the conclusion of L ⊃, the argument is routine, not needing to
exploit the freshness of any variable.

If the sequent is a conclusion of a rule without eigenvariables, the argument is
also routine: we illustrate this with the rule Trans:

xRz, xRy, yRz,Γ→ ∆

xRy, yRz,Γ→ ∆
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Let [[x]]R[[y]] and [[y]]R[[z]]. Since R satisfies transitivity by assumption, we have
[[x]]R[[z]], so truth of the premiss for V implies that of the conclusion.

If the sequent is a conclusion of a mathematical rule with eigenvariables, the
argument is also routine: we illustrate this with the rule Directedness

yRw, zRw, xRy, xRz,Γ→ ∆

xRy, yRz,Γ→ ∆

in which w is an eigenvariable. Suppose that the premiss is true for V . Suppose
that [[·]] is an interpretation making all formulas and atoms in the antecedent of the
conclusion true for V . Since (by hypothesis) the frame is directed, if [[x]]R[[y]] and
[[x]]R[[z]], there exists d such that [[y]]Rd and [[z]]Rd. Let [[·]]′ be the interpretation
that coincides with [[·]] at all labels except possibly on w, where we set [[w]]

′ ≡ d (a
choice that works sincew is an eigenvariable). It follows that [[·]]′ makes all formulae
and atoms in the antecedent of the premiss true for V , from which also the truth for
V on one of the formulae in ∆. Since w is not in ∆ (and so the distinction between
the two interpretations is immaterial), that is just as required. QED

Next, for the completeness proof, we follow Takeuti [Takeuti, 1987], who adapted
to Gentzen sequent calculus the method of Schütte [Schütte, 1956].

Theorem 3.5. Let Γ → ∆ be a sequent in the language of G3I∗. Then either the
sequent is derivable in G3I∗ or it has a Kripke countermodel with the properties ∗.

Proof. We define for an arbitrary sequent Γ → ∆ in the language of G3I∗ a reduc-
tion tree, by applying the rules of G3I∗ root first in all possible ways. If the con-
struction terminates we obtain a proof, else the tree becomes infinite. By König’s
lemma an infinite finitely branching tree has an infinite branch that is used to define
a countermodel to the endsequent.

1. Construction of the reduction tree: The reduction tree is defined inductively in
stages as follows:

Stage 0 has Γ→ ∆ at the root of the tree. Stage n > 0 has two cases:

Case I: If every topmost sequent is an initial sequent or a conclusion of L⊥ or of a
zero-premiss mathematical rule, the construction of the tree ends.

Case II: Otherwise, we continue the construction of the tree by writing above those
top-sequents that are not initial, nor conclusions of L⊥ or of a zero-premiss mathe-
matical rule, other sequents that are obtained by applying root first the rules of G3I∗
whenever possible, in a given order.

There are 6 + r different stages, 6 for the rules of G3I, r for the frame rules.
At stage n = 6 + r+ 1 we repeat stage 1, at stage n = 6 + r+ 2 we repeat stage 2,
and so on for each n.

We start, for n = 1, with L&: Consider all topmost sequents of the form

x1 : B1&C1, . . . , xm : Bm&Cm,Γ
′ → ∆

Here B1&C1, . . . , Bm&Cm are all the formulas in Γ with a conjunction as the out-
ermost logical connective. We write

x1 : B1, x1 : C1, . . . , xm : Bm, xm : Cm,Γ
′ → ∆
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on top of it. This step corresponds to applying root first m times rule L&.
For n = 2, we consider all the sequents of the form

Γ→ x1 : B1&C1, . . . , xm : Bm&Cm,∆
′

Here x1 : B1&C1, . . . , xm : Bm&Cm are all the labelled formulas in the succedent
with a conjunction as the outermost logical connective. We write on top of them the
2m sequents

Γ→ x1 : D1, . . . , xm : Dm,∆
′

Here Di is either Bi or Ci and all possible choices are taken. This step is equivalent
to applyingR& root first successively with principal labelled formulas x1 : B1&C1,
. . . , xm : Bm&Cm.

For n = 3 and n = 4 we consider L∨ and R∨ and define the reductions
symmetrically to the cases n = 2 and n = 1, respectively.

For n = 5, we consider each topmost sequent Γ → ∆ that has the labelled
formulas x1 : B1 ⊃ C1, . . . , xm : Bm ⊃ Cm with implication as the outermost
logical connective and relational atoms x1Ry1, . . . , xmRym in the antecedent, Γ′ ≡
Γ− {x1Ry1, . . . , xmRym}, and write on top of it the 2m sequents

yi1 : Ci1 , . . . , yik : Cik , x1Ry1, . . . , xmRym,Γ
′ → yjk+1

: Bjk+1
, . . . , yjm : Bjm ,∆

Here {i1, . . . , ik} ⊆ {1, . . . ,m} and jk+1, . . . , jm ∈ {1, . . . ,m} − {i1, . . . , ik}.
This step, perhaps less transparent because of the double indexing, corresponds to
the root-first application of rule L⊃ with principal formulas x1 : B1 ⊃ C1, . . . ,
xm : Bm ⊃ Cm, x1Ry1, . . . , xmRym. Observe that the principal formulas are
retained in Γ′.

For n = 6, we consider all the labelled sequents that have implications in the
succedent, say x1 : B1 ⊃ C1, . . . , xm : Bm ⊃ Cm, and ∆′ the other formulas. Let
y1, . . . , ym be fresh variables, not yet used in the reduction tree, and write on top of
each sequent the sequent

x1Ry1, . . . , xmRym, y1 : B1, . . . , ym : Bm,Γ→ y1 : C1, . . . , ym : Cm,∆
′

So here we apply root first m times rule R⊃.
Finally, for n = 6 + j, we consider the generic case of a mathematical rule,

that is, a rule for the relation R. Because of the subterm property (cf. the discussion
on analyticity in section 8 of [Dyckhoff and Negri, 2012]), the mathematical rules
need to be instantiated only with terms in the conclusion or with eigenvariables.
Thus, if the system contains rule Ref, instances of that rule consist in adding to
the antecedent all the relational atoms xRx for x in Γ → ∆. Observe that because
of height-preserving substitution and height-preserving admissibility of contraction,
once a rule with eigenvariables has been considered, it need not be instantiated again
on the same principal formulas. If it is a rule such as Trans, consider all the sequents
with a pair of atoms of the form xRy, yRz in the antecedent and write on top of
them the sequents with the atoms xRz added.

For any n, for sequents that are neither initial, nor conclusions of L⊥, nor of
zero-premiss mathematical rules, nor treatable by any one of the above reductions,
we write the sequent itself above them. This repetition is made to treat uniformly
the failure of proof search in the following two cases: the case in which the search
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goes on for ever because new rules always become applicable and the case in which
a sequent is reached which is not a conclusion of any rule nor an initial sequent.

If the reduction tree is finite, all its leaves are initial or conclusions of L⊥, or
of zero-premiss mathematical rules; observe also that all the reduction steps can be
seen as simultaneous applications of rules. Once these superpositions are expanded
into the system’s rules, the tree, read from the leaves to the root, yields a derivation.

2. Construction of the countermodel: If the reduction tree is infinite, it has an infinite
branch. Let Γ0 → ∆0 ≡ Γ→ ∆,Γ1 → ∆1 . . . ,Γi → ∆i, . . . be one such branch.
Consider the sets of labelled formulas and relational atoms

Γ ≡
⋃
i>0

Γi ∆ ≡
⋃
i>0

∆i

We define a Kripke model that forces all the formulas in Γ and no formula in ∆ and
is therefore a countermodel to the sequent Γ→ ∆.

Consider the frame K the nodes of which are all the labels that appear in the
relational atoms in Γ, with their mutual relationships expressed by the xRy’s in Γ.
Clearly, the construction of the reduction tree imposes the frame properties of the
countermodel, for instance, in the system G3I, the constructed frame is reflexive
and transitive. The model is defined as follows: For all atomic formulas P such that
x : P in Γ, or y 6 x, y : P are in Γ, we stipulate that x  P .

We show now inductively on the weight of formulas that A is forced in the
model at node x if x : A is in Γ and A is not forced at node x if x : A is in ∆.
Therefore we have a countermodel to the endsequent Γ→ ∆.

If A is ⊥, it cannot be in Γ because no sequent in the branch contains x : ⊥ in
the antecedent, so it is not forced at any node of the model.

If A is an atomic formula in Γ, the claim holds by the definition of the model.
If y : Q is in ∆, since the sequent is neither initial nor derivable, neither x6 y and
x : Q for some x nor y : Q can be in Γ, so y 1 Q.

If x : A ≡ x : B&C is in Γ, there exists i such that x : A appears first in
Γi, and therefore, for some l > 0, x : B and x : C are in Γi+l. By the induction
hypothesis, x  B and x  C, and therefore x  B&C.

If x : A ≡ x : B&C is in ∆, consider the step i in which the reduction for A
applies. This gives a branching, and one of the two branches belongs to the branch
under consideration, so either x : B or x : C is in ∆, and therefore by the inductive
hypothesis, x 1 B or x 1 C, and therefore x 1 B&C.

If x : A ≡ x : B ∨ C is in Γ, we reason similarly to the case of x : A ≡ x :
B&C in ∆.

If x : A ≡ x : B ∨ C is in ∆, we argue as with x : A ≡ x : B&C in Γ.
If x : A ≡ x : B ⊃ C is in Γ, we consider all the relational atoms xRy that

occur in Γ. If there is no such atom, then the condition that for all y accessible from x
in the frame, y  B implies y  C is vacuously satisfied, and therefore x  B ⊃ C
in the model. Else, for any occurrence of xRy in Γ we find, by the construction of
the reduction tree, either an occurrence of y : C in Γ or of y : B in ∆. So, by the
inductive hypothesis, either y  C or y 1 B, and therefore x  B ⊃ C in the
model.
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If x : A ≡ x : B ⊃ C is in ∆, consider the step at which the reduction for
x : A applies. We then find y : B in Γ and y : C in ∆ for some y with xRy in Γ.
By the induction hypothesis, y  B and y 1 C, and therefore x 1 A. QED

Completeness is then obtained as an immediate corollary to the above theo-
rem:

Corollary 3.6. If a sequent Γ → ∆ is valid in every intuitionistic Kripke model
with the frame properties ∗, then it is derivable in the system G3I∗.

Observe that the exhaustive proof search described in the proof of Theorem
5.7 is not a decision method nor an effective way of finding countermodels when
proof search fails, as it may produce infinite branches and therefore infinite coun-
termodels. As an example, consider the following branch in the search for a proof
of the law of double negation (to save space we have omitted derivable premisses of
L ⊃ and formulas of the form x :⊥ from the succedents):

....
y 6 y, x6 y, y 6w, y 6 z, z 6w, y : ¬¬A, z : A,w : A→ y : A,w : ¬A

y 6 y, x6 y, y 6w, y 6 z, z 6w, y : ¬¬A, z : A,w : A→ y : A
L⊃

y 6 y, x6 y, y 6 z, z 6w, y : ¬¬A, z : A,w : A→ y : A
Trans

y 6 y, x6 y, y 6 z, y : ¬¬A, z : A→ y : A, z : ¬A R⊃

y 6 y, x6 y, y 6 z, y : ¬¬A, z : A→ y : A
L⊃

y 6 y, x6 y, y : ¬¬A→ y : A, y : ¬A R⊃

y 6 y, x6 y, y : ¬¬A→ y : A
L⊃

x6 y, y : ¬¬A→ y : A
Ref

→ x : ¬¬A ⊃ A R⊃

Clearly the search goes on forever. To see that it cannot produce a derivation we
can either apply a minimality argument or exhibit a finite countermodel which is a
suitable truncation of the infinite countermodel provided by the completeness proof.

Minimality argument: If the sequent were derivable, suppose that the topmost se-
quent in the attempted proof search has a derivation of height n. By the hp-substitution
[z/w] we obtain a derivation of the same height of the sequent

y 6 y, x6 y, y 6 z, y 6 z, z 6 z, y : ¬¬A, z : A, z : A→ y : A, z : ¬A

and thus, by hp-contraction, of

y 6 y, x6 y, y 6 z, z 6 z, y : ¬¬A, z : A→ y : A, z : ¬A.

A step of Ref gives a derivation of height n+ 1 of

y 6 y, x6 y, y 6 z, y : ¬¬A, z : A→ y : A, z : ¬A.

But this sequent had derivation height n + 3 so the derivation has been shortened
by two steps. It is therefore useless to proceed with steps that lead to duplications of
formulas modulo a fresh labelling.



15

3.1. Finite countermodel construction
We consider the procedure of proof-search construction described in the complete-
ness proof and apply root-first the rules until a suitable saturation condition is met.
The saturation condition is applied to branches rather than sequents2. Intuitively, a
branch is saturated when its leaf is not an an initial sequent nor a conclusion of L⊥
and when it is closed under all the rules of the calculus with the exception of appli-
cations of R ⊃ that would produce loops modulo a new labelling; to generate the
finite countermodel we define a partial order obtained by taking the reflexive and
transitive closure of the original partial order together with a relation that witnesses
such loops. We make this intuition formal by the definitions below, where we indi-
cate with ↓Γ (↓∆) the union of the antecedents (succedents) in the branch from the
end-sequent up to Γ→ ∆.

For a sequent Γ → ∆ in a proof search tree and a label x, we indicate with
FΓ→∆(x) the ordered pair of sets (F1

Γ→∆(x),F2
Γ→∆(x)) where

F1
Γ→∆(x) ≡ {A |x : A ∈↓Γ} ∪ {P | y : P, y 6 x ∈ Γ}

∪{A ⊃ B | y : A ⊃ B, y 6 x ∈ Γ}
F2

Γ→∆(x) ≡ {A |x : A ∈↓∆}

We then pose x 4Γ→∆ y iff FΓ→∆(x) ⊆ FΓ→∆(y), i.e. F i
Γ→∆(x) ⊆ F i

Γ→∆(y)
for i = 1, 2. Subscripts will be omitted when clear from the context.

Definition 3.7. We say that a branch in a proof search up to a sequent Γ → ∆ is
saturated if the following conditions hold:

1. If x is a label in Γ,∆, then x6 x is in Γ.
2. If x6 y and y 6 z are in Γ, then x6 z is in Γ.
3. If x : P is in Γ, there is no y such that x6 y is in Γ and y : P is in ∆.
4. There is no x such that x :⊥ is in Γ.
5. If x : A&B is in ↓Γ, then x : A and x : B are in ↓Γ.
6. If x : A&B is in ↓∆, then either x : A or x : B is in ↓∆.
7. If x : A ∨B is in ↓Γ, then either x : A or x : B is in ↓Γ.
8. If x : A ∨B is in ↓∆, then x : A and x : B are in ↓Γ.
9. If x : A ⊃ B and x6 y are in Γ, then either y : A is in ↓∆ or y : B is in ↓Γ.

10. If x : A ⊃ B is in ↓∆, then either
(i) for some y there is x6 y in Γ, y : A is in ↓Γ, and y : B is in ↓∆
or
(ii) there is y such that y 6= x, y 6 x is in Γ and x 4Γ→∆ y.

To see this definition at work, observe that in the example above the saturation
condition blocks the search exactly at the point reached by the indicated proof search
because of clause 10(ii) applied to the formula w : ¬A. If we indicate with S the

2We observe that the definition of saturation can be referred to sequents rather than branches if rules are
written in a cumulative style, i.e. by always copying the principal formulas in the premisses (a choice
that was pursued in [Garg, Genovese and Negri, 2012]), otherwise the definition refers to a branch of
sequents up to the given one. This is the reason why we have used the downward closure of Γ and ∆.
The choice is irrelevant for the completeness proof and for the definition of the countermodel but permits
to keep here the more economic version of the calculus.
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top-sequent in the above proof search, we have FS(w) = ({A,¬¬A}, {¬A}) =
FS(z).

To define the countermodelM ≡ (K,≤,) we proceed as in the complete-
ness proof but instead of building it on an infinite branch we build it starting from
a saturated branch and take the two finite sets ↓Γ, ↓∆ in place of the (potentially)
infinite sets Γ, ∆:

1. The set K consists of all the labels in Γ;
2. The preorder ≤ is the transitive and reflexive closure of the union of the rela-

tions on Γ and the additional relations x 4 y;
3. The forcing relation is defined on atomic formulas by x  P if there are y 6 x

and y : P in Γ and extended to arbitrary formulas following the usual clauses
of Kripke semantics for intuitionistic logic.

The following lemma shows thatM is an intuitionistic Kripke model:

Lemma 3.8. If x  P and x ≤ y then y  P .

Proof. We show by induction on the length n of a chain from x to y in terms of
the relations 6 and 4 that P is in F1(y) and therefore y  P . For n = 0 it is
clear. Suppose by inductive hypothesis that the claim is true for n = i and let xi
be the element of the chain reached by i steps; thus P is in F1(xi), i.e., for some z
z 6 xi and z : P are in Γ. If xi 6 xi+1 then by clause 2. of the definition of saturated
branch, also z 6 xi+1 is in Γ and thus P is in F1(xi+1). If instead xi 4 xi+1, the
conclusion follows from F1(xi) ⊆ F1(xi+1). QED

Next we prove that M is a countermodel to the saturated branch ending with the
sequent Γ→ ∆. We need to prove that for all x : A in Γ, x  A and for all x : A in
∆, x 1 A. This immediately follows from the following proposition:

Proposition 3.9. The following hold forM:
1. If A is in F1(x), then x  A.
2. If A is in F2(x), then x 1 A.

Proof. The two claims are proved simultaneously by induction on A and on the tree
order of 6 in Γ.

If A is an atomic formula P , 1. holds by definition of  and 2. by the third
saturation clause. If A is a conjunction or a disjunction, the claim holds by the
corresponding saturation clauses and inductive hypothesis on smaller formulas. If
A ≡ B ⊃ C is in F1(x), we need to prove that for all y such that x ≤ y in the
model, we have that y  B implies y  B. We have x ≡ x0R . . . Rxn ≡ y where
R is either 6 or 4. We proceed by induction on n. If n is 0, either x : B ⊃ C is
in ↓ Γ (hence in Γ) or for some z we have z 6 x and z : B ⊃ C in Γ. In both cases
(for the former we add the saturation clause for reflexivity) we obtain the conclusion
using the saturation clause for implication in the antecedent. For the inductive step
we proceed in a similar way, using in addition the definition of 4. If A ≡ B ⊃ C
is in F2(x), then either (i) there are x6 y and y : B are in ↓ Γ and y : C in ↓ ∆
or (ii) there is y distinct from x such that y 6 x is in Γ and x 4 y. In the first case
we have by definition of F , B in F1(y), C in F2(y) and therefore by induction
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on smaller formulas y  B and y 1 C, which give x 1 B ⊃ C. In the second
case, by the inclusion F2(x) ⊆ F2(y), we have B ⊃ C in F2(y), and by inductive
hypothesis (y is a smaller label on the tree ordering) we have y 1 B ⊃ C, and
therefore x 1 B ⊃ C. QED

To prove termination of the decision procedure, observe that by the subformula
property the number of distinct formulas in sequents in an attempted proof is bounded.
Since duplications of the same labelled formulas are not possible by hp-admissibility
of contraction, it is enough to show that the number of distinct labels that gets gen-
erated along the proof search/saturation procedure is finite.

Let F be the set of (unlabelled) subformulas of the end-sequent and consider
a chain of labels x0 6 x1 6 x2 . . . generated by the saturation procedure. Consider,
for an arbitrary new label xi, the values of the sets F(xj) for j < i computed at the
step in which the label xi has been introduced. Clearly, F(xi) * F(xj) (else, by
the saturation condition 10., xi would not have been introduced), so each new label
corresponds to a new subset of F × F . Since the number of these subsets is finite,
also the length of each chain of labels must be finite.

4. Intermediate logics and their modal companions
As we detailed out in Theorem 3.5, complete, countermodel-producing sequent cal-
culi are obtained for all intermediate logics characterized by frame conditions that
obey the scheme of geometric axioms. The procedure is parallel to the extension of
the modal systems S4 by the same conditions. The starting point (cf. [Negri, 2005])
is the labelled sequent calculus for basic modal logic:

Initial sequents: x : P,Γ→ ∆, x : P

Propositional rules:
x : A, x : B,Γ→ ∆

x : A&B,Γ→ ∆
L&

Γ→ ∆, x : A Γ→ ∆, x : B

Γ→ ∆, x : A&B
R&

x : A,Γ→ ∆ x : B,Γ→ ∆

x : A ∨B,Γ→ ∆
L∨

Γ→ ∆, x : A, x : B

Γ→ ∆, x : A ∨B R∨

Γ→ ∆, x : A x : B,Γ→ ∆

x : A ⊃ B,Γ→ ∆
L⊃

x : A,Γ→ ∆, x : B

Γ→ ∆, x : A ⊃ B R⊃

x :⊥,Γ→ ∆
L⊥

Modal rules:
y : A, x : 2A, xRy,Γ→ ∆

x : 2A, xRy,Γ→ ∆
L2

xRy,Γ→ ∆, y : A

Γ→ ∆, x : 2A
R2

Table 4. The system G3K

Modular extensions of the systems are obtained as indicated in the table below: first
the frame properties that correspond to the modal axioms are considered, and then
the sequent rules that correspond to the frame properties.
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Axiom Frame property Rule

T 2A ⊃ A ∀x xRx reflexivity
xRx,Γ→ ∆

Γ→ ∆

4 2A ⊃ 22A ∀xyz(xRy & yRz ⊃ xRz)

transitivity
xRz,Γ→ ∆

xRy, yRz,Γ→ ∆

E 3A ⊃ 23A ∀xyz(xRy &xRz ⊃ yRz)

yRz,Γ→ ∆

xRy, xRz,Γ→ ∆

euclideanness

B A ⊃ 23A ∀xy(xRy ⊃ yRx) symmetry
yRx,Γ→ ∆

xRy,Γ→ ∆

3 2(2A ⊃ B)∨ ∀xyz(xRy &xRz ⊃ yRz ∨ zRy)

yRz,Γ→ ∆ zRy,Γ→ ∆

xRy, xRz,Γ→ ∆

2(2B ⊃ A) connectedness

D 2A ⊃ 3A ∀x∃y xRy seriality
xRy,Γ→ ∆

Γ→ ∆
y

2 32A ⊃ 23A ∀xyz(xRy& xRz ⊃ ∃w(yRw& zRw))

yRw,Γ→ ∆ zRw,Γ→ ∆

xRy, xRz,Γ→ ∆
w

directedness

Table 5. Correspondence between modal axioms, frame properties, and sequent rules

Observe that in the rules for seriality and directedness, the variable indicated is fresh
and that, to save space, the principal atoms in the conclusion are not repeated in the
premisses.

A contraction- and cut-free sequent calculus for S4 is obtained by adding the
rules that correspond to reflexivity and transitivity of the accessibility relation of
G3K. Extensions of S4 are obtained by adding any combination of rules for frame
properties. Completeness for these systems can be established either by the usual
means of structural proof theory and, ultimately, by equivalence with an axiomatic
system, as in [Negri, 2005], or through a proof of completeness with respect to the
standard relational semantics in the style of the one detailed above for extensions of
intuitionistic logic, as in [Negri, 2009].

The famous modal translation ∗ of intuitionistic logic was defined in a note by
Gödel [Gödel, 1933] together with a syntactic proof that the translation is sound,
namely that `Int A implies `S4 A∗. On the other hand, the proof of faithful-
ness, that is, the reverse implication, was shown by [McKinsey and Tarski, 1948].
The proof was indirect because of the detour through completeness of intuitionis-
tic logic with respect to Heyting algebras (then called Brouwerian algebras) and
of S4 with respect to topological Boolean algebras (called closure algebras) and a
Stone-type representation of Heyting algebras as the opens of topological Boolean
algebras. The proof was also non-constructive because of the use of Stone repre-
sentation of distributive lattices, in particular Zorn’s lemma. Similar methods were
later employed in [Dummett and Lemmon, 1959] to extend the faithfulness result to
intermediate logics Int+A and their modal companions S4+A∗, i.e. to prove that
Int +Ax ` A if and only if S4 +Ax∗ ` A∗.

Among the several slightly different variants of the Gödel translation that have
been proposed, we use the following (see [Troelstra and Schwichtenberg, 2000]):
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P2 := 2P

⊥2 := ⊥
(A ⊃ B)2 := 2(A2 ⊃ B2)

(A&B)2 := A2&B2

(A ∨B)2 := A2 ∨B2

The same frame conditions are imposed as extensions of the sequent calcu-
lus G3I or of G3K. In particular, because of the uniformity of generation of these
calculi, the proof of faithfulness of the modal translation between an intermediate
logic ant its modal companion is achieved in a modular, simple, and completely syn-
tactic way (induction on the height of derivations): in [Dyckhoff and Negri, 2012]
it is shown that given an extension G3I* of G3I with rules for 6 and given the
corresponding extension G3S4* of G3S4, we have

G3I* ` Γ→ ∆ if and only if G3S4* ` Γ2 → ∆2

We observe that the translation of Int to S4 is of no help for obtaining a terminating
proof search procedure because a non-termination similar to the one seen for G3I
occurs in G3S4. For example, we have the following infinite proof search (only the
relevant part is considered as derivable premisses are omitted as well as formulas
that become inactive)

....
xRz, x : 2(2A ⊃ A), z : 2A ⊃ A→ z : 2A

xRz, x : 2(2A ⊃ A), z : 2A ⊃ A→ z : A
L⊃

xRz, x : 2(2A ⊃ A), y : 2A ⊃ A→ z : A
L2

xRy, yRz, x : 2(2A ⊃ A), y : 2A ⊃ A→ z : A
Trans

xRy, x0 : 2(2A ⊃ A), y : 2A ⊃ A→ y : 2A
R2

xRy, x : 2(2A ⊃ A), y : 2A ⊃ A→ y : A
L⊃

xRy, x : 2(2A ⊃ A), x : 2A ⊃ A→ y : A
L2

x : 2(2A ⊃ A), x : 2A ⊃ A→ x : 2A
R2

xRx, x : 2(2A ⊃ A), x : 2A ⊃ A→ x : A
L⊃

xRx, x : 2(2A ⊃ A)→ x : A
L2

The propositional base of S4 is classical, in particular, there is no “hidden contrac-
tion” in the left implication rule in the form of repetition of the principal formula
in the left premiss of L⊃ in G3I. The difficulty is, however, moved elsewhere, be-
cause loops created by those repetitions are replaced by similar loops created by the
interplay of transitivity of the accessibility relation with the repetition of the princi-
pal formula in L2. The difficulty is intrinsic to the system, and cannot be avoided
through a streamlining of the rules while maintaining completeness of the calcu-
lus: It was proved in [Minari, 2013] that, whereas the repetition in rule L2 can be
avoided in G3K and in its extension with seriality, it cannot be dispensed with in
G3S4.
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The failure of the modal translation to force intuitionistic logic into a termi-
nating modal system takes us to the next step of internalization in labelled systems,
that of the condition of finiteness that characterizes provability logics.

5. Provability logics
The provability logic of Gödel-Löb is characterized by irreflexive, transitive, and
Noetherian frames (equivalently, transitive and such that every chain is finite). Finite-
ness is not first-order expressible and thus the method of conversion of frame prop-
erties into rules outlined above is not directly applicable. As shown in [Negri, 2005],
the finiteness property can be internalized in the syntax of a labelled sequent calcu-
lus through a modification of the usual forcing relation for modal formulas, and a
consequent modification of the rules for 2. In particular, the method generates a
harmonious pair of rules that allows a simple syntactic proof of cut elimination.

We recall briefly the procedure of determination of the harmonious pair of
rules. In order to make it more transparent, we use as an intermediate step rules of
natural deduction. First, the following characterization of forcing is used:

Lemma 5.1. In irreflexive, transitive, and Noetherian Kripke frames x  2A if and
only if for all y, xRy and y  2A implies y  A.

The sufficient condition gives the introduction rule for 2, where y is a fresh
variable:

[xRy, y : 2A],Γ....
y : A

x : 2A
2I-L

The rule is then generalized to one with arbitrary multisets as consequences, in a
sequent calculus format:

xRy, y : 2A,Γ→ ∆, y : A

Γ→ ∆, x : 2A
R2-L

From the introduction rule and the inversion principle (cf. [Negri and von Plato, 2001])
we find the elimination rule:

x : 2A

....
xRy

....
y : 2A

[y : A]....
C

C
2E-L

Again, this is transformed into a sequent calculus rule

x : 2A, xRy,Γ→ ∆, y : 2A y : A, x : 2A, xRy,Γ→ ∆

x : 2A, xRy,Γ→ ∆
L2-L

Observe that not only the right rule departs from the usualR2 rule of the basic
system G3K, but also the left rule does. The left rule is obtained through the general
principle of harmony in the design of logical systems that originated in Gentzen’s
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work and the importance of which was stressed in the literature on proof-theoretic
semantics to these days (cf. [Schroeder-Heister, 2012]).

With these two rules, however, the sequent x : 2A→ x : 2A is not derivable,
so, to obtain a complete calculus, sequents of the form x : 2A,Γ→ ∆, x : 2A have
to be added to the stock of initial sequents. The reduction to atomic initial sequents,
hence hp-admissibility of all the rules, therefore does not hold. With these provisos
to obtain a complete calculus, the proof of cut-elimination for the system obtained
follows the usual pattern of cut-admissibility proofs for G3-style sequent calculi,
save for the addition of a third inductive parameter, the range of the cut formula, a
measure that indicates the position of the label of the cut formula in the relational
structure associated to the derivation (cf. [Negri, 2005] for details).

An alternative possibility for presenting GL as a labelled sequent calculus is
to use the standard L2 rule in place of L2-L, that corresponds to the following
elimination rule

x : 2A

....
xRy

[y : A]....
C

C
2E

Then sequents of the form 2A,Γ → ∆,2A are derivable, with the possibility to
restrict initial sequents to atomic form and hp-invertibility of all rules as a con-
sequence. The syntactic proof of cut elimination, however, no longer obtains. The
reason for this is best seen using the natural deduction formulation of the rules, keep-
ing in mind that elimination of principal cuts corresponds to detour conversions in
natural deduction.

If the major premiss of 2E is derived by an introduction we have the non-
eliminable detour

[xRz, z : 2A]....
z : A
x : 2A

2I-L
....

xRy

[y : A]....
C

C
2E

With the harmonious pair of rules we have the following detour conversion,
where the substitution [y/z] has been used:

[xRz, z : 2A]....
z : A
x : 2A

2I-L
....

xRy

....
y : 2A

[y : A]....
C

C
2E-L
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; ....
xRy ,

....
y : 2A....

y : A....
C

Clearly the conversion is not possible if the elimination rule is 2E because it
would leave an extra non-discharged formula.

In the sequel we show how the syntactic proof of cut elimination can be re-
placed by a direct completeness proof which at the same time provides a decision
procedure.

We consider the system G3KGL introduced in [Negri, 2005] obtained from G3K
by replacing rule R2 with R2-L and by adding the rules of transitivity Trans and
irreflexivity Irref (x6 x,Γ → ∆), or, in other words, the system obtained from
G3GL (ibid.) by removing initial sequents of the form x : 2A,Γ→ ∆, x : 2A and
replacing rule L2-L with the standard rule L2.

All the structural properties that have been established for G3GL hold for
G3KGL, but hp-admissibility of contraction holds with no limitations. However,
because of the lack of harmony between the left and the right rules for 2, admis-
sibility of cut could not be established directly for G3KGL, but only indirectly
through an equivalence with G3GL. Except for admissibility of cut, we shall not
give the details of the proofs, because they are routine modifications of the proofs
given in [Negri, 2005]. The following lemma will be useful:

Lemma 5.2. Let xR∗y denote a sequence of accessibility relations xRy1, ..., yn−1Ry.
Then sequents of the form xR∗y, x : 2A,Γ→ ∆, y : 2A are derivable in G3KGL.

Proof. Root-first, by successive applications of R2-L, steps of transitivity, and L2.
QED

Next, instead of proving admissibility of cut syntactically, we proceed by showing
that the calculus is sound and complete; we shall prove that derivable sequents are
valid in irreflexive and transitive Noetherian frames and that for any sequent in the
language of GL, either a proof in the calculus or a countermodel given by an ir-
reflexive and transitive Noetherian frame can be found. The size of the endsequent
gives a bound to the size of the countermodel and to the height of the search tree
and therefore a decision procedure through terminating proof search is obtained. We
start with the definitions of interpretation in a frame and of validity adapted to the
case of G3KGL:

Definition 5.3. Let K be a frame with an irreflexive, transitive, and Noetherian
accessibility relationR. Let W be the set of variables (labels) used in derivations in
G3KGL. An interpretation of the labels W in frame K is a function [[·]] : W → K.
A valuation of atomic formulas in frame K is a map V : AtFrm → P(K) that
assigns to each atom P the set of nodes ofK in which P holds; the standard notation
for k ∈ V(P ) is k  P .
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Valuations are extended to arbitrary formulas as in Section 3, except for the follow-
ing clauses:

k  A ⊃ B if from k  A follows k  B,
k  2A if for all k′, from kRk′ follows k′  A.

We then have, with validity in a frame as in Definition 2.4:

Theorem 5.4. If the sequent Γ → ∆ is derivable in G3KGL, then it is valid in
every irreflexive, transitive and Noetherian frame.

Proof. By induction on the derivation of Γ → ∆ in G3KGL. All the cases are
similar to those for extensions of G3K considered in [Negri and von Plato, 2011]
except for the rule specific to G3KGL, namely the right rule for 2.

If Γ → ∆ is a conclusion of R2-L, with premiss xRy, y : 2A,Γ′ → ∆′, y :
A, assume by the induction hypothesis that the premiss is true. We claim that the
conclusion Γ′ → ∆′, x : 2A is true. Let [[·]] be an arbitrary interpretation in an
irrreflexive, transitive, and Noetheriam frame that makes true all the formulas in Γ′.
We claim that one of the formulas in ∆′ or x : 2A is true under this interpretation.
We reason by contradiction. If none is true, there exists an interpretation k of x and
an element k1 in K such that kRk1 holds and k1 6 A; let [[·]]′ be the interpretation
identical to [[·]] except possibly on y, where we set [[y]]

′ ≡ k1. Since by assumption
the premiss is trues and k1 6 A, we must have that k1 6 2A. By proceeding as in
the proof of Lemma 5.1 of [Negri, 2005], a chain that never becomes stationary is
built, in contradiction with the assumption that K is Noetherian. QED

Theorem 5.5. Let Γ → ∆ be a sequent in the language of G3KGL. Then it is de-
cidable whether the sequent is derivable in G3KGL. In the negative case, the failed
proof search gives an irreflexive, transitive, and Noetherian Kripke countermodel.

Proof.

1. Construction of the reduction tree: The definition of the reduction tree is similar
to that in the proof of Theorem 2.6 with a modification in the case of implication
and a new case for modality on the left which are dealt with as in Theorem 11.28 of
[Negri and von Plato, 2011]. There are 9 different stages, 8 for the rules of the basic
modal systems and one for Trans. At stage n = 9 + 1 we repeat stage 1, at stage
n = 9 + 2 we repeat stage 2, and so on for every n until no more rule is applicable
or an initial sequent or instance of Irref or a looping sequent (defined below) is
found. For the stage relative to R2-L (stage 8), we consider all the formulas with
2 as the outermost connective in the succedent of top-sequents of the tree, x1 :
2B1, . . . , xm : 2Bm, ∆′ the other formulas, and write on top of each sequent
Γ′ → ∆′ the sequent

x1Ry1, . . . , xmRym, y1 : 2B1, . . . , ym : 2Bm,Γ
′ → ∆′, y1 : B1, . . . , ym : Bm

where y1, . . . , ym are fresh variables, that is, we apply m times rule R2-L.
Without loss of generality, because of height-preserving admissibility of con-

traction, we shall avoid applying a rule whenever it results in a duplication of la-
belled formulas or relational atoms. Also, once a rule has been considered, it need
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not be instantiated again on the same principal formulas. This is clear for a rule
such as Trans because atomic formulas are never discarded, less immediate for
L2. Observe however that by a permutation argument (see Lemma 6.3 and 6.4
in [Negri, 2005]), any two applications of L2 on the same principal formulas can
be made consecutive, so that the conclusion follows again by hp-admissibility of
contraction.

A priori, the reduction tree is not finite, but we show that the search for a proof
is indeed finite.

First, by inspection of the rules of G3KGL, we see that the only formulas
that can occur in a reduction tree for a sequent Γ → ∆ are subformulas of Γ,∆.
Duplications of formulas are ruled out by hp-admissibility of contraction, so, if the
reduction tree has an infinite branch, there must be an infinite chain of accessibility
relations; since the end-sequent is finite, the chain contains infinitely many labels
which are introduced by applications of R2-L, and thus it must necessarily contain
a subchain x0Rx1, x1Rx2, . . . , xn−1Rxn such that x0 and xn label the same boxed
formula. The branch thus contains the following steps:

....
x0Rx1, x1Rx2, . . . , xn−1Rxn, x1 : 2A,Γn → ∆n, xn : 2A....

x0Rx1, x1 : 2A,Γ0 → ∆0, x1 : A

Γ0 → ∆0, x0 : 2A
R2-L

The upper sequent is of the form xR∗y, x : 2A,Γ→ ∆, y : 2A, hence derivable by
Lemma 5.2, against the assumption of the branch being infinite. Besides obtaining
the conclusion that there is no infinite branch, the above argument shows that there
is no need to continue the proof search with R2-L beyond a sequent of the form
xR∗y, x : 2A,Γ→ ∆, y : 2A that we shall call a looping sequent.

Sequents which are not initial, nor conclusions of Irref, nor looping sequents,
and that are closed under all the available rules will be called saturated sequents.
The reduction tree is completed when all leaves lead to sequents that are either
initial, or instances of Irref, or conclusion of L⊥, or saturated, or looping sequents.

2. Construction of the countermodel: If the reduction tree is not a derivation, it has
at least one leaf which is a saturated sequent. Let Γ and ∆ be the unions of the
antecedents and the succedents, respectively, of all the sequents Γi → ∆i of the
branch up to the saturated sequent. We define a Kripke model that forces all the
formulas in Γ and no formula in ∆ and is therefore a countermodel to the sequent
Γ→ ∆.

Consider the frame K the nodes of which are all the labels that appear in the
relational atoms in Γ, with their mutual relationships expressed by the xRy’s in Γ.
Clearly, the construction of the reduction tree imposes the frame properties of the
countermodel: For no x do we have xRx, else the sequent would be conclusion of
Irref which is excluded, so irreflexivity holds; on the other hand, transitivity holds
because the sequent is saturated. Noetherianity instead holds because the saturated
sequent is a finite object, as guaranteed by its construction. The countermodel is
defined as follows: For all atomic formulas x : P in Γ, we stipulate that x  P
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in the frame. Since the sequent is not initial, it follows that for all atomic formulas
y : Q in ∆ we have y 1 Q.

We observe that, unlike in the case of intuitionistic logic, the blocking con-
dition does not cause any exception to the general proof of completeness given in
[Negri and von Plato, 2011], because looping sequents are derivable and thus the se-
quents on which countermodels are built are saturated sequents, closed under all the
available rules. It follows routinely, with details as in the above-mentioned proof,
that A is forced in the model at node x if x : A is in Γ and A is not forced at node
x if x : A is in ∆. Therefore we have a countermodel to the endsequent Γ → ∆.
QED

Corollary 5.6. If a sequent Γ → ∆ is valid in every irreflexive, transitive and
Noetherian Kripke model, then it is derivable in G3KGL.

We observe that completeness implies in particular closure of our sequent cal-
culus with respect to cut.

One of the original motivations for the interest in a decision procedure for the
provability logic GL has been the possibility to inherit a more efficient decision
procedure for Int through a faithful modal embedding. It turned out, however, that
the mismatch caused by assuming frame reflexivity on one side and irreflexivity on
the other makes the embedding problematic. This is the reason for choosing for that
purpose the provability logic of Grzegorczyk (Grz) which is instead semantically
characterized by reflexive, transitive and Noetherian frames.

Although the guiding ideas to develop an analytic labelled sequent calculus
for Grz are similar to those exploited for GL, the formal developments, all detailed
in [Dyckhoff and Negri, 2013] are rather different. We shall here outline just the
peculiarity of this approach in relation to the generation of countermodels detailed
in Section 3 for intuitionistic logic and above for GL. We start from the semantic
characterization of the forcing relation:

If R is a transitive reflexive Noetherian relation (i.e., every chain even-
tually becomes stationary), then, for all x,

x  2A ⇐⇒ for all y, xRy and y  2(A ⊃ 2A) implies y  A

The forcing condition for the modality in Noetherian frames justifies the following
rule, where G(A) ≡ 2(A ⊃ 2A) and y is fresh:

xRy, y : G(A),Γ→ ∆, y : A

Γ→ ∆, x : 2A
R2-Z

The calculus G3Grz is simply like G3K with R2 replaced by R2-Z and Ref and
Trans added.

As we have seen, proof search terminates for G3KGL without loop-checking. For
G3Grz an almost local blocking condition suffices to end the proof search and find
finite countermodels. Specifically, in the definition of the reduction tree we do not
saturate with respect to R2-Z with principal formula x : 2B if the antecedent
contains, for some x0, both x0Rx and x0 : G(B) and the succedent of the sequent
or of any sequent in the branch up to the sequent contains x : B.
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The construction of the countermodel on a saturated branch is effected as in
the general case and it is shown by induction on the complexity of formulas that
the countermodel forces at the worlds that correspond to their labels formulas in the
antecedent, and does not force formulas in the succedent. The new case that arises
from the blocking condition is then immediate by use of induction hypothesis and
reflexivity, thus we establish:

Theorem 5.7. Let Γ → ∆ be a sequent in the language of G3Grz. Then it is de-
cidable whether the sequent is derivable in G3Grz. In the negative case, the failed
proof search gives a countermodel to the sequent on a reflexive, transitive and Noe-
therian frame.

Further, we established in [Dyckhoff and Negri, 2013] a syntactic proof of
soundness and faithfulness of the modal translation of intuitionistic logic:

G3I ` Γ→ ∆ if and only if G3Grz ` Γ2 → ∆2.

As a consequence, a constructive decision procedure for G3I and thus for Int is
obtained.

6. Intuitionitic multi-modal logics
The blocking procedure that we have seen at work for intuitionistic logic in Section
3 can be generalised to systems that have seriality instead of reflexivity. This frame
condition is met for example in deontic logic and in temporal logic. In addition to
the rules for implication there can be other label producing rules such as the rules
for the modality, and the co-presence of various accessibility relations with rules that
relate them, such as the monotonicity rule of intuitionistic modal logic. As above,
the procedure requires that the countermodel is built not just from the accessibil-
ity relations that are listed in a non-terminating branch of a failed proof search, but
also from additional accessibilities which are added between nodes (looping labels)
that satisfy the same formulas. The procedure is reminescent of the method of se-
mantic filtration for the extraction of a finite countermodel from an infinite one (cf.
[Gabbay, 1972, Blackburn, de Rijke and Venema, 2001]) and takes advantage of the
semantic decoration along the proof search trees.

The precise definitions of the blocking conditions and of the generated coun-
termodel depend on the system at hand. We recall how the method works for in-
tuitionitic multi-modal logics from [Garg, Genovese and Negri, 2012]. In particu-
lar, the method provides a uniform, constructive and directly implementable deci-
sion procedure based on backwards search in labelled sequent calculi. The method
works in particular for classes of logics, such as multi-modal intuitionistic logics
with interaction of modalities covering the intuitionistic and multi-modal general-
izations of the standard systems K, T, K4, S4, D and combinations thereof and
logics with interaction axioms such as the axiom 2aα ⊃ 2b2aA encountered in
authorization logics (see [Garg, 2009], and [Genovese, 2012]) and multi-modal log-
ics of belief (cf. [Goré and Nguyen, 2009]), the unit axiom A ⊃ 2aA of lax logic
[Fairtlough and Mendler, 1997] and the subsumption axiom 2aA ⊃ 2bA.
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A sequent calculus for intuitionistic multi-modal logic is obtained extending
G3I by the following rules (in R2a the label y is fresh):

y : A, x : 2aA, xRay,Γ→ ∆

x : 2aA, xRay,Γ→ ∆
L2a

xRay,Γ→ ∆, y : A

Γ→ ∆, x : 2aA
R2a

xRaz, x6 y, yRaz,Γ→ ∆

x6 y, yRaz,Γ→ ∆
MonRa

Table 6. G3IM: A sequent calculus for intuitionistic multi-modal logic

Observe that the modal rules are just the multi-agent version of the standard modal
rules, and in addition there is rule MonRa

that corresponds to the monotonicity
property ∀xyz(x6 y & yRaz ⊃ xRaz). In addition, there may be other frame rules
that follow the geometric rule scheme.

All the structural properties of G3-sequent calculi as well as soundness with
respect to Kripke semantics are established in a routine way. Clearly, as in the case
of G3I, proof search may not terminate because of loops originated from an un-
bounded creation of new worlds in rules R ⊃ and R2. The goal is thus twofold: to
devise a general method that not only detects such loops, but also produces Kripke
countermodels that witness the non-validity of the end-sequent when such loops are
detected.

The key insight is the following: all worlds in a sequent Γ → ∆ obtained
during backward proof search lie on a rooted, directed tree, the edges of which are
relations introduced by rules R⊃ and R2, the label-producing rules. We denote by
� the closure of these relations under the rules for the accessibility relations. Next, a
suitable notion of a set of formulasFS(x) associated with a label x in a sequent S, is
given (see [Garg, Genovese and Negri, 2012] for the precise definition). A condition
is then given that connects saturation of the proof tree to the particular form of
FS(x) in relation to the tree of labels that has been constructed along the proof
search: If there is a world y such that y 6= x, y � x and FS(x) ⊆ FS(y), then it is
useless to apply any of the rules R⊃ and R2 on any principal formula labelled by x
in the sequent S in backwards proof search. This fact is seen by structural a proof
analysis and is used in the pruning of a proof-search tree and in the countermodel
construction.

The saturation condition modulo looping is defined as follows: For every label-
producing rule on x, either the branch is closed under the rule, or there is some early
label y � x with FS(x) ⊆ FS(y). A similar condition applies to seriality. For all
other rules, the procedure of saturation is defined by simply closing under the rule,
in all possible ways, as in the construction of the proof search tree in the proof of
completeness. When a sequent is obtained that is saturated and not initial, nor a
conclusion of zero-premiss rules, a countermodel is built by taking as worlds the
worlds that occur in the saturated sequent, as relations the closure of the union of
the relations in the sequent together with the new relations x 4 y that originate
from the inclusions FS(x) ⊆ FS(y) witnessing a looping label x, and the forcing
is defined as usual. It is then shown that whenever a saturated sequent is found, the
procedure defines a countermodel to the endsequent.
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Termination is then shown by ruling out the possibility that the procedure
generates infinite chains of labels and by using the inclusion of FS(x) in the power
set of subformulas of the endsequent (cf. [Garg, Genovese and Negri, 2012] for de-
tails).

7. Extensions beyond geometric theories
So far the scope of the method of labelled sequent calculi measured in terms of
well defined classes of frame conditions has covered in a uniform fashion those
expressible through geometric implications. They cover most known non-classical
logics, but important exceptions are met when considering multi-dimensional modal
logics, such as those that merge in their axiomatizations the epistemic and alethic
modalities. In fact, the extension of proof analysis beyond geometric theories started
with the proof-theoretical investigation of what is known as knowability logic. This
logic has been in the focus of recent literature on the investigation of paradoxes that
arise from the principles of the verificationist theory of truth [Salerno, 2009]. By the
methods of proof analysis, it has been possible to pinpoint how the ground logic is
responsible for the paradoxical consequences of these principles. A study focused
on the well known Church-Fitch paradox brought forward a new challenge to the
method of conversion of axioms into rules. The knowability principle, which states
that whatever is true can be known, is rendered in a standard multi-modal alethic-
epistemic language by the axiom A ⊃ 3KA. This axiom corresponds, in turn, to
the frame property

∀x∃y(xRy& ∀z(yRKz ⊃ x6 z))

Here R, RK, and 6 are the alethic, epistemic, and intuitionistic accessibility re-
lations, respectively. This frame property goes beyond geometric implications and
therefore the conversion into rules cannot be carried through with the geometric rule
scheme. In this specific case, we succeeded with a combination of two rules linked
together by a side condition on the eigenvariable. The resulting calculus has all the
structural properties of the ground logical system and leads to definite answers to the
questions raised by the Church-Fitch paradox by means of a complete control over
the structure of derivations for knowability logic [Maffezioli, Naibo and Negri, 2012].

The generalization and systematization of the method of system of rules allows
the treatment of axiomatic theories and of logics characterized by frame properties
expressible through generalized geometric implications that admit arbitrary quanti-
fier alternations and a more complex propositional structure than that of geometric
implications [Negri, 2013]. The class of generalized geometric implications is de-
fined as follows: We start from a geometric axiom (cf. Section 3) but we do not
require it to be a sentence, i.e., we allow the presence of free variables. Here the Pi

range over a finite set of atomic formulas and all the Mj are conjunctions of atomic
formulas and the variables yj are not free in the Pi:

GA0 ≡ ∀x(&Pi ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn)

Taking GA0 as the base case in the inductive definition of a generalized geometric
axiom, we define



29

GA1 ≡ ∀x( &Pi ⊃ ∃y1 & GA0 ∨ · · · ∨ ∃ym & GA0)

Next we define by induction

GAn+1 ≡ ∀x( &Pi ⊃ ∃y1 & GAk1
∨ · · · ∨ ∃ym & GAkm

)

Here & GAi denotes a conjunction of GAi-axioms and k1, . . . , km 6n.
System of rules for generalized geometric implications are defined inductively.

For n = 1 we have the following scheme:

Γ′1 → ∆′1....
D1

0....
Γ′′1 → ∆′′1....
D1
....

z1 = z1, P ,Γ→ ∆ . . .

Γ′m → ∆′m....
Dm

0....
Γ′′m → ∆′′m....
Dm

....
zm = zm, P ,Γ→ ∆

P ,Γ→ ∆

Here zi are eigenvariables in the last inference step, the derivations indicated with
Di

0 use rules of the form GRS0(zi) that correspond to the geometric axioms GA0(zi)
in addition to logical rules, and the Di use only logical rules.

The scheme GRSn+1 is defined inductively with the same conditions as above
once the schemes GRSki

have been defined for ki 6n as follows

Γ′1 → ∆′1....
D1

k1....
Γ′′1 → ∆′′1....
D1
....

z1 = z1, P ,Γ→ ∆ . . .

Γ′m → ∆′m....
Dm

km....
Γ′′m → ∆′′m....
Dm

....
zm = zm, P ,Γ→ ∆

P ,Γ→ ∆

Through an operative conversion to normal form, generalized geometric im-
plications can also be characterized in terms of Glivenko classes as those first-order
formulas that do not contain implications or universal quantifiers in their negative
parts. By this result and Kracht’s characterization theorem (cf. Theorem 3.59 in
[Blackburn, de Rijke and Venema, 2001]) the method is seen to cover all systems of
normal modal logics axiomatized by Sahlqvist formulas.

The equivalence, established in [Negri, 2003], between the axiomatic systems
based on geometric axioms and contraction- and cut-free sequent systems with geo-
metric rules, is extended by a suitable definition of systems of rules for generalized
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geometric axioms. Here the word “system” is used in the same sense as in linear
algebra where there are systems of equations with variables in common, and each
equation is meaningful and can be solved only if considered together with the other
equations of the system. In the same way, the systems of rules considered in this
context consist of rules connected to each other by some variables and subject in
addition to the condition of appearing in a certain order in a derivation.

The precise form of system of rules, the structural properties for the resulting
extensions of sequent calculus (admissibility of cut, weakening, and contraction), a
generalization of Barr’s theorem, examples from axiomatic theories and applications
to the proof theory of non-classical logics through a proof of completeness of the
proof systems obtained, are all detailed in [Negri, 2013].

8. Conclusion
There are three main aspects to be considered in logical investigations: the nor-
mative, the descriptive and the deductive one. These are respectively associated to
the questions: What are the axioms? What are the models? What are the proofs?
Answers to these questions are typically given for first-order logic by supplying a
logical system with axiomatizations, canonical models, and Gentzen calculi. These
aspects are tightly related to each other by metatheorems such as the deduction and
the completeness theorem. The same solid and stable picture is not inherited by non-
classical logics and a very rich literature has been developed in the past decade to
fill gaps in the picture, especially in its greyest area, the deductive corner, to provide
richer formalisms for the proof theory of non-classical logics, given the failure of
traditional Gentzen systems (cf. the survey [Negri, 2011] and references therein).
As for the connections between these aspects, there has been a long debate on the
validity of the deduction theorem for modal logic, which has been summarised and
clarified with a definite answer in [Hakli and Negri, 2011a]. The present work is
specially aimed at filling the gap in the picture between the descriptive and deduc-
tive aspects of non-classical logics, i.e. between their proofs and (counter)models.

Building on the framework of labelled sequent calculi, a general method has
been presented for the simultaneous search of proofs and countermodels in non-
classical logics. The method has been illustrated in detail for the case of intu-
itionistic logic, but it has also been shown how failed proof search can be used
to construct countermodels in several other contexts: intuitionistic and interme-
diate logics, classical modal logics, provability logics, intuitionistic multi-modal
logics, and (more generally) logics with rather complex frame conditions (involv-
ing quantifier alternations). The direct completeness proof provides concrete coun-
termodels that by construction already satisfy all the properties of the intended
class of models whereas more traditional proofs, based on Henkin sets, do so only
through intermediate manipulation stages. Further, finitization methods have been
detailed that turn a parallel proof search and countermodels generation into a de-
cision procedure. Such decision procedures work not just for simple logics like in-
tuitionistic logic or S4, but also for logics such intuitionistic multi-modal logics
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[Garg, Genovese and Negri, 2012], linear temporal logic [Boretti and Negri, 2009],
and authorisation logic [Genovese, 2012].

The method introduced in [Negri, 2005] to formulate a labelled sequent calcu-
lus for the logic GL has been used and successfully applied to the tree-hypersequent
case by in [Poggiolesi, 2009], thus witnessing the possibility to transfer to other
formalisms methods and results of the labelled approach. The question has thus
been posed as to whether other formalisms for non-classical logics, such as display
calculi or hypersequents and their generalisations could be used to achieve results
similar to those presented in this paper. First we observe that among the various
approaches to the proof theory of non-classical logics, those based on the inter-
nalization of the relational semantics are clearly the most adequate for the direct
extraction of countermodels from failed proof search. Among these, labelled se-
quent calculi are preferable as they extend in a uniform way the expressive power of
prefixed tableau systems and other labelled approached based on natural deduction.
However, besides uniformity and expressive power, an essential ingredient for a suc-
cessful implementation of the methodology is the possibility to use the calculi in an
analytic way in root-first proof search, including the property of admissibility of all
the structural rules. Further, and more specifically, rules should be invertible, so no
backtracking is required during proof search, and have the stronger property that a
countermodel to the premiss(es) of a rule is also a countermodel to the conclusion.

The question on the feasibility of other formalisms can be thus answered di-
rectly by the above checklist. It can be also answered indirectly by a suitable embed-
ding of labelled sequent calculi into other formalisms. However, unlike other gen-
eral embeddings that have been established so far [Restall, 2006, Wansing, 1998,
Poggiolesi, 2010, Goré and Ramanayake 2012], embeddings of labelled calculi into
display or hypersequent calculi have been obtained only for limited fragments [Mints,1997,
Rothenberg, 2010].
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