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Introduction

The development of sequent systems for non-classical, in particular, modal, logics, started
in the 1950s, with the work of Curry (1952) who provided a system with cut elimination
and a decision procedure for S4, and Kanger (1957), who gave sequent calculi and decision
procedures for T, S4, S5 with the use of “spotted formulas”, i.e., formulas indexed by natural
numbers.

Difficulties in the Gentzen-style formalization of modal logic were, however, encountered
at a very elementary level, for instance in the search of an adequate cut-free sequent calculus
for the modal logic S5.! These difficulties are well witnessed by the ongoing present interest
in the problem, with two more proposals presented in this Colloquium (Restall 2005, Stouppa
2005).

The lack of a general solution has justified an overall pessimistic attitude towards the
possibility of applying Gentzen’s systems to non-classical logics, as is shown in the following
passages:

Gentzen’s methods do not provide anything like a universal approach to logic ...
There are certain standard logics to which these methods do not apply in as direct
a fashion ... For example, consider the logics B and S5. The Kripke models for
these are symmetric ... Such things effectively destroy all possibility of a good,
simple cut-free Gentzen system. Fitting (1983, p. 4)

The other tradition that should be mentioned is that of proof theory. Gentzen

methods have never really flourished in modal logic. Bull and Segerberg (1984, p.
7)

Tn 1957 Ohnishi and Matsumoto presented sequent calculi with cut elimination for various modal logics,
but no cut elimination for S5. Mints (1968) gives a sequent calculus for S5 with quantifiers that enjoys cut
elimination but not the subformula property. The same limitation is encountered in Sato (1980). Shvarts
(1989) gave an indirect proof of cut elimination, showing that A is provable in S5 iff OA is provable in a
suitable cut-free calculus. A similar idea, translated in terms of tableaux systems, is exploited in Fitting
(1999). Braiiner (2000) proved cut elimination for a calculus for S5 that cannot be appropriately called a
sequent system because of the non-locality of its rules.



In modal logic the situation is much more delicate; there are significant technical
problems ... to be faced when translating one style into another. We step over
these problems by choosing ... a Hilbert type proof system. Sally Popkorn (1994,
p. 97)

and, in the most recent textbook on modal logic, in the section “What this book is not about”

The omission of proof theory and automated reasoning techniques calls for a little
more explanation. ... as is often the case in modal logic, the proof systems
discussed are basically Hilbert-style axiomatic systems. There is no discussion
of natural deduction, sequent calculi, labelled deductive systems, resolution, or
display calculi. ... Why is this? Essentially because modal proof theory and
automated reasoning are still relatively youthful enterprises; they are exciting
and active fields, but yet there is little consensus about methods and few general
results. Blackburn, de Rijke, and Venema (2001, p. xvi).

Good sequent calculi should satisfy certain design principles. In Wansing (1994, 2002)
explicit philosophical, methodological and computational requirements for sequent systems
for modal logic have been laid down. In short, they are the following:

1. Separation: The rules for each connective/modality should be given through a purely
structural account of its meaning, in the sense that they should be independent of any other
connective/modality.

2. Weak symmetry: Each rule should either be a left or a right rule, introducing the
connective either into the left or into the right hand side of the sequent arrow in the conclusion.
The requirement can be strengthened to symmetry if there are both left and right rules for
each connective/modality.

3. Weak ezplicitness (resp. ezplicitness): The connective/modality appears only (resp.
only and once) in the conclusion of the rule.

4. The two modalities O and < should be both primitive but interderivable.

5. Uniqueness: Each connective should be uniquely characterized by its rules in a given
system.

6. Different systems are obtained by changing only the structural rules, while leaving the
logical rules unaltered.

7. Cut elimination

8. Subformula property

After reviewing the earlier attempts of defining sequent systems for certain non-classical
logics, Wansing is led to the conclusion that

No uniform way of presenting ... the most important normal modal and temporal
propositional logics as ordinary Gentzen calculi is known. Further, the standard
approach fails to be modular. ... Each of the ordinary sequent systems presented
... fails to satisfy some of the more philosophical requirements mentioned ... there
are thus not only technical but also philosophical reasons for investigating gener-
alizations of the notion of a Gentzen sequent.



The generalizations of traditional Gentzen sequent calculi presented include systems such
higher-level sequents, higher-dimensional, higher-arity, multiple sequent systems, hyperse-
quents, display logic.

In addition to these generalizations, in recent years an approach based on the internaliza-
tion of the Kripke semantics into the calculus has gained prominence. This idea, with early
precursors as far as in Kanger (1957), has been developed in several forms. Inference systems
have been presented that incorporate possible worlds in the form of sequents (Mints 1997,
Vigané 2000, Kushida and Okada 2003, Castellini and Smaill 2002, Castellini 2005), in the
form of tableaux (Fitting 1983, Catach 1991, Nerode 1991, Goré 1998, Massacci 2000), and
in the form of natural deduction (Fitch 1966, Simpson 1994, Basin, Matthews, Vigan6 1998).
The use of a syntax that includes the relational semantics has been central also in the work
on first-order encodings of modal logic (Ohlbach 1993, Schmidt and Hustadt 2003) and in
what is called hybrid logic (Blackburn 2000). Internalization of the algebraic - rather than
relational - semantics into a natural deduction style presentation is instead mainly used in
Labelled Deductive Systems (Gabbay 1996).

Despite their impact, labelled proof systems have been criticized as impure, in contrast
to the more traditional proof systems, and difficult to use in practice:

a deductive treatment congenial to modal logic is yet to be found, for Hilbert sys-
tems are not suited for the purpose of actual deductions, and in Hintikka/Kripke
systems the alternativeness relation introduces an alien element which, moreover,
can become quite unmanageable in special cases. Bull and Segerberg (1984, 2001).

Furthermore, the more goal-oriented labelled tableau systems do not translate into elegant
Gentzen sequent calculi.

[Tableau calculi, translated into sequent system| do not possess all the elegant
properties usually demanded of (Gentzen) systems. ... Elegant modal sequent
systems respecting the ideals of Gentzen have proved elusive. Goré (1998).

Our aim is to provide a general approach to the proof theory on non-classical logics
through labelled sequent calculi that obey all the principles of good design usually required of
traditional sequent systems. In particular, the calculi we shall present have all the structural
rules—weakening, contraction, and cut—admissible; they support, whenever possible, proof
search, and have a simple and uniform syntax that allows easy proofs of metatheoretic results.

These calculi all stem from a systematic development, started with Negri and von Plato
(1998), of a method for converting axioms into rules to be added to cut- and contraction-free
sequent systems while maintaining all the structural properties in the resulting extension.

In previous work the method has been applied to extensions of logic, that is, to certain
mathematical theories such as theories of order (Negri, von Plato, and Coquand 2001), lattice
theory (Negri and von Plato 2004, Negri 2005a), linear Heyting algebras (Dyckhoff and Negri
2006), real closed fields (Negri 2001), projective and affine geometry (von Plato 2005a), and
to the so-called geometric and cogeometric theories (Negri 2003, Negri and von Plato 2005).



Recently, the method has been applied inside logic, for the generation of sequent systems
for all those logics that can be characterized in terms of a Kripke-style relational semantics.
These include the most standard normal modal logics and provability logic, treated in Negri
(2005), and also intermediate logics, relevant logic, and, in general, substructural logics.

In Section 1 we shall review the background on sequent calculus and its extensions with
rules. In Section 2, starting from a G3-style labelled sequent calculus for basic modal logic,
we shall present the application of the method to modal logics characterized by universal and
geometric frame properties. There are certain modal logics, such as the provability logic of
Godel-Lob, that are characterized by frame properties that are not first-order. In Section
3 it is shown how to deal with such extensions through a semantically justified definition
of the rules for the modality. In Section 4 we present a sequent calculus with internalized
Kripke semantics for intuitionistic logic. It turns out that all the properties characterizing the
Kripke frames for the seven interpolable intermediate logics are geometric axioms, and thus
fall under the scope of our method. Also relevant, and in general, substructural logics, can be
characterized through a suitable relational semantics, with properties following the form of
geometric axioms. A uniform proof-theoretic treatment for substructural logic is presented in
Section 5. Finally, in the conclusion we indicate how the calculi presented relate to the above
requirements for sequent calculi and how they can serve as calculi establishing decidability
through terminating proof search.

1 Background

In Negri and von Plato (1998, 2001) and in Negri (2003) a general method was presented for
extending sequent calculi with rules for axiomatic theories while preserving all the structural
properties of the logical calculus. We recall here the general ideas of the method and the
main results.

For extensions of classical predicate logic the starting point is the contraction- and cut-
free sequent calculus G3c. We recall that all the rules of G3c are invertible and all the
structural rules are admissible, that is, whenever their premisses are derivable, then so is their
conclusion. Weakening and contraction are in addition height-preserving admissible, that is,
whenever their premisses are derivable with derivation height bounded by n, then also is
their conclusion, with the same bound on the derivation height (the height of a derivation
is its height as a tree, that is, the length of its longest branch). Moreover, the calculus
enjoys height-preserving admissibility of substitution. Also, invertibility of the rules of G3c
is height-preserving (see Chapters 3 and 4 of Negri and von Plato (2001) for detailed proofs).

These remarkable structural properties of G3c¢ are maintained in extensions of the logical
calculus with suitably formulated rules that represent axioms for specific theories. Universal
axioms are first transformed, through the rules of G3c, into conjunctive normal form, that is
conjunctions of formulas of the form P& ... &P, D Q1V:--VQy,, where the consequent is L if
n = 0 and all P;, Q; are atomic. (Any such formula, universally quantified, is called a regular
formula.) We abbreviate the multiset Py, ..., Py as P. Each conjunct is then converted into



a schematic rule, called the regular rule scheme, of the form

Q,P,T=A ... QuPT=A
PT=A

Reg

By this method, all universal theories can be formulated as contraction- and cut-free
systems of sequent calculi.

In Negri (2003), the method is extended to cover also geometric theories, that is, theories
axiomatized by geometric implications. We recall that a geometric formula is a formula not
containing D or V and a geometric implication is a sentence of the form

VzZ(A D B)

where A and B are geometric formulas. Geometric implications can be reduced to a normal
form consisting of conjunctions of formulas, called geometric azioms, of the form

V?(Pl& ...&P,, D (HflMl V-V anMn))

where each M is a conjunction of atomic formulas, @;,,..., ijj. Without loss of generality,
no z; is free in any P;. Note that regular formulas are geometric implications, with neither
conjunctions nor existential quantifications to the right of the implication.

The left rule scheme for geometric axioms takes the form

61(51/51),?,F:>A Qn(yn/fn)aﬁaI‘:}A
— GRS
P, T =A
where @j and P indicate the multisets of atomic formulas Qjis--- ijj and Py,...,P,, re-

spectively, and the eigenvariables ¥, of the premisses are not free in the conclusion.

In order to maintain admissibility of contraction in the extensions with regular or geomet-
ric rules, the formulas Py, ..., P, in the antecedent of the conclusion of the scheme have (as
indicated) to be repeated in the antecedent of each of the premisses. In addition, whenever
an instantiation of free parameters in atoms produces a duplication (two identical atoms) in
the conclusion of a rule instance, say Pi,..., P, P,..., Py, I’ = A, there is a corresponding
duplication in each premiss and in the conclusion of the rule. The closure condition imposes
the requirement that the rule with the duplication P, P contracted into a single P is added to
the system of rules. For each axiom system, there is only a bounded number of possible cases
of contracted rules to be added, very often none at all, so the condition is unproblematic.

The main result for such extensions is the following (Theorems 4 and 5 from Negri 2003):

Theorem 1.1 The structural rules of weakening, contraction, and cut are admissible in all
extensions of G3c with the geometric rule-scheme and satisfying the closure condition. Weak-
ening and contraction are moreover height-preserving admissible.



2 Basic modal logic and its extensions

In this section we shall present a sequent system for the basic modal logic K with rules for
the modalities O and < obtained through a meaning explanation, in terms of the possible
worlds semantics, and an inversion principle. The modal logic K is characterized by arbitrary
frames. Restrictions of the class of frames characterizing a given modal logic amounts to
adding certain frame properties to the calculus. These properties are added in the form of
mathematical rules, following the development outlined in Section 1. All the extensions are
thus obtained in a modular way. As a consequence, the structural properties of the resulting
calculi can be established in one theorem for all systems.

2.1 Basic modal logic

Basic modal logic is formulated as a labelled sequent calculus through an internalization of the
possible worlds semantics into the syntax. The way to achieve this is the following: First we
enrich the language so that sequents are expressions of the form I' = A where the multisets
I and A consist of relational atoms xRy and labelled formulas z : A (corresponding to the
forcing = I A of Kripke models), with z,y ranging in a set W of labels/possible worlds and
A any formula in the language of propositional logic extended with the modal operators of
necessity and possibility, O and <.

The rules for each connective/modality are obtained from their meaning explanation in
terms of the relational semantics: From the inductive definition of forcing for a modal formula

z - OA ff for all y, xRy implies y I+ A
we obtain
If y : A can be derived for an arbitrary y accessible from x, then x : OA can be derived
that is formalized into the rule

zRy,I'= Ay: A
'=A,z:04

RO

where arbitrariness of y becomes the variable condition y not in ', A.
Through the inversion principle? we obtain the rule

zRy,I'=A y:A T =A
z:O0AT=A L

O

that can be equivalently given as a one-premiss rule in the following form

y:A,z:0A zRy, I = A
z:0A,zRy,T = A

2There are several formulations of the inversion principle. Here we follow the inversion principle in the
form Whatever follows from a proposition must follow from the direct grounds for asserting that proposition.
This form allows to uniquely determine the elimination rules in natural deduction and the left rules in sequent
calculus, as shown in detail in Negri and von Plato 2001.



The rules for < are obtained similarly from the semantic explanation

z: QA iff for some y, zRy and y: A

The semantic explanation of the classical propositional connectives is flat, so the result of
the above procedure is just a labelling with the same variable of the active formulas in the
premisses and conclusion of each rule of the calculus G3c.

Our sequent calculus G3K for basic modal logic is thus obtained:

Initial sequents:

ZT:

PT=A,z:P

Propositional rules:

xT

Az: BT =A

2 AGB,T = A ¢

ZT:

Al'=>A z:B,I'=>A

zRy, I = A, xRy

'=sAz:A I'=sAz:B
T = A,z: AYB R

'=sAz:Az:B

&

Lv

z:AVB,I'=A

'=sAzx:A z:B,I'=A

'=>Az:AVB i
z: A l'=Ax:B

z:ADB,I'= A

sz_,F=>ALJ_

Modal rules:

y:

A,z :0A,zRy,I' = A

Lo

z:0A,zRy, T = A

zRy,y: A, = A

z: AT = A

T>Az:AD0B ©

zRy,I' = A,y: A
= Az:0A4
xRy, = A,z : CA,y: A
2Ry, = A,z : CA

RO

Table 1. The sequent calculus G3K

2.2 Extensions

We present, by way of an example, a table of modal systems with their characterizing Hilbert-
style axioms and corresponding frame properties.

Axiom Frame property

OAD A Vz zRzx reflexivity

0A D OO0A Vzyz(zRy & yRz D £Rz) transitivity
CADOCA Vzyz(zRy & xRz D yRz) euclideanness
ADOCA Vzy(zRy D yRz) symmetry

0O(0A D B)vO(OB D A)

Vzyz(zRy& xRz D yRz V zRy) connectedness

O0AD A

Vrdy xRy seriality

OOA D OCA

Vezyz(zRy & xRz D Jw(yRw & zRw)) directedness

T
4
E
B
3
D
2
W

|0(0AD>A)DOA

‘ no infinite R-chains + trans.
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The frame properties in the first group (T, 4, E, B, 3) are universal axioms, those in the
second group are geometric implications, as defined in Section 1, whereas the last one is not
expressible as a first-order property.

The systems T, K4, KB, S4, B, S5, ... are obtained by adding one or more axioms
to the system K. Sequent calculi are obtained by adding to the system G3K the rule(s)
corresponding to the properties of the accessibility relation characterizing their frames. For
instance, a sequent calculus for S4 is obtained by adding to G3K the rules corresponding to
the axiom of reflexivity and transitivity of the accessibility relation

zRz, T = A zRz,zRy,yRz,T = A
B 11 Trans

'=A zRy,yRz, I = A

and a system for S5 by adding also the rule corresponding to symmetry

yRz,zRy,I' = A
zRy,I' = A

Sym

Extensions are obtained in a modular way for all possible combinations of properties:
G3T = G3K + Ref
G3K4 = G3K + Trans
G3KB = G3K + Sym
G354 = G3K + Ref + Trans
G3TB = G3K + Ref + Sym
G3S5 = G3K + Ref + Trans + Sym

A system for Deontic logic is obtained by adding the geometric rule

zRy,I'= A
'=A

Ser

with the variable condition y ¢ T', A.
Directedness is another property that follows the pattern of a geometric implication, and
it is converted into the rule

yRu, zRu,cRy,zRz,I' = A
zRy,zRz, T = A

Dir

with the variable condition u ¢ xRy, xRz, T, A.
The treatment of a modal logic with a frame property not expressible as a first-order
sentence, namely provability logic, is postponed to the following section.

2.3 Structural properties

Let G3K* be any extension of G3K with rules for the accessibility relation following the
regular rule scheme or the more general geometric rule scheme. The following properties of
any system belonging to the class G3K* can all be established uniformly. We refer to Negri
(2005) for the details.



Lemma 2.1 Sequents of the form
z: A=Az A
with A an arbitrary modal formula (not just atomic), are derivable in G3K*.

In order to prove the correspondence between our systems and their Hilbert-style presen-
tations it is necessary to show that the characteristic axioms are derivable and the systems
closed under the rules of necessitation and modus ponens.

Lemma 2.2 For arbitrary A and B, the sequent
=z :0(ADB)D(OADOB)
is derivable in G3K*.

The rule of necessitation
=z:A

=z:04

is a context-dependent rule, as it requires both the antecedent and succedent contexts to be
empty. As an explicit rule it would destroy the flexibility of the systems in the permutations
needed to prove cut elimination; However, we do not need to add any such rule because we
can show that it is admissible. In order to prove this we exploit the first-order features of the
system in proving a lemma about substitution.

Substitution of labels is defined in the obvious way as follows for relational atoms and
labelled formulas:

zRy(z/w) = zRyifw#zandw#y
zRy(z/z) = zRyifz#y

zRy(z/y) = zRzifzx#vy

zRz(z/r) = 2Rz

z:A(zly) = z:Aify#z
z:A(z/z) = z:A

and is extended to multisets componentwise. We have

Lemma 2.3 IfI' = A is derivable in G3K*, then I'(y/x) = A(y/x) is also derivable, with
the same derivation height.

An immediate consequence is

Corollary 2.4 The necessitation rule is admissible in G3K*.

We also obtain a desirable property of a sequent calculus, namely:
Proposition 2.5 All the rules of G3K* are height-preserving invertible.
Finally, we have:

Theorem 2.6 All the structural rules—weakening, contraction, and cut—are admissible in the
system G3K*.



2.4 Equality and undefinability

The syntax for system G3K* can be extended with equality. The treatment of equality as a
left rule system, following Negri and von Plato (2001, Section 6.5), is easily implemented in
the context of labelled calculi. We shall not give here the details, that can be found in Negri
(2005, Section 7), but just observe by way of an example that the modal axiom

O(A&OB) D O(AV AV B)
corresponding to the frame property
Vaeyz(zRy& xRz D z =y V zRy V yRz)

converts to the rule

z=19y,zRy,xRz,I' = A zRy,zRy,zRz,I' = A yRz,zRy,xRz,I' = A
zRy,zRz, I = A

The corresponding sequent system is obtained by adding the above rule to the system G3K
augmented with the rules for equality. All the structural properties of the resulting system
hold as a consequence of the general results.

The use of proof systems that unify the syntax and semantics of modal logic permits to
obtain very simple proofs of negative results in correspondence theory. These results state
that certain frame properties (such as irreflexivity and intransitivity) do not have any modal
correspondent. The usual proofs are based on model extension methods: in order to prove
that a frame property is not modally definable it is shown that the corresponding class of
frames is not closed under the constructions of disjoint union, generated subframes, bounded
morphic images, and ultrafilter extensions (cf. Blackburn, de Rijke, and Venema 2001, section
3.3; see also Van Benthem 1984). In our systems, the lack of a modal correspondent is
an immediate consequence of a conservativity theorem. Consider, for instance, the frame
property of irreflexivity Vo ~ xRz that corresponds to the rule

— &
zRz,T = A el

By a straightforward proof analysis (see Theorem 7.1 of Negri 2005 for the complete, five-line
proof) we observe

Theorem 2.7 The system G3K+Irref is conservative over G3K.

It follows that the property of irreflexivity does not have any modal correspondent, because,
if it had, there would be some formula that is provable in the extension G3K+Irref but not
in G3K.

The result is easily generalized to any property, generalizing intransitivity, of the form
~ (P& ...&P,) where P; is z;Ry; and for some i,j, y; = y;. A similar result holds for
Jz xRz and VzIy(zRy & yRy).
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3 Provability logic

After Solovay’s landmark paper (1976) that presented axiomatically GL as the logic of arith-
metic provability and characterized its Kripke models as the transitive and Noetherian frames,
a lot of interest has been directed to the search of an adequate, cut-free sequent system for
GL.

Semantic proofs of closure of a certain system with respect to cut, based on completeness
arguments, were presented in Sambin and Valentini (1982) and in Avron (1984). Syntactic
proofs, aimed at providing explicit proof transformations that would describe a procedure
of cut elimination, were proposed by Leivant (1981), Valentini (1983), and Borga (1983).
Valentini (1983) gave a counterexample to the proof presented by Levaint. More recently
Moen (2003) observed that the proof by Valentini assumes as a starting point a reduction of
a cut on OA to a detour cut, which is not fully justified in a calculus with explicit contraction.
However, in all the proofs given in the 1980s (and also in more recent proposals, see Sasaki
2001) calculi with contexts-as-sets have been used. There are good reasons for objecting to
such an approach to sequent calculus that would deserve a more thorough discussion, but we
shall not go into this issue here.

Another problematic aspect of the proposed calculi for provability logic is a so-called lack
of harmony?: In fact, there is only one rule (both left and right) for O

or,r,gdA= A
an,Ir’ = A,04

that does not respect any of the design requirements of separation, symmetry, uniqueness
recalled in the Introduction.

Here we shall show how a calculus with admissible contraction for sequents labelled by
possible worlds, with harmonic, semantically originated left and right rules for O, permits a
transparent proof of cut elimination.

In the Kripke frames for provability logic the accessibility relation R is irreflexive, transi-
tive, and Noetherian (every R-chain eventually becomes stationary). Equivalently, we can say
that R is transitive and all R-chains are finite. Clearly, this characterizing frame condition is
not first order, so the method of universal/geometric extensions exploited in Section 2 cannot
be applied directly. However, the condition can be internalized in the explanation of the
meaning of the modality as follows:

Lemma 3.1 In irreflexive, transitive, and Noetherian Kripke frames
Ik OA iff for ally, xRy and y - OA implies yIF A

Proof: See Negri (2005).
The right-to-left direction of the implication stated above gives the right rule for O

zRy,y: DA T=Ay: A
'=Az:0A4

RO-L

3Cf. Read 2005 for a discussion of this notion in the context of modal logic and von Plato 2005 for an
application of (harmonic) general elimination rules to the solution of the problem of normal form for S4.
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with the variable condition that y is not in the conclusion. The left-to-right direction gives
the left rule

z:0A,zRy,I' = A,y: 0A y:A,w:DA,wRy,I‘#AL
z:0A,zRy, T = A

O-L

The systems G3GL is thus determined as follows:

Initial sequents:

z:PT=Az:P z:0A4,T= A jz:0A
Logical rules:

As in G3K for &, Vv, D, |; LO-L, RO-L

Mathematical rules: Ref, Trans

Table 2. The sequent calculus G3GL

All the properties that have been established for G3K* hold for G3GL, namely:

Theorem 3.2 1. The axioms of the Hilbert-type system for GL are derivable in G3GL.

2. The rules of substitution, weakening, and necessitation are height-preserving admissible
in G3GL.

3. The rules of contraction are admissible in G3GL. Elimination of contraction does not
introduce new worlds in the derivation.

The last item in the theorem introduces a new notion that was not needed before, namely the
notion of range of a label in a derivation. Roughly, the range of a label z in a derivation D is
the set of labels belonging to the transitive closure of all the relations xRy occurring in the
left hand side of sequents of D. The need for this new notion becomes clear from the proof of
cut elimination for G3GL. We shall not give all the details here (for which we refer to Negri
2005), but just focus on the main ideas.

A typical procedure of cut elimination for G3-like systems considers topmost cuts and
performs reductions that either decrease the height of one of the two premisses of cut (for
permutation cuts, that is, cuts in which the cut formula is not principal in at least one of the
premisses) or the size of the cut formula (for detour, or principal, cuts, that is cuts in which
the formula principal in both premisses). The reductions are repeated until cuts reach initial
sequents and disappear. This procedure does not work for G3GL in the case of detour cuts
on z : OA. Consider a principal cut on z : OA
zRy,y :OA T = Ay: A TRz, z : OA T = A',2z:0A z:A,zRz,z:0AT = A/

= A,z:04 -t Rz, z : OA, T = A’ r
zRz,T'.T = A, A/

0O-L

Cut

12



this is transformed into four cuts as follows
Dl DQ

sz,sz,F',F,F.i AA AN 2: A TRz, z: A,I;',I‘ = A A
zRz, xRz, xRz, T, T"T,['\T' = A, A, A, AT A/
zRz,T",T = A, A’

Cut

Ctr*

where Dy and D, are the following two derivations
= A,z:0A4 zRz,z:0A4T = A" z:0A4 Cut
zRz, T, T = A, A", z: OA Y 4Rz, z:DAT=A,z: A
zRz,zRz, T, T = A A", A,z: A

Cut

= A,z:0A4 zRz,z:04,z: AT = A’
TRz, z : ATV, T = A, A’

Cut

Observe that the cuts on z : OA and on 2 : A are all reduced according to the standard
procedure, whereas the cut on z : OA is not, because neither the complexity of the cut formula
nor the height of the cut is reduced.

However, if the range of z in the new derivation is strictly smaller than the range of z in
the original derivation, then we have for all the cuts in the transformed derivation a reduced
inductive parameter given by the triple consisting of the complexity of the cut formula, the
range of its label, and the height of the cut, ordered lexicographically.

In order to prove the reduction in range, two extra assumptions are needed, namely, that
there be no cuts with xRz or xRx1,...,z, Rz in the antecedents of their conclusions and
that eigenvariables be pure, i.e., appear only in the subtree above the step introducing them.
The first condition is met by observing that if there are cuts of that form, they are eliminated
using Irref and Trans, the second by a fresh renaming of eigenvariables. It then follows that
no z can be in the range of itself, that if y is in the range of  then the range of y is properly
included in the range of z, and that if y, z are in the range of x and y is an eigenvariable,
then the union of the range of y and the range of z is properly included in the range of z.

We conclude with observing that the Lob axiom can be derived in this system, and Godel’s
second incompleteness theorem follows as an immediate consequence of cut elimination. See

Negri (2005).

4. Intermediate logics

It is well known that intuitionistic logic can be embedded into the classical modal logic S4, and
actually all the intermediate logics between intuitionistic and classical logic can be embedded
into the intermediate modal logics between S4 and S5. The analogy between these two families
of logics is best seen at the level of their Kripke semantics. The explanation of the meaning of
implication in intuitionistic logic reflects the explanation of the modality in K. As for normal
modal logics, we can internalize the inductive definition of validity in a Kripke frame for
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obtaining uniform G3-style sequent calculi for intermediate logics. The accessibility relation
for intuitionistic logic is a partial order. By requiring additional properties, logics above
intuitionistic logic are obtained. We observe that all the properties of the accessibility relation
characterizing the interpolable propositional logics fall under the geometric rule scheme. By
applying the results on geometric extensions we can therefore obtain complete calculi with
good structural properties. In addition, the uniformity in the syntax allows immediate proofs
of the faithfulness of the embeddings. The details of the proofs can be found in Dyckhoff and
Negri (2005).
From the inductive definition of validity of implication in a Kripke frame,

xlFADB iff forall y, x <y andyl- A implies y - A

we obtain the left and right rules for intuitionistic implication. Arbitrariness in y in the right
rule is again expressed by a variable condition.

The rules for the other connectives are exactly as the rules in G3K. The initial sequents
of G3K are instead modified in order to guarantee the property of monotonicity of forcing. In
compliance with the features of the G3-style calculi, it is enough to have monotonicity with
respect to atomic formulas to have full monotonicity admissible. The mathematical rules for
the accessibility relation < are the rules Ref and Trans, expressing that < is a partial order.
We have thus determined the following system G3I for intuitionistic propositional logic:

Initial sequents:
r<y,z: PT =Ay: P
Logical rules:

As in G3K for &, Vv, 1;

r<y, t: ADB,I'=>y:AA, xsy,x:ADB,y:B,F#AL
r<y,t: ADBT = A -

r<y,y: A l'=Ay: B

T=>Az:A>B 1°
Order rules:
z<z, = A r<z,r<y,y<zl = A
—————— Ref Trans
'=A r<y,y<z, [ = A

Table 3. The sequent calculus G3I
Let G3I* be any extension of G3I with rules following the geometric rule scheme. Follow-

ing the method presented in Section 3, the structural properties of G3I* are proved uniformly
for any extension. We summarize the results in the following

Theorem 3.3 1. G3I*F z <y,z: AT = A,y : A (monotonicity).
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2. If G3I* +, ' = A, then G3I* -, ['(y/z) = A(y/z) (height-preserving substitution).
3. Weakening and contraction are height-preserving admissible.
4. All the rules of G8I* are height-preserving invertible.

5. Cut is admissible.

We obtain at once that each of the seven interpolable intermediate logics (cf. Maksimova
1979, Chagrov and Zakharyaschev 1997) belong to the class G3I*: The point is simply that
all these have frame conditions expressible geometrically.

1. Int Intuitionistic Logic: as already built in above, the accessibility relation < is reflexive
and transitive, i.e.

Vz(r < z) and Vzyz(z < y&y <z D < 2).

2. Jan Jankov-De Morgan Logic (cf. Jankov 1968): The relation < is directed or conver-
gent, i.e.,
Veyz(r <y&z <z DO Jw(y<wz < w)).

This logic, also known as KC (cf. Chagrov and Zakharyaschev 1997) and as the “logic of
weak excluded middle,” is axiomatised by either ~ AV ~~A or ~(A&B) D~ AV ~B.

3. GD Godel-Dummett Logic: The accessibility relation is linear, i.e.,
Vry(z <y Vy< ).

This logic (also known as LC, for “linear chains”) has as characteristic axiom scheme
either (ADB)V(BDA)or (ADB)DC)D((BDA)DC)DCO).

4. Bdsy: The accessibility relation has depth at most 2, i.e., it satisfies
Veyz(z <y&y<z DO z<yVy<).
This logic is axiomatised by for example AV (A D (BV ~ B)).

5. Sm: Smetanich logic, also known as LC, (cf. Chagrov and Zakharyaschev 1997) or the
“logic of here and there.” The accessibility relation is linear and has depth at most 2,
i.e., the conditions for GD and Bd,. It is axiomatised by the GD axiom plus the Bdy
axiom, or, equivalently, (~B D A) D (((A D> B) D A) D A).

6. GSc: The accessibility relation has depth at most 2 and at most 2 final elements, i.e.,
the following holds in addition to the frame condition for Bds:

Veyzw(z <y&r<z&r<wdDw<yVw<z)

The logic is axiomatized by (A D B)V (B D A)V((A D ~B)& (~ B D A)) and
AV(ADBV ~B).



7. Cl Classical logic: The accessibility relation is symmetric, i.e.,
Voy(z <y D y<x).
The logic is axiomatised by AV ~ A or by ~~A D A.

There are the following containments between these logics: Int C Jan C GD C Sm, Int C BD,
C GScCSm and Sm C CL.

We recall the standard translation = of Int into S4, a variant (cf. Troelstra and Schwicht-
enberg 2000) of the translation given in Godel (1933):

P" = OP
1" 1
(A>B)” = 0O(A" > BP)
(A&B)" = A"&B"
(AvB)| = A"vB-
(Ay,..., A" = A7,... A7
We obtain a uniform proof of the faithful embeddings of intermediate logics between Int and
Cl and intermediate modal logics between S4 and S5.

Theorem 3.4 Given an extension G3I* of G3I with rules for <, let G83S4* be the corre-
sponding extension of G3S4. We then have G3I* FT = A iff G3S4* - T” = A",

4 Substructural logics

Among the logics that can be characterized in terms of a relational semantics is the family of
relevant, and, in more generality, substructural logics. Here we shall show how our method can
be successfully applied for obtaining sequent calculi for these logics. For a general background,
history, motivations, applications, and references to the vast literature on the field we refer
to the survey by Dunn and Restall (2002) and to the two recent monographs Restall (2000)
and Mares (2004).

Our starting point for the development of uniform calculi for substructural logics is given
by the Routley-Meyer relational semantics. This semantics is a generalization of the stan-
dard relational semantics for intuitionistic and modal logic: Instead of a binary accessibility
relation, we have a ternary relation R on a set of worlds W. A distinguished element 0 of W
defines a projection of R, namely a < b = R0ab that turns out to be a partial order.

For basic relevant logic, R satifies the properties:

Ref  ROzz

Mon; ROz't & Rryz D Rx'yz
Mons ROy'y& Rryz D Rxy'z
Mons RO0Z'z& Rzyz' O Rxyz
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Following the method recalled in Section 2, all the above properties can be given as rules for
the accessibility relation to be added to an appropriate labelled calculus.

As for intuitionistic logic, the only connective with a non-trivial semantics is implication,
with validity defined inductively by

zlF AD B = for all y,z, Rxyz and y I+ A implies z 1+ A

This semantic explanation justifies the rules

Rzyz,x: ADB,I'=> A,y: A Rzxyz,z:ADB,z: B,'= A
Rzyz,x: AD B, I'= A
Rzyz,y: A\ T = A,z: B

'=>A,xz:ADB

where the latter has the variable condition y,z ¢ ', A, z: AD B.
A cut-free complete sequent calculus for basic relevance logic is obtained, with initial
sequents given by

LD

RD

ROzy,z: PbT = A,y: P

The logical rules for implication are as above, the rules for & and V as in G3K and G3I,
and the mathematical rules are given by the monotonicity properties of R.

Besides cut, also the other structural rules (weakening and contraction) are admissible. We
observe that this does not contradict the substructural nature of these logics. These admissible
rules are what could be called (borrowing terminology from hypersequents) ezternal structural
rules. In fact, we can easily verify that the axiom A D (B D A) that corresponds to weakening
is not derivable in the above system despite the admissibility of weakening.

Logics extending the basic relevant logic can be obtained by assuming additional properties
for the accessibility relation. We recall some correspondences between axioms and frame
properties for a variety of relevant logics. First, define R2abcd = R?(ab)cd = 3x(Rabz& Rzcd)
and R?a(bc)d = Iz(Raxd& Rbcx)

Axiom Frame property

A&ADB)DB Raaa or R0ab O Raab idempotence
(ADB)&(BD>C)D>(ADCQO) Rabc D R?a(ab)c transitivity
(ADB)D ((B>C)D> (ADC)) | R%abcd D R?b(ac)d suffixing
(ADB)D ((C >A)D(C>DB)) | R%abcd D R%a(bc)d associativity
(4

(

D(ADB))D(ADB) Rabc O R%abbc contraction
(ADA)DB)DB Ra0a specialized assertion
AD((ADB)D>B) Rabc D Rbac commutativity

AD(ADA) Rabc O (R0ac V R0bc) mingle

Observe that all the properties of R are geometric. As a consequence, the basic calculus
can be extended by rules representing the frame properties and its structural properties follow
from the general result on extensions with the geometric rule-scheme.

A similar approach to substructural logics is presented in Vigané (2000). The main
difference with respect to our method consists in the use of a basic sequent calculus with
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explicit structural rules and in a presentation of mathematical rules for the accessibility
relation in the form of rules with a single conclusion (Horn clauses) that cannot be extended
beyond Harrop theories (theories that do not have disjunctions in positive parts of axioms).
This excludes, for instance, the treatment of the last frame property in the above table.

5 Concluding remarks

We have presented a uniform way of generating sequent calculi with good structural properties
for a variety of non-classical logics, including most standard normal modal logics, provability
logic, intermediate logics, and substructural logics. The calculi are all in the form of Gentzen
sequent calculi, with an extra syntactic element given by the labels and rules governing them
that formally encode the Kripke semantics into the sequent systems. We can now relate the
proposed solution to the requirements on good sequent systems that we quoted in the In-
troduction. The first property, separation, is satisfied as each connective/modality has rules
given through its meaning explanation, independent of any other connective. Symmetry also
clearly holds, and, in particular for the case of provability logic, it simplifies previous proof of
cut elimination that were based on a non-symmetric rule for the modality. As for the third
property, we observe that there are rules in which the connective/modality appears also in
the premisses. This is an unavoidable feature of certain calculi, such as G3i, and it is needed
for obtaining admissibility of contraction. Some extra care is therefore needed in proofs of
termination of proof search. The fourth and fifth requirements are clearly satisfied. As for
the sixth, we observe that our calculi satisfy a similar requirement: We have a core basic
logical calculus and different systems are obtained by modifying only the mathematical rules
added to the ground calculus, that is, the rules for the accessibility relation. The structural
rules, instead, are absent from all our calculi, because they are admissible. In particular,
cut is admissible, so also property 7 is satisfied. As for property 8, the subformula property,
we do not have a priori a full subformula property. In rules for frame properties there are
relational atoms that disappear from the premisses to the conclusion. However, we can prove
in most cases a suitable version of the subformula property, adequate for proving syntactic
decidability, as consequence of the structural properties of the calculi. Our calculi all clearly
satisfy a weak subformula property, that is, all formulas in a derivation are either subformulas
of (formulas in) the endsequent or atomic formulas of the form zRy. By considering minimal
derivations, that is, derivations in which shortenings are not possible, the weak subformula
property can be strengthened by restricting the labels that can appear in the relational atoms
to those in the conclusion. The subterm property states that all terms (variables, worlds) in a
derivation are either eigenvariables or terms (variables, worlds) in the conclusion. This prop-
erty, together with height-preserving admissibility of contraction, ensures the consequences
of the full subformula property and it has been used for establishing decidability through
terminating proof search for logics extending basic modal logic in section 6 of Negri (2005).
The same approach to proof-theoretic decidability can be extended to the other non-classical
logics treated in this article.
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