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Summary

These five lectures on proof analysis cover the following topics: Lecture 1.
Natural deduction is presented, with what are known as general elimination
rules. These rules lead in a natural way to sequent calculus. Systems of classi-
cal and intuitionistic logic are given as contraction-free sequent calculi, what
are called G3 calculi. Lecture 2. Axioms of universal form are converted into
rules by which G3 calculi are extended. No structural rules (weakening, con-
traction, cut) are present in these extensions. As an example, predicate logic
with equality is given. It is shown through proof analysis that the extension
is conservative over sequents that do not contain equalities. A proof of Her-
brand’s theorem for universal theories as systems with rules is given. Lecture
3. Theories of equality, apartness, and order are presented as extensions of
sequent calculus. It is shown that proof search within these theories can be
limited to formulas with terms that appear in the endsequent to be derived
(the subterm property). Contraction-freeness and the subterm property lead
to the decidability of derivability with the rule of a theory. Lecture 4. The
approach and results of Lectures 2 and 3 are generalized to what are called,
in terms of category theory, geometric theories. As examples, Robinson arith-
metic, ordered fields, and plane projective geometry are treated. Each contains
existential axioms that can be converted into rules of contraction-free sequent
calculus. It is noted that the well-known theorem of Barr follows immediately
from the formulation as a rule system. Lecture 5. Variations of the method of
converting axioms into rules of sequent calculus are studied. These include a
rule scheme that acts on the succedent parts of sequents, instead of the an-
tecedent parts, and a rule scheme for single succedent sequents. The latter is
presented also in natural deduction style, and applied to lattice theory. The
subterm property for lattice theory in proved through an argument using per-



mutability properties for the lattice rules. The method of permutation of rules
is then extended to an independent-context system of sequent calculus with
right rules for linear lattices.

Lecture 1: From natural deduction to sequent calculus

In this first lecture we shall outline a route from natural deduction to sequent
calculus. In doing so, we shall depart from standard expositions of natural
deduction.

Natural deduction and sequent calculus were both introduced by Gentzen. The
original Gentzen systems are not isomorphic with respect to normalization and
cut elimination (cf. Zucker 1974 and Pottinger 1977). By modifying natural
deduction a good correspondence is found. Moreover, the rules of the modified
system are supported by a neat meaning explanation of the logical constants.
Also the systems of sequent calculus presented here depart from Gentzen’s
LJ and LK. Besides the regained correspondence, there are other reasons for
such modifications that will emerge throughout the course.

1.1. Natural deduction with general elimination rules

A system of natural deduction is specified by giving, for each logical connec-
tive, introduction and elimination rules.

The introduction rules are given through the meaning explanation of the
logical constants. The so-called “BHK-conditions” (for Brouwer-Heyting- Kol-
mogorov) give the explanations of logical operations of propositional logic in
terms of direct provability of propositions

1. A direct proof of the proposition A& B consists of proofs of the proposi-
tions A and B.

2. A direct proof of the proposition A V B consists of a proof of the propo-
sition A or a proof of the proposition B.

3. A direct proof of the proposition A D B consists of a proof of the propo-
sition B from the assumption that there is a proof of the proposition A.

4. A direct proof of the proposition L is impossible.

Here proofis an informal notion to be gradually replaced by the formal notion
of derivability in a given system of rules. Rules of inference act by transform-
ing a proof of the assumptions into a proof of the conclusion. Observe the



hypothetical content of the last condition. On the formal level, a proof of the
proposition A is no longer needed when drawing the inference to A D B, and
the assumption A is discharged by the rule and put in square brackets.

The BHK-explanation justifies the introduction rules:

A
A B A B B
A&B“ avB'™ avB'"® A-B

There is no introduction rule for 1.

Corresponding to introduction rules there are elimination rules. They have
a proposition formed by the logical constants of conjunction, disjunction, im-
plication, or falsity as a major premiss and derive their consequences. The
elimination rules are found from the introduction rules through an inversion
principle. In Prawitz (1965) the following principle is stated:

Prawitz’ inversion principle: The conclusion of an elimination rule R
with major premiss A x B is already contained in the assumptions used to
derive AxB from the x-introduction rules, together with the minor premisses
of the rule.

The principle asserts that elimination rules are inverse to the corresponding
introduction rules insofar as nothing is gained if an introduction rule is fol-
lowed by an elimination rule. Prawitz’ inversion principle justifies but does
not uniquely determine the elimination rules. The following inversion princi-
ple has been given in Negri and von Plato 2001 as a justification and unique
determination of the elimination rules:

Generalized inversion principle: Whatever follows from the direct grounds
for deriving a proposition, must follow from that proposition.

For conjunction A& B, the direct grounds are derivations of A and of B. Given
that C' follows when A and B are assumed, we thus find through the inversion
principle the elimination rule

4, B]

A&B C

C &E

If in a derivation the premisses A and B of the introduction rule have been



derived and C has been derived from A and B, the derivation

. ¢ [AB

A B :

A&BY ¢
C

&E

converts into a derivation of C' without the introduction and elimination
rules,

A B
C
Therefore, if &I is followed by & FE, the derivation can be simplified.

For disjunction, we have two cases. Either A V B has been derived from A,
and C is derivable from assumption A, or it has been derived from B and
C is derivable from assumption B. Taking into account that both cases are
possible, we find the elimination rule

4] (B)

AVB C C,,

Assume now that A or B has been derived. If it is the former and if C is
derivable from A and C' is derivable from B, the derivation

g 4] [B]
A : :
AvB™" ¢ ¢
C
converts to _
A
C

In the latter case, the conversion produces the derivation

The elimination rule for implication is harder to find. The direct ground for
deriving A D B is the existence of a hypothetical derivation of B from the



assumption A. A direct implementation of the principle would lead to a higher
level rule (as in Schroeder-Heister 1984). Instead, we keep to a first-order level
by observing that if we have A D B then, for an arbitrary C,

If C follows from B, then it already follows from A.
We thus obtain the elimination rule
1B]

ADB A C;
C

E

In addition to the major premiss A O B, there is the minor premiss A in
rule DFE. If B has been derived from A and C from B, the derivation

[4]

: [B]
ABB” i
2B 4 C,

converts to

Finally, the grounds for deriving | are empty, so as a limiting case of the
inversion principle get the rule of falsity elimination (“ex falso quodlibet”):

L

— 1FE

C

So far, we have not said how to start derivations. The rule of assumption
permits to begin a derivation with any formula.

In a given derivation tree the leaves are the assumptions. Among assumptions,
open assumptions are those which are not discharged by any rule, and closed
assumptions are discharged assumptions.

The standard elimination rules of natural deduction are obtained as special
cases from the (general) elimination rules.



If C=Aand C =B for &F, and C = B for D E, we obtain the rules:

A&B A&B ADB A

&E1 &E2

A B B

E (modus ponens)

Why general elimination rules? The reasons for employing general elim-
ination rules rather than standard elimination rules in natural deduction are
here of a specific didactic nature: They open up very easily the way to se-
quent calculus. More substantial reasons are presented in the course by Jan
von Plato.

1.2. Natural deduction in sequent calculus style

By making explicit the derivability relation we can write a derivation of C
from assumptions I' as

r=c

and obtain a system known as natural deduction in sequent calculus style.
For instance, the introduction rule for & and the elimination for V become,

respectively
A AEFB
NTr'uAFr A&B

&I

and

TFAVB AU{A}FC OU{B}FC
TUAUOFC vE

1.3. Sequent calculus

Sequent calculus! has notation for keeping track of open assumptions; rules
are local: Each formula C' has the open assumptions I it depends on listed on
the same line

=<~

Sequent calculus can be regarded as a formal theory of the derivability rela-
tion. In I' = C, the left side I' is called the antecedent and C' the succedent.

1 The use of the word “sequent” as a noun was begun by Kleene. His Introduc-
tion to Metamathematics of 1952 (p. 441) explains the origin of the term as fol-
lows: “Gentzen says ‘Sequenz’, which we translate as ‘sequent’, because we have
already used ‘sequence’ for any succession of objects, where the German is ‘Folge’.”
This is the standard terminology now; Kleene’s usage has even been adopted to
some other languages. But Mostowski (1965) for example uses the literal transla-

tion “sequence.”



In Gentzen’s original formulation of 1934-35, the assumptions I'; A, © were
finite sequences, or lists as we would now say. Thus Gentzen had rules per-
mitting the exchange of order of formulas in a sequence. We instead consider
assumptions finite multisets, that is, lists with multiplicity but no order.

The rules of natural deduction show only the active formulas, and the remain-
ing open assumptions are left implicit. We can make the assumptions explicit,

and, instead of
A B

A&B

&I

write
I A
A B
A& B

&I
but the dots are informal.

When the derivability relation (the dots) are made formal, the introduction
rules of natural deduction become right rules of sequent calculus, where a
comma replaces multiset union:

'=A A=1B
A = A&B
Al'=EB
F=>ADBRD
=4
I'=AVB
= B
I'= AVB

R&

RV1

RV

The formula with the connective in a rule is the principal formula of that rule
and its components in the premisses the active formulas. The Greek letters
denote possible additional assumptions that are not active in a rule; They are
called the contexts of the rules.

The elimination rules of natural deduction correspond to left rules of sequent

calculus.
A BT'=C

ALB,T = C ™~
Al'=sC BA=C
AVB T, A=C
'sA B,A=C
ASBTLT.A=C

Lv

We can ask whether this is enough for giving a system of sequent calculus.
The answer is negative for the following reasons:



The rules of natural deduction do not give complete instructions to draw
derivations. In particular:

1. The same formula can act as assumption and conlcusion in a derivation

A
ADA

oI,1.

2. It is possible to discharge assumptions which have been not made (vacuous
discharge) as in the following derivation

4]
B> A
AD(BDA)

oI
oIL1.

3. It is possible to discharge more occurrences of the same formula at once
(multiple discharge) as follows

[AD (/21' > B)] [,31']
ADB

>E L

[A]

DOFE

ADLB DIL1.
(AD(ADB))D>(ADB)

oI,2.

4. Tt is possible to replace an assumption A in a derivation with a derivation
of A and obtain a derivation (substitution) by “glueing” of two derivations
as follows

r, A
C
The structural rules of sequent calculus rules correspond to the natural

deduction construction principles 24 (sometimes also 1 is included)

Weakening introduces an extra assumption in the antecedent:

I'="C

AF#CW



In sequent calculus example 2 becomes

A=A
AB:A@
AéBDA:%
= AD (BDA)

showing that weakening corresponds to vacuous discharge in natural deduc-
tion.

Contraction is the rule:
AAT = C
Al'=C

Ctr

Example 3 becomes the sequent calculus derivation

A=A B=B,
A=A ADBA=B

AD(ADB),A,A:BLD
AS(A>B),A=B
AD(ADB):>ADBR
=(AD(ADB))D>(ADB)

D

RD

where contraction replaces use of multiple discharge in natural deduction.

If assumptions are treated as sets instead of multisets, contraction is built into
the system and is no longer expressed as a distinct rule. This innocent-looking
change leads to the loss of syntactic control over derivations.

Cut is the rule:
'sA AA=C
A=C

Cut

The use of cut corresponds in natural deduction to substitution, but not only.
Cut is needed in the translation from natural deduction to sequent calculus
to express those instances of elimination rules in which the major premiss is
derived, that is, not an assumption. These are called non-normal instances.
Sometimes cut is explained through the familiar practice in mathematics of
breaking proofs into lemmas.

The propositional part of the sequent calculus GO1i is now completely deter-
mined.

10



Logical axiom:
A=A

Logical rules:

A,B,F:>CL& I'= A A:>BR&

A&B, T = C A = A&B

Al'=C BA=C =4 =B
AVBT,A=C "V T=4vB™ T=4vB™

'sA BA=C ATl'=B

ASBTLA=C ™ T=A45B7

L:>CLL

Rules of weakening and contraction:

r=cC AAT=C
A,F:>0Wk AT =C

Ctr

Table 1. The sequent calculus GO0ip

Natural deduction for classical propositional logic is obtained by adding to
the rules for intuitionistic logic a rule of excluded middle

A A

% Fm
Both A and ~ A are discharged at the inference. The law of excluded middle,
AV ~ A, is derivable with the rule:

A A
Av~A"Y Av~AY
AV ~A Em

The rule of excluded middle is a generalization of the rule of indirect proof
(“reductio ad absurdum”),
[~ A]

Raa

L
A

11



1.4. Desiderata on sequent calculi

Next we shall outline some desiderata on sequent calculus with a view to
applications in proof search.

The rules of sequent calculus can have independent or shared contexts. The
two styles in the right rule for conjunction give the rules

I'==A A=2B I'=A I"'=2HB
A= A&B I'= A&B

Context-independent and context-sharing rules are easily seen to be equivalent
in the presence of the structural rules, in the sense that each rule of one
style is derivable from the corresponding rule of the other style. However,
the two styles are not equivalent for proof search purposes. If the rules of
sequent calculus are used to look for derivation root-first, from the sequent to
be derived, application of context-independent rules leads to a combinatorial
explosion due to the splitting of the context. With context-sharing rules, the
premisses are uniquely determined once the principal formula is chosen.

Cut elimination is the best known desired property of sequent calculus:
With the cut rule the subformula property is no longer guaranteed. Thus
one of the main tasks of structural proof theory is the design of sequent calculi
in which cut is an eliminable or admissible rule.

Contraction can be as “bad” as cut, as concerns a root-first search for a deriva-
tion of a given sequent: Formulas in antecedents can be multiplied with no end.

Weakening is easily avoided by modifying the axiom A = A into the form
ATl = A

Classical logic: The rule obtained by a direct translation of the natural
deduction rule of excluded middle,

Al'=sC ~AT=C
=<

is not good for proof search purposes, since A is an arbitrary formula that a
priort has no relation with the formulas in I', C'. Nevertheless, it can be shown
that A can be restricted to atomic formulas and indeed to atoms from C'. This
works, however, only for the propositional fragment of classical logic.

Alternatively we can extend the notion of a sequent into multi-succedent
sequents (thus moving away from the intuition of natural deduction). Sequents

12



are thus expressions of the form
'=A
where I' and A are both multisets of formulas.

By choosing a multisuccedent formulation, excluded middle is derivable as

follows
A=A L

= A,~ A
= Av~ A

The intuitionistic system of sequent calculus is then obtained as a special case
of the classical system, by a restriction on the context in implication rules (and
for predicate logic in the right rule for the universal quantifier as well). We
have thus the advantage of a uniform formalism for intuitionistic and classical
logic.

In Gentzen (1934-35), what is sometimes called the denotational interpre-
tation of multisuccedent sequents was given: A sequent I' = A expresses that

the conjunction of the formulas in I implies the disjunction of the formulas in
A.

The operational interpretation of single succedent sequents I' = C (from
assumptions I', conclusion C' can be derived) does not extend to multiple
succedents.

Again in Gentzen (1938), the multisuccedent calculus is explained as the nat-
ural representation of the division into cases often found in mathematical
proofs. Thus the antecedent I' gives the open assumptions and the succedent
A the open cases.

The logical rules change and combine open assumptions and cases: L& re-
places the open assumptions A, B by the open assumption A& B; the dual
multisuccedent rule RV changes the open cases A, B into the open case AV B,
and so on. If there is just one case we have an ordinary conclusion from open
assumptions. The other limiting case with no formula in the succedent, as in
[' = , correspond to the empty case, that is, impossibility.

Invertible rules are needed for decomposing root-first a sequent to be proved.
We recall that a rule is invertible if from the derivability of its conclusion, the
derivability of its premiss(es) follows.

For instance, the single invertible rule

A B, I'= A
A&B,T'= A

13



is better than the two equivalent noninvertible rules

AT =A B,T'= A
A&B,T'= A A&B,T'= A

Summing up, the desiderata for our sequent calculus are: multi-succedent,
with context-sharing rules, admissible structural rules, and invertible logical
rules.

1.5. The G3 sequent calculi

All the above mentioned desiderata are satisfied in the calculus G3c.

Logical axiom:
PTI'= AP

Logical rules:

A B T'= A '=AA I'=A,B
ALB,T = A© T = A, A&B
Al'=A BT=A '=AAB
AVBT=A " T=AAavB™
I'=AA B,F=>AL ATl'=AB n
ASDBT=A ~ T=AA>B"
IT=A"

Table 2. The sequent calculus G3cp
Observe that in the table of rules P is an atomic formula.

The corresponding intuitionistic system is obtained as a special case by a
modification of the implication rules:

= A B,F:>AL Al'= B n
ASDBT=A ~ T=AA>B "

The resulting calculus will be denoted by G3im (where m stands for multi-
succedent.

The G3 calculi have a long history, dating back to the work of Ketonen (1944).

14



For a comprehensive historical account we refer to the notes for Chapers 2 and
3 in Negri and von Plato (2001).

In the results that follow we use the notation -, I' = A to indicate that the
sequent I' = A has a derivation of height bounded by 7, where the height of
a derivation is its height as a tree.

Theorem 1.1: Height-preserving inversion. All rules of G3cp are invert-
tble, with height-preserving inversion.

Eg: If-, T = A A&B, then -, T = A, A and -, T = A, B.

Proof: By induction on n. If I' = A, A&B is an axiom or conclusion of L1,
then, A& B not being atomic, also I' = A, A and ' = A, B are axioms or
conclusions of L_L. Assume height-preserving inversion up to height n, and let
Fni1 ['= A, A&B. There are two cases:

If A&B is not principal in the last rule, it has one or two premisses [V =
A" A&B and T" = A" A&B, of derivation height < n, so by inductive
hypothesis, -, I' = A’ Aand -, I'' = A", B and -, I'" = A" A and
F., I = A" B. Now apply the last rule to these premisses to conclude
I'=A,Aand I' = A, B with a height of derivation < n + 1.

If A& B is principal in the last rule, the premisses ' = A;Aand I' = A, B
have derivations of height < n. O

Next we have admissibility of the structural rules:

I'= A w I'= A

AT=A" T=A A"

w

AAT=A T =AAA
AT=A " T=A4 "

Theorem 1.2: Height-preserving admissibility of weakening.
If-, = A, thent, A, I = A.

If-, = A, thent, ' = A, A.

Theorem 1.3: Height-preserving admissibility of contraction.
Ift, A, AT = A, thent, A, = A.

IfFaT = A A A, thent, T = A, A,

15



The proof is by simultaneous induction on the height of the derivation for left
and right contraction, using height-preserving invertibility of the rules.

Theorem 1.4 The rule of cut,

'=AD DI =A
ML= A A

Cut

1s admissible in G3cp.
For the proof, see Chapter 3 of Negri and von Plato (2001).

The proof of cut elimination for G3c shows a first advantage in the use of a
contraction-free calculus: there is no need of multicut, a device that Gentzen
had to use in order to cope with a case of nonreducibility in the proof of
cut elimination, the one in which one of the premisses of cut is derived by
contraction. Cut is a special case of multicut, so the elimination of multicut
gives cut elimination as a corollary. However, by a deeper analysis, not just
of the last rule applied in the premisses of cut, it is possible to prove cut
elimination without using multicut even in the presence of the other structural
rules. This was shown recently in Jan von Plato (2001).

Corollary 1.5. Fach formula in the deriwation of T = A in G3cp is a
subformula of I, A.

Corollary 1.6. Consistency. The sequent = is not derivable.

By admissibility of weakening, if I' = is derivable, then also I' = 1 is
derivable. The converse is obtained by applying cut to I' = L and L = |,
thus, an empty succedent behaves like L.

Lecture 2: Extension of sequent calculi
2.1. Cut elimination in the presence of axioms

It is well known that cut elimination fails in the presence of proper axioms. A
simple counterexample is given in Girard 1984: Let the axioms have the forms
= A D B and = A. The sequent = B is derived from these axioms by

A=A B=B
=ADB AADB=81B

= A AéB@
= B

LD
Cut

t

16



but there is no cut-free derivation of = B.

Observe however that if the axioms are converted into the nonlogical rules

B=C A= C
A=C =C

then the sequent = B has the cut-free derivation

B=1B
A= B
= B

The above example shows only the idea of the conversion of axioms into rules.
In order to make the idea precise we have to look carefully at the proof of
admissibility of the structural rules for the G3 sequent calculi. This inspec-
tion tells how to convert axioms into rules while maintaining admissibility of
structural rules in the extended systems.

First, the rules that correspond to the Hilbert-style axioms have to be logic-
free. The logical content of the nonlogical axioms is absorbed into the geom-
etry of the sequent calculus nonlogical rules. As a consequence, only atomic
formulas can appear as active and principal in nonlogical rules.

The rules must have an arbitrary multiset in the succedent. ?

The most general scheme corresponding to this principle is

Q,I'=A ... Qn,F:>AR
P,.. . P, I,=A “
where I', A are arbitrary multisets and P, ..., P, @1, ...,Q, are fixed atoms

with m,n > 0. In particular, the rule can have zero premisses.

The full rule scheme corresponds to the formula P& ... &P, D Q1 V...V Q,.
In order to see better what forms of axioms the rule scheme covers, we write
out a few cases, together with their corresponding axiomatic statements in
Hilbert-style calculus. Omitting the contexts, the rules for axioms of the forms

QR&R, QV R and P D ( are

@Q=A R=A @=A4A R=>A (@=A
= A = A = A P=A

2 This is true for left rules. For right rules we have instead an arbitrary antecedent.
Left rules were found first since they allow the treatment of non-Harrop intuitionistic
theories, whereas left and right rules are equivalent as far as classical systems are
concerned.

17



The rules for axioms of the forms @, ~ P and ~ (P, &P,) are:

Q=A
= A P=A P,P,= A

In order to deal with admissibility of contraction, we have to augment the
rule scheme. Right contraction is unproblematic due to the arbitrary context
A in the succedents of the rule scheme. In order to handle left contraction, we
need a closer analysis. So assume we have a derivation of A, A, ' = A, and
assume the last rule is nonlogical. Then the derivation of A, A," = A can be
of three different forms. First, neither occurrence of A is principal in the rule;
second, one is principal; third, both are principal. The first case is handled by
a straightforward induction, and the second case by the method, familiar from
the work of Kleene and exemplified by the LD rule of G3ip, of repeating the
principal formulas of the conclusion in the premisses. Thus, the general rule
scheme becomes

P, ... ,P,Q,I'=A .. Pl,...,Pm,Qn,F:>AR
P,... P, T=A J
Here Pi,..., P, in the conclusion are principal in the rule, and P,..., P,
and Q)q,...,Q, in the premisses are active in the rule. Repetitions in the

premisses will make left contractions commute with rules following the scheme.
For the remaining case, with both occurrences of formula A principal in the last
rule, consider the situation with a Hilbert-style axiomatization. We have some
axiom, say ~ (a < b & b < a) in the theory of strict linear order, and substitution
of b with a produces ~(a < a & a < a) that we routinely abbreviate to ~a < a,
irreflexivity of strict linear order. This is in fact a contraction. For systems
with rules, the case where a substitution produces two identical formulas that
are both principal in a nonlogical rule, is taken care of by the

Closure condition. Given a system with nonlogical rules, if it has a rule
where a substitution instance in the atoms produces a rule of the form

P,...,P, 5, PPQ.,I'=A ... Pl;---;Pm—2;P;P;Qn;P:>AR
P,...P,2,PPT=A “

then it also has to contain the rule

P, ... ,P,PQ,I'=A ... Pl,...,Pm_Q,P,Qn,FéAR
P,....P,.Pl=A “

The condition is unproblematic, because the number of rules to be added to
a given system of nonlogical rules is bounded. Often the closure condition is
superfluous; For example, the rule expressing irreflexivity in the constructive
theory of strict linear order is derivable from the other rules.

18



What axioms are representable as rules following the rule scheme?

For classical systems, the answer is unproblematic: All univeral axioms can
have their propositional matrix converted to a conjunction of disjunctions
of atoms and negations of atoms. Each conjunct can be converted into the
classically equivalent form P& ... &P, D Q1 V...V @, which is representable
as a rule of inference. We therefore have

Proposition 2.1. All classical quantifier-free azioms can be represented by
rules following the rule scheme.

The conversion to conjunctive normal form does not hold in intuitionistic logic,
so for intuitionistic system we have a smaller class of axioms convertible into
rules following the rule scheme. See 6.1(a) in Negri and von Plato (2001) for
details.

The following result (proved in Section 6.2 of Negri and von Plato 2001) holds
for all the extensions of G3 sequent systems. We shall denote with G3c*
(G3im*) any extension of G3 (G3im) with rules following the rule scheme:

Theorem 2.2. All the structural rules (weakening, contraction, and cut) are
admissible in G3c* and in G3im*. Weakening and contraction are height-
preserving admissible.

Thus, to every classical quantifier-free theory, there is a corresponding sequent
calculus with structural rules admissible.

In systems with nonlogical rules we have a weak subformula property :

Theorem 2.3. IfT" = A is derivable in G3im* or G3c*, then all formulas
in the deriwation are either subformulas of the endsequent or atomic formulas.

The subformula property is weaker than that for purely logical systems, but
sufficient for structural proof-analysis. In the applications to the theories of
order and lattice theory we shall improve the property by establishing a sub-
term property, which will have the same consequences for the purpose of proof-
search as a proper subformula property.

A simple test for consistency for theories convertible to rules can be performed
by analyzing the only possible form of a derivation of =1 in G3c* or G3im*
(detailed proof in 6.4.2 of Negri and von Plato 2001):

Theorem 2.4. Assume a theory convertible to rules to be inconsistent. Then

(i) All rules in the derivation of = L are nonlogical,
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(ii) All sequents in the derivation have L as succedent,

(iii) Each branch in the derivation begins with a nonlogical rule of the form

Pr... P L
(iv) The last step in the derivation is a rule of the form

= 1

As a consequence we have that if an axiom system is inconsistent, then the
constituents of their conjunctive normal forms contain negations, and atoms
or disjunctions. Therefore, if there are neither atoms nor disjunctions, the
axioms are consistent, and similarly if there are no negations.

2.2. Four approaches to extension by axioms

The method presented in the previous section is not the only way of extending
sequent calculi for treating axiomatic theories. We can summarize the following
four methods and their behaviour with respect to cut elimination and proof
analysis:

1. Addition of axioms A into sequent calculus in the form of sequents = A
by which derivations can start. As shown in the example at the beginning, the
method leads to failure of cut elimination.

2. Gentzen (1938, sec. 1.4): add “mathematical basic sequents” of the form
Pla"'aPm:>Q1a"'aQn'

By Gentzen’s “Hauptsatz,” the cut rule can be pushed into such basic sequents,
and arbitrary cuts reduced to cuts on atoms. Weakening and contraction have
to be added as explicit rules.

3. Gentzen’s consistency proof of elementary arithmetic (1934, sec. IV.3): treat
axioms as a context I', and prove results of the form I' = C. Cut elimination
applies but the resulting system is not contraction-free. Arbitrary instances of
the axiom may appear in the antecedent.

4. Axioms as rules, our method.
All these approaches are equivalent, but the fourth is the one best suited for

proof analysis.
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A formal definition of each of these methods and a proof of their equivalence
can be found in 6.3.1 and 6.3.2 in Negri and von Plato (2001).

2.3. Predicate logic with equality

Axiomatic presentations of predicate logic with equality assume a primitive
relation a = b with the axiom of reflexivity, a = a, and the replacement

scheme, a = b&A(a/x) D A(b/x).

In the usual treatment in sequent calculus (as in Troelstra and Schwichtenberg
1996, p. 98), one permits derivations to start with sequents of the form

= a=a

a=0b,P(a/z) = P(b/x)

where P is atomic. By Gentzen’s “extended Hauptsatz” cuts can be reduced
to cuts on axioms, but cut elimination fails. For instance, there is no cut-free
derivation of symmetry. (Weakening and) contraction must be assumed.

By our method, cuts on equality axioms are avoided. We first restrict the
replacement scheme to atomic predicates P,Q, R,... and then convert the
axioms into rules,

a:a,F:>AR a:b,P(a/x),P(b/x),PéAR z
r=a a_b,Pla/z),T = A

G3im and G3c plus Ref and Repl give intuitionistic and classical predi-
cate logic with equality.

By the restriction to atomic predicates, both forms of rules follow the rule
scheme. A case of duplication is produced in the conclusion of the replacement
rule in case P is x = b. The rule where both duplications are contracted is an
instance of the reflexivity rule so that the closure condition is satisfied. We
therefore have, both for G3im and G3c, the

Theorem 2.5. The rules of weakening, contraction, and cut are admissible in
predicate logic with equality.

Lemma 2.6. The replacement axiom a = b, A(a/x) = A(b/x) is derivable for
arbitrary A.

21



Theorem 2.7. The replacement rule

a=>b,A(a/z), A(b/x),[ = A
a=>bAla/z),T = A

Repl

is admissible for arbitrary predicates A.

Our cut- and contraction-free calculus is equivalent to the usual calculi. But
the formulation of equality axioms as rules permits proofs by induction on
height of derivation. The conservativity of predicate logic with equality over
predicate logic illustrates such proofs.

To prove the conservativity, we show that Ref can be eliminated from deriva-
tions of equality-free sequents.

As observed above, the rule of replacement has an instance with a dupli-
cation, and the closure condition is satisfied because the instance in which
both duplications are contracted is an instance of reflexivity. For the proof of
conservativity, in the absence of Ref, the closure condition is satisfied by the
addition of the the contracted instance of Repl:

We have the immediate result:

Lemma 2.8. If T = A has no equalities and is derivable in G3c+Ref+
Repl+Repl*, no sequents in its derivation have equalities in the succedent.

The following lemma contains the essential analysis in the proof of conserva-
tivity:

Lemma 2.9. If T' = A has no equalities and is derivable in G3c+Ref+
Repl+Repl* it is derivable in G3c+Repl+Repl*.

Proof: We show that all instances of Ref can be eliminated from a given deriva-
tion, by induction on the height of derivation of a topmost instance

a=a," = A’Ref
"= A’

If the premiss is an axiom also the conclusion is, since by the above lemma A’

contains no equality, and the same if it is a conclusion of L1. If the premiss

has been concluded by a logical rule, apply the inductive hypothesis to the

premisses and then the rule.

If the premiss has been concluded by Repl there are two cases, according to
whether a = a is or is not principal. In the latter case the derivation is, with
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' = P(b/z),T",

a=a,b=c,P(b/x),P(c/x),[" = A
a=a,b=c,P(b/x), " = A
b=c,P(b/x), " = A

Repl

Ref

By permuting the two rules, the inductive hypothesis can be applied.
If @ = a is principal, the derivation is, with [V = P(a/z), ",

a=a,P(a/x), P(a/z), T" = A’
a=a,P(a/z), " = A’
P(a/z), " = A’

Repl

Ref

By height-preserving contraction, there is a derivation of a = a, P(a/z), " =
A’ to which the inductive hypothesis applies, giving a derivation of " = A’
without rule Ref.

If the premiss of Ref has been concluded by Repl* with a = a not principal the

derivation is ) ,
a=a,b=c,c=c,I"= A

a=a,b=c "= A’
b—c T = A/

The rules are permuted and the inductive hypothesis applied.

Repl*

Ref

If a = a is principal the derivation is

a=a,a=a," = A’
a=a,I" = A’
"= A’

Repl*
Ref
and we apply height-preserving contraction and the inductive hypothesis. O

Next, since the rules Repl and Repl* have equalities in their conclusions, we
obtain:

Theorem 2.10 If I' = A is deriwable in G3c+Ref+ Repl4+Repl* and if T', A
contain no equality, then T' = A is derivable in G3c.

2.4. Herbrand’s theorem for universal theories

Let T be a theory with a finite number of purely universal axioms and clas-
sical logic. We turn the theory T into a system of nonlogical rules by first
removing the quantifiers from each axiom, then converting the remaining part
into nonlogical rules. The resulting system will be denoted G3cT.
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Theorem 2.11. Herbrand’s theorem: If the sequent = Vxdy,...dyiA,
with A quantifier-free, is derivable in G3cT, then there are terms t;; with
1< n,j <k such that

n

\/ A(th/yla - ’tik/yk)

=1

1s derivable in G3cT.

Proof: Suppose that k£ = 1. The derivation of = Vz3yA ends with

= A(z/z,t/y), yA(z/z)
= dyA(z/x)
= VzdyA

Every sequent in the derivation is of the form
L= A, A2/t fy), - -, A2/t /y), FyA(2/2)

where I'; A consist of subformulas of A(z/z,t;/y), with i« < m, and atomic
formulas.

Consider the topsequents of the derivation. If they are axioms or conclusions
of L1 they remain so after deletion of the formula JyA(z/z). If they are
conclusions of zero-premiss nonlogical rules, they remain so after the deletion
because the right context in these rules is arbitrary. After deletion, every
topsequent in the derivation is of the form

I'= A,A(Z/.’L‘,tm/y), cee ’A(Z/xatm—kl/y)

Making the propositional and nonlogical inferences as before, but without the
formula 3y A(z/z) in the succedent, produces a derivation of

= A(z/z,t1/y),..., Alz/x, tm 1/y), A(z/2, t0/Yy), ..., A(z/x, t,/Y)
and the conclusion follows by applications of rule Rv. O
If the theory T is empty we have

Corollary 2.12. If = dzA s derivable in G3c, there are terms ty,..., 1,
such that = A(t;/x) V...V A(t,/z) is derivable.
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Lecture 3: Proof analysis in the theories of equality, apartness, and
order

The extension of sequent calculi with rules presented in the previous lecture
enjoys all the structural properties of the ground, purely logical, sequent cal-
culus, i.e., the rules of weakening, contraction, and cut are admissible. In ad-
dition to being admissible, weakening and contraction are height-preserving
admissible. The usual consequence of cut elimination, the subformula prop-
erty, holds in a weaker form, because all the formulas in the derivations in
such extensions are subformulas of the endsequent or atomic formulas. How-
ever, by analyzing minimal derivations (defined below) in specific theories, we
can establish a subterm property, by which all terms in a derivation are terms
in the conclusion.

Before continuing, we observe that a derivation in which a rule, read root-
first, produces a duplication of an atom, can be shortened by applying height-
preserving admissibility of contraction in place of the rule that introduces that
atom. This justifies the following definition:

Definition 3.1. Minimal derivations. A minimal derivation is a derivation
in which shortenings through height-preserving admissibility of contraction are
not possible, and sequents that can be concluded by zero-premiss rules appear
only as topsequent.

The subterm property, together with height-preserving admissibility of con-
traction, will give a bound on proof search for the theories under exam: In a
minimal derivation, no new term can appear, nor any instantiations of rules
that produce a duplication of formulas.

3.1. Theory of equality

The theory of equality has one basic relation a = b with the axioms
EQl. a=a,
EQ2. a=b&a=cDb=c

Symmetry of equality follows by substituting a for ¢ in EQ2. Transitivity is
directly an instance of the replacement axiom, with A equal to = = c.

Addition of the rules

a=a,'= A b=c,a=ba=c,I' = A
————————— Ref Trans

'=A a=ba=c,'= A
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gives a calculus G3im+ Ref+ Trans the rules of which follow the rule scheme.
A duplication in Trans is produced in case b is identical to ¢, but the corre-
sponding contracted rule is an instance of rule Ref. The closure condition is
satisfied and the structural rules admissible.

Occurrences of atoms of the form a = a disappear in Ref, however...

Theorem 3.2. Subterm property. All terms in a minimal derivation of
I' = A in G3EQ are terms in the conclusion.

Proof: Consider an atom a = a active in Ref and trace it up along the
derivation. If it is never principal, it can be removed altogether, and Ref as
well, with a subsequent shortening of the derivation. If it is principal in an
axiom, a is found in A. If if is principal in Trans, it has the form

a=c,a=ba=c,I'=A
a=a,a=c,I'=A

Trans

Apply height-preserving contraction to the premiss and get a shorter deriva-
tion. QED

3.2. Theory of apartness

The theory of apartness has one basic relation a # b with the axioms

APl. ~a#a,
AP2. az2bDa+#c V b#c.

The rules are

aztc,azb'=A bzc,a+bl = A
a#b = A

Irref Split

a#a,l = A

Both rules follow the rule scheme, the closure condition does not arise be-
cause there is only one principal formula, and therefore structural rules are
admissible in G3im+ Irref+Split.

Exercise: Prove the subterm property for the theory of apartness. Hint: Re-
place AP2 by

a+b>Db+a,

azbDa#c V c#b,
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and trace up in the derivation the term removed by Split.

Other exercises on extensions and other topics treated in this series of lectures
are available from the web page prooftheory.helsinki.fi

The elementary theories of equality and apartness can also be given in a
single-succedent formulation based on extension of the calculus G3i, as in
Negri (1999).

Corollary 3.3. Disjunction property for the theory of apartness. If
= AVB is derivable in the single-succedent calculus for the theory of apartness,
either = A or = B is derivable.

Proof: Consider the last rule in a derivation. The rules for apartness cannot
conclude a sequent with an empty antecedent and therefore the last rule must
be rule RV of G3i. O

Compare to the treatment of axiom systems as a context: ' = AV B is
derivable in G3i. Whenever I' contains an instance of the “split” axiom it has
a formula with a disjunction in the consequent of an implication. Therefore,
[' does not consist only of Harrop formulas, so the above corollary gives a
proper extension of the disjunction property under hypotheses that are Harrop
formulas. The definition of a Harrop system is recalled below.

3.8. Harrop systems

Definition 3.4 The class of Harrop formulas is defined inductively by the
following clauses:

1. Atoms P,Q,R,..., and L are Harrop formulas,
2. If A and B are Harrop formulas, then A&B s a Harrop formula,

3. If B is a Harrop formula, then A D B is a Harrop formula.

A Harrop theory is a theory the azioms of which consist of Harrop formulas.

A left Harrop system is a system of mathematical rules obtained from the
axioms of a Harrop theory by using the left rule scheme.

The rules of a left Harrop system have at most one premiss, thus the deriva-
tions are linear, and therefore
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Theorem 3.5. If a sequent I' = A 1is derivable in a left Harrop system, then
' = P is derivable for some atom P. If A contains atoms, the atom P can
be chosen from A.

Proof: Consider a derivation D of I' = A. If the topsequent is a logical axiom
P,I" = A' P, with A = A’, P, the succedent can be changed into P. If the
topsequent is a zero-premiss mathematical rule, any atom P can be put as
the succedent and the derivation with the new succedent continued as with
A, O

3.4. Theory of partial order

The axioms of partial order are
PO1. a <a,
PO2. a<b&bgscecDaxe

Equality is defined by a=b = a <b & b < a. (Thus, we are working with
what are sometimes called quasiorderings.) Clearly, the equality defined is an
equivalence relation and satisfies the principle of substitution of equals.

We defined GPO as the system with the rules

a<al =A a<cagsbbge = A

'=A fief a<bbge'= A frans

The closure condition arises when a = b and b = ¢ so the premiss of rule Trans
to consider is
a<ga,a<a,a<al =A

The conclusion follows by rule Ref so that the closure condition is satisfied.
Thus, the rules of weakening, contraction, and cut are admissible in GPO.
Weakening and contraction are admissible and height preserving.

Proof analysis in GPO: There are exactly 2 kinds of derivation. To see
what they are, assume that derivations are minimal (def. 4.1).

If ' = A is derivable, the topsequent has the form P,I" = A’, P with A, P =
A, and we can delete A’ from the topsequent.

The two kinds of derivations are:

1. Reflexivity derivations: P = a < a.
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The conclusion I' = a < a follows in one step from the logical axioma < a,I" =
a < a with one application of rule Ref:

a<a,I'=ax<a
I'=sax<a

Ref

The context I' is superfluous and can be deleted, thus, the conclusion becomes
= a<a.

2. Transitivity derivations: The topsequent is a; < a,,[" = a1 < a,.

The atom a; < a, must be the removed atom in a first step of transitivity or
else the derivation can be shortened: If some other atom P were removed, with
I = P,I'", the derivation could be shortened by starting with a; < a,, [ =
a1 < a, as topsequent.

There cannot be steps of reflexivity in this derivation: The reflexivity atom
would be principal in a step of transitivity, else it could be removed tout court
from the derivation with a subsequent shortening, thus there would be a step

of the form
a<ba<gaaghl =a <a,

a<a,a<bl =a <a,

Trans

By height-preserving admissibility of contraction the conclusion of this step
could be obtained already from the premiss, without using transitivity, in one
step less.

Two atoms a1 < a9, as < a, are activated by the step of Trans removing a; < a,
so that the topsequent is of the form

"
a1 < Gp, 01 < Q2,02 < G, I = a1 < ap

In the second step, one of the activated atoms must become the removed
atom, with two new activated atoms, say as < as, a3 < ay, or else the derivation
can be shortened. The closure of the principal atom a; < a, with respect to
the activation relation gives us a chain a; < ag,as < a3,...ap—1 < Gy in the
topsequent. Deleting the atoms that have not been active in the derivation,
we have a derivation of the form

m
I, a1 < ag,a2 < as,...ap_1 < Ay = a1 < Qg

Trans

- Trans
a1 < 02,02 < A3,...0p-1 < Ap = A1 < Qp

in which I'" consists of the removed atoms a; < ay, . . ..
Sequents I' = A derivable in GPO are derivable as left and right weakenings

of reflexivity and transitivity derivations.
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Proof search for a sequent I' = A is effected by two controls:
Does A contain a reflexivity atom?

Does I' contain a chain from a; to a, with the atom a; < a,, in A?
If so, the sequent I' = A is derivable, otherwise it is underivable.
Nondegenerate partial order is obtained by adding the axiom

PO3. ~1<0

to PO1 and PO2.

The corresponding rule has zero premisses:

1<0,T = A

Derivations remain linear and the theorem on Harrop systems applies.

If the topsequent is an instance of Ndeg, the atom 1 < 0 is removed by Trans (it
cannot be removed by Ref). Steps of Trans hide the inconsistent assumption
1 < 0, with the general form of conclusion

l<a,a<ag,...,0,1<0=0axb

with the chain in the antecedent being the closure of formulas activated by
1 < 0 and a < b in the succedent an arbitrary atom.

Nontrivial partial order has in addition

PO4. 0« 1.

The corresponding rule is

0<1,I'=A
r=A

Ntriv

This rule commutes down with instances of Refand Trans. The only interesting
case is a transitivity derivation with a chain from which atoms 0 < 1 have been
removed by Ntriv.

3.5. Linear order and Szpilrajn’s theorem

The theory of linear order is obtained by adding to partial order the linearity
ariom
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LO. agxbVbga

The corresponding rule is

a<hbl'=A bg<al=A
'=A

Lin

The system of rules for linear order is designated GLO.

Theorem 3.6. Conservativity. If ' = P is derivable in GLO, it is deriv-
able already in GPO.

Proof: Consider a derivation with just one instance of Lin, as the last rule, and
assume the derivation to be minimal. Thus, the premisses of Linc < d,I' = P
and d < ¢,I' = P are derivable in partial order. If P is a reflexivity atom in
either topsequent, I' = P is derivable in one step of Ref. Otherwise, with P =
a < b, there will be two transitive closures of the removed atom a < b in both
derivations of the two premisses of Lin, and let them be a < a1,...0,—1 < b
and a < by,...b,_1 < b. If ¢ < d is not an atom in the first chain, it can be
deleted and a derivation of I' = P in partial order obtained, and similarly for
d < c in the second chain. Thus, we have the two chains

a4 <Ay, ..,0 <CC<dyd <y, Qo1 < b
a<by,....,bj<d,d<ce<bipr,...bp_1 <b
The chain

<A, 50 <CC<bjyr, . b1 < b

appears in the antecedent of the topsequent, thus the sequent

a<a,...,0 <CC<bipr,...op-1 <b=>ax<b

is derivable in partial order. O

The conservativity theorem extends to nondegenerate nontrivial partial order:

Theorem 3.7. If I' = P is derivable in nondegenerate GLO, it is derivable
in nondegenerate nontrivial GPO already.

(Note that a nondegenerate linear order is always nontrivial.)
Extension algorithm:
Definition 3.8. An ordering ¥ is inconsistent if I' = 1 < 0 s derivable for

some finite subset I' of 33, otherwise it is consistent.
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Corollary 3.9. Szpilrajn’s theorem. Given a set X of atoms in a consistent
nondegenerate partial ordering, it can be extended to a consistent nondegener-
ate linear ordering.

Proof: Let a,b be any two elements in ¥ not ordered in . We claim that
either ¥,a < b or X,b < a is consistent in GPO. Let us assume the contrary,
i.e., that there exists a finite subset [' of ¥ such that both I';a < b =1 <0
and [';b < a = 1 < 0 are derivable in GPO. Application of rule Lin gives the
conclusion I' = 1 < 0 in GLO. By the conservativity theorem, I' = 1 < 0 is
already derivable in GPO, contrary to the consistency assumption. Iteration
of the procedure gives the desired extension. 0O

Remark 3.10. Constructive conservativity vs. nonconstructive ex-
tension.

The proof of the conservativity theorem is constructive, and effectivity of the
extension depends on how the set X is given.

We observe a general phenomenon: Classical, nonconstructive set-theoretic
extension results using non-constructive principles like Zorn’s lemma are re-
formulated as constructive proof-theoretical conservativity results. An exam-
ple is the constructive conservativity of linear order over partial order vs.
the classical Szpilrajn theorem. Another example is the pointfree constructive
Hahn-Banach theorem (Cederquist, Coquand, and Negri 1998) vs. the classical
nonconstructive Hahn-Banach theorem.

Decidability of the order relation is often assumed, either explicitly or through
the application of the law of excluded middle. Our approach does not impose
any such requirement and therefore does not rule out a computational ap-
proach to order relations in continuous sets.

The law of excluded middle is avoided by considering extensions of the intu-
itionistic calculus G3im instead of the classical one.

Observe that the intuitionistic rules of implication do not permute down with
mathematical rules if these latter have at least two premisses. In the case of
Harrop theories, such as partial order or lattice theory, logical rules do permute
down and derivations with mathematical rules can be considered in isolation.
The separations of the logical and mathematical parts of derivations holds
with no restrictions if classical propositional logic is used.
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Lecture 4: Geometric theories

So far, we have dealt with proof analysis in universal theories, that is, theories
expressed by purely universal axioms. For some classes of first-order axioms,
the way quantifiers work can be expressed in a logic-free way, suitable for
a treatment as a system with rules. The case of geometric axioms will be
considered here. All the results in this lecture are presented with detailed
proofs in Negri (2003).

Definition 4.1. A formula in the language of first-order logic is called geo-
metric if it does not contain D orV.

A geometric implication is a sentence of the form
VZ(A D B)
in which A and B are geometric formulas.
A geometric theory s a theory axiomatized by geometric implications.

Proposition 4.2. Canonical form for geometric implications: Geomet-
ric implications can be reduced to conjunctions of formulas of the form

in which the P; are atomic formulas, the M; conjunctions of atomic formulas,
and the variables y; are not free in the P;.

The geometric rule scheme that corresponds to geometric axioms has the

form _ _ _ _
Ql(yl/.’lil),P,F:}A Qn(yn/xn),P,FiA
PTl=A
The variables z; are called the replaced variables of the scheme, and the vari-
ables y; the proper variables.

GRS

The geometric rule scheme is subject to the following condition that expresses
in a logic-free way the role of the existential quantifier in a geometric axiom:

Condition. The proper variables must not be free in P,T", A.

4.1. Elimination of structural rules

Definition 4.3 Let T be a geometric theory. Then G3cT (G3imT) is the
Gentzen system obtained by adding to G3c (G3im) the geometric rules cor-
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responding to the geometric axioms of T, together with the rules arising from
the closure condition.

Proposition 4.4. Equivalence of axiomatic systems and rule systems.
A geometric axiom is derivable from the corresponding geometric rules. Con-
versely, a geometric rule is derivable from the corresponding geometric axiom
in G3imT+ Contr+ Clut.

Lemma 4.5. Inversion. All the inversions of the propositional rules that hold
for G3c and G3im hold for also their geometric extension.

Lemma 4.6. Substitution. Given a derivation of ' = A in G3¢cT (G3imT),
with x a free variable in I', A, t a term free for x in I'; A and not containing

any of the variables of the geometric rules in the derivation, we can find a
derivation of I'(t/z) = A(t/z) in G3cT (G3im) with the same height.

Lemma 4.7. Inversion for quantifier rules.

(i) If b, 3zA, T = A and y is not among the variables of the geometric rules
in the derivation, then -, A(y/z),T = A.

(ii) If F, T' = A,Vz A and y is not among the variables of the geometric rules
in the derivation, then F, I' = A, A(y/x).

Without loss of generality, we can assume that the following condition on
variables is satisfied:

Disjointness condition. In a derivation in G3cT (G3imT), the sets of
proper variables of the geometric rules are pairwise disjoint.

Theorem 4.8. The rules of weakening

r=A r=A
AT=A" T=a4a™

are admissible and height preserving in G3cT and in G3imT.

Theorem 4.9. The rules of contraction

A AT = A T'= A A A

AT=A ¢ T=aa™

are admissible and height preserving in G3cT and in G3imT.

Theorem 4.10. The rule of cut

'=AA AT = A
LT = A A

Cut
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18 admissible in G3cT and in G3imT.

4.2. Examples of geometric theories

a. Robinson arithmetic

Language: constant 0, unary successor function s, binary functions + and -,
relation =. Atomic formulas of the form a = b, for arbitrary terms a and b.

A
8
4
o

The classically equivalent axiomatization with & replaced by
. —2x=0Ddyx=s(y)

is not geometric because it has an implication x = 0 D_L in the antecedent of
an implication.

b. Ordered fields

I. Axioms for nondegenerate linear order
l.zgzx
2.2 <yVvVy<zx
.rsy&y<zdDrgz
4. -1 < 0

IT. Axioms for ordered additive group
S.(x+y)+z=x2+ (y+2)
6.x+y=y+x
7.2+0=z
8.dyr+y=0
dz2<yDdDr+z<y+=z

ITI. Axioms for multiplication
10. (z-y)-z2=x-(y-2)

1l.z-y=9y-y

12.z-1=x
13.z=0vVdyz-y=1

4. z-(y+2)=x-y+zx-2
5. 2<y&0<zDr-2<y-2
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The classically equivalent axiomatization with
13.-z=0D>3dyz-y=1
in place of 13 is not geometric.

Real closed fields: Add the axioms that state the existence of square roots
and zeroes of polynomials of odd degree

16.0<zD>dyr=y-y
17. a2n+1:0\/5|ac a2n+1-x2n+1+a2n-:c2”+...a1-:v—i—ao:0

The classically equivalent axiomatization with 17 replaced by
17’. 1 Aop+1 =0>dx Aon+1 -x2"+1+a2n-$2”+...a1 T+ ag = 0

is not geometric.

c. Classical projective geometry with constructions:

Basic concepts: equality of points, equality of lines, and incidence between
points and lines: a=b, [=m, ael. Constructions: connecting line In(a, b),
intersection point pt(l, m).

I. Axioms for equivalence relations
a=a, a=c&b=cDa=>b
l=l, l=n&m=nDl=m
I1. Axioms of incidence
a=bVaeln(a,b), a=bVbeln(a,b)
l=mVpt(l,m)el, l=mVpt(l,m)em
III. Uniqueness axiom
acl&bel&aem&bemDa=bVi=m
IV. Substitution axioms
acl&a=b>Dbel
acl&l=m>Daem
V. Existence of three noncollinear points
dzIyIz(~x =y & ~z eln(x,y))

The above is not a geometric theory. We obtain a geometric axiomatization by
using apartness between points and lines instead of equality as basic notion,
as follows:

d. Constructive projective geometry with constructions:
Basic concepts: a #b, l#m, a¢l. Constructions: In(a,bd), pt(l,m)

I. Axioms for apartness relations
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a=a>D 1, azxbDazxcVb=c
l=lD1, I+#mDl#nVm=n
I1. Axioms of incidence
a+b& ag¢ln(a,b) DL
azb& b¢ln(a,b) DL
l+m & pt(l,m) ¢l D L
l+m & pt(l,m)¢gm D L
ITI. Uniqueness axiom
azb&l+m>Dag¢lVbe¢lVaegmVbegm
IV. Substitution axioms
a¢lDarbVbgl
a¢lDl+mVagm
V. Existence of three noncollinear points
JzIyIz(z £y & z ¢ In(z,y))

4.3. Barr’s theorem

We apply here the method of extension with rules to a general result on
geometric theories. The result states that if a geometric implication is provable
classically in a geometric theory, then it is provable intuitionistically. This
result is proved in topos theory by using a completeness theorem for geometric
theories in Grothendieck topoi and the construction of a suitable Boolean
topos out of a Grothendieck topos (cf. Johnstone 1977, Mac Lane and Moerdijk
1992).

Topos Theory: For any Grothendieck topos E, there is a Boolean topos B
and a geometric morphism v : B — E such that v* is faithful.

In logical terms, the result states the following:

Logic: If a geometric implication is classically derivable in a geometric theory,
then it is intuitionistically derivable.

In Palmgren (2002) the result is proved using the Dragalin-Friedman transla-
tion.

Our statement: Let T be a geometric theory, and let A be a geometric im-
plication. If G3cT F = A, then G3imT + = A.

Qur proof: There is nothing to prove, because a derivation of a geometric
implication in G3cT is indeed a derivation in G3imT. O

Therefore, with our method, the result reduces to a proof-theoretical triviality:
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A classical proof of a geometric implication in a geometric theory formulated
as a sequent system with rules is already an intuitionistic proof. If we add
the requirement that the geometric implication must not contain L in the
antecedent, then the classical proof is even a proof in minimal logic.

Lecture 5: Variations of proof analysis

In the previous lectures, we have performed proof analyses by using the sequent
calculus G3 as a logical calculus and the mathematical rules formulated in the
form of a left rule scheme. The question arises whether we can change the basic
calculus, or the form of the rule scheme, or both. The answer is positive, but
some care is needed to guarantee the admissibility of the structural rules in
the extended calculi. In general, the form of the rule scheme will have to
be in harmony with the basic calculus. If, for instance, we modify the basic
calculus in favour of context-independent rules, the rule scheme will have to
be context-independent as well.

In this lecture we shall illustrate variations of proof analysis with applications
to specific problems.

5.1. The right rule scheme

The left rule scheme for an axiom of the form P& ... &P, D Q1 V...V Q,

Q,P,..,P,,I'=A ... QuhP,.  .,P,I=A
pP,....P,, '=A

has a dual formulation as a right rule scheme:

Fz}Aana"'aQnapl FiAana"'aQnaP’m
= AQ,...,Q,

We have repetition of the atoms (); in the premisses, to obtain admissibility
of right contraction.

As for the left rule scheme, we have the following condition:

Closure condition. If the atoms in a rule have an instance that makes two
atoms in the conclusion identical, the contracted rule has to be added.

Theorem 5.1 The structural rules of left and right weakening and contraction
and the rule of cut are admissible in extensions of G3c and G3im with rules
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following the right rule scheme and satisfying the closure condition.

As an example, we consider the theory of linear order as a system with right
rules. For the details see Negri, von Plato, and Coquand (2004):

Right rules for linear order

Li -————R
T=Aa<bb<a F:>A,a<aef

'=Aa<cagh I'=sAa<ebge
'=Aaxgc

Trans

Term b in rule Trans is called a middle term.

Theorem 5.2 All terms in a minimal derivation of I' = A in the right theory
of linear order are terms in I', A.

Corollary 5.3 The quantifier-free theory of linear order is decidable.

Proof: Application of rule Trans root-first with middle terms chosen from
the conclusion can produce only a bounded number of distinct atoms in the
premisses. Whenever a duplication is produced, proof search fails by the ad-
missibility of contraction. O

5.2 Subterm property through permutation of rules

The extensions of the contraction-free sequent G3 calculi analyzed in the
previous lectures have shown some good properties: height-preserving invert-
ibility of rules, height-preserving admissibility of weakening and contraction,
subterm property for minimal derivations, feasibility of proof search. Proof
analysis, on the other hand, may be difficult in such systems.

Extensions of natural deduction, instead, admit of a more flexible proof anal-
ysis but they are limited to Harrop theories.

We shall show this second approach at work in the example of lattice theory.
For proofs and details we refer to Negri and von Plato (2002).

We consider a system of natural deduction rules for lattice theory with the
meet and join operations:
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ag<b bge
agaRef a<c Trans
c<a cxb
L/\l L/\2 - 7 TN 7
anb < a anb < b c < anb
ag<c bge
RV RV» == = v
a < avb b<avb avb < ¢

Table 3. The system NDLT

Transitivity cannot be eliminated, but it can be reduced to instances in which
the middle term is a subterm of the conclusion. Decidability of the derivability
of an atom from given atomic assumptions then follows.

Definition 5.4. A new term in a derivation tree is a term that is not a term
or a subterm in an assumption or in the conclusion.

Theorem 5.5. Subterm property for NDLT. If an atom is derivable from
atomic assumptions in NDLT, it has a derivation with no new terms.

Proof: Consider a topmost instance of Trans removing a new term b:

A v

algb bg<e
—CLSC Trans (1)

1. First consider the derivation of the left premiss. If a < b concluded by Trans,
permute up the Trans removing b:

a<d dgb
——————  Trans
a<hb bgcTr
a,sc ans ~S
d<b bge
——— Trans
a<d <c.
a<c ans (2)

Note that, by assumption, d is not a new term.

If @ < b concluded by Lv, the term a has a form a = dve and Transis permuted

up as follows:
d<b e va
dve < b bge

dve < ¢

Trans

d

é(ll) b<e, = eg<hb bgc
<c e<c

dve < ¢ (3)

Trans

The permutation of Trans removing b is repeated until a left premiss d’ < b
not derived by Trans or Lv. It can be derived by one of the following rules:
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1.1. Ref: Then d' = b, right premiss of Trans identical to the conclusion so b
not a new term.

Lai: Then d' = bae so b not a new term.
Lng: Then d' = eab so b not a new term.
1.2. Rvy, we have b = d'vb’ and the step

— R\
d < dvt dvb <c

I
d_gc

Trans

a<c (4)
The case of Rv, is similar.
1.3. Ra, we have some terms a’ and d, e such that b = dae and
ad<d d<e
————————RA
a

< dne dne < ¢

a <ec

Trans

a<c (5)
2. Consider the right premiss b < ¢ of (4) and (5). If concluded by rules Trans
or Ra, permute as in (2) and (3).

Rules Rvq, Rvy are excluded dually to the excluded rules Laj, Lay in the left
branch of (1).

This leaves two cases for (4) and also for (5):

2.1. In (4), the right premiss after permutation becomes d'vd’ < ¢’ for some
term ¢

d <c

! ! !
RV b s ¢ LV
d < dvb dvb <
7 7 Trans

d <c
d <c

~

is transformed into
d < c
a<c
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with the transitivity step removed.

2.2
! !
a<d d<e
\/ =~— RA 7 LA
a < dne dre < ¢
] ; Trans
a <c
agc (6)

Now ¢ = d so the derivation is transformed into

with the transitivity step removed. Rule L, is treated similarly. O

Corollary 5.6 Lattice theory is conservative over partial order for universal
formulas.

Corollary 5.7. Decidability of universal formulas. The derivability of
universal formulas in lattice theory is decidable.

Proof. Consider a universal formula in prenex form Vz...VzA with A in
conjunctive normal form. Each conjunct Ay is of the form P &...&P,, D
Q1 V...V Qy, with P;,(Q); atoms. The lattice axioms have no disjunctions in
positive parts and therefore (by Harrop’s theorem, see, e.g., Negri and von
Plato 2001) Ay is derivable if and only if P& ... &P, D Q; is derivable for
some j. Apply theorem 5.5 to each of the ;. O

A proof-theoretic treatment of relational lattice theory, with existential axioms
in place of the meet and join operation, is presented in Negri and von Plato
(2004).

5.8. A multisuccedent generalization

The limitation of proof analysis in natural deduction to Harrop theories can
be overcome by considering extensions of a sequent calculus that allows per-
mutability of rules while relaxing the single-succedent limitation. Consider the
following sequent calculus with independent contexts:
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Logical axiom:
A=A

Logical rules:

ABT=A I'sAA I"'=>AB
A&B,T = A" T = A A, A&B
AT = A B,F’:>A’LV '=AAB
AVB,I,I' = A, A T=AAVB™
'=AA BI'= A AT =AB

ASBTI'=>AAN T~ T=AASB®

L:CM

Rules of weakening:

= A = A
AT= A" T=AA™
Rules of contraction:

AAT = A '=AAA

AT=A ¢ T=AA

Table 4. The sequent calculus GOcp

The calculus GOcp has the following properties: All the logical rules are in-
vertible, but invertibility is not height preserving. For precise statements and
proofs see Lemma 5.1.3 in Negri and von Plato (2001). The rule of cut,

'=sA,D DI'= A
0L = A A

Cut

is admissible in GOc (Theorem 5.1.4 ibidem).
For a proof, see Negri and von Plato 2001, Chapter 5.

Extensions of GOcp with rules following the right rule scheme

F1:>A1,P1 Fm:>AmaPm RRS
Fla"'armjAla-"aAm:Qla"':Qn

that corresponds to axioms of the form
P&...P,DQ@Q1V...VQ,

will be denoted by GOc* .
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Observe that the atoms @1, ..., Q, need not be repeated in the premisses (as
in section 5.1) because the calculus has explicit contraction.

Theorem 5.8.
Admissibility of cut holds in GOc*.

In GOc*, the logical and structural rules permute down with respect to the right
rule scheme, and therefore it suffices in proof analysis to consider derivations
of sequents with only atomic formulas.

The weak subformula property holds.

Observe that, in some cases, permutation of logical rules down the mathemat-
ical rules produces multiplications of steps of inference. For instance, it the
rule scheme is preceded by right contraction on its active formula P;

P1:>A1’P1’P1RC '
ontr
F1:>A1,P1 F2:>A2,P2 FmiAm’PmRRS
Fla"'arm:Ala-"aAmana"'aQn
we permute as follows:
'y = A1,P1,P1 T's = Ag,Py ... Iy = Apm, Py
T, T = 80, Am PLGL 0 @n B 00 a0 Py . T = A, Pam .
T'1,T2,T2,...,I'm,I'm = A1, A2,A2,...,Am,Am,Q1,Q1,...,Qn,Qn c "
T1,T2.. . Tm = A1, B2, Am, Q1, -, @n ontr

where Contr* denotes repeated steps of left and right contractions.
Sequent calculi with independent contexts are closer to natural deduction, but

allow extension to non-Harrop theories. An example is the theory of linear
lattices (Negri 2003a).

5.4. Theory of linear lattices

The theory of linear lattices has a binary partial order relation a < b, and
equality is defined by

a=>b

a<b&bga.
The axioms of linear lattices are
a<a, Ref, a<b&bg<ecdaxge, Trans, a<bVbga, Lin,

anb < a (Lny), anb < b (Lag), c<a&cecgbDeganh (RA),
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a<avb (Rvy), b<avb (Rvsy), agc&bgeDdavbge (Lv).

The principle of substitution of equals in the lattice operations can be proved,
because equality is defined through the partial order relation.

As observed already, the theory of linear lattices is not a Harrop theory be-
cause of the linearity axiom Lin. Therefore it cannot be treated as a system
with rules in the same fashion as the theory of lattices. In order to cover
non-Harrop theories one would need a multi-conclusion system of natural de-
duction, however, natural deduction is inherently a single-conclusion system.
Multi-conclusion rules and derivations cannot be written as two-dimensional
trees, but the difficulty can be circumvented by using sequent systems.

For linear lattices, we distinguish between ground terms p, q,r, ... that contain
no meet or join operations, and arbitrary terms a, b, c, .. ..

The (right) rules for our calculus for linear lattices are the following:

F1:>A1,a<b F2:>A2,b<0

- : Tn
Sp<p? Sp<qga<pim I,Ty = A, Aja<c .
I''=A,c<a TI'y=Aqcxb
LAy — LAy RA
= anb < a = anb < b I',Ty = A1, Aq,c < anb
I'n=A,a<ec Thy= Ay, bgec
— RV ——— RV, LV
=a<avbh =bgavb ', o= A, Ag,avb < ¢

Table 5. Rule system for linear lattices

In the rules, the formulas in I, A are part of the contexrt. The atoms in the
premisses which are not in the context are called active, those in the conclusion
are called principal. Derivations start with initial sequents of the form a < b =
a < b and with instances of the zero-premiss rules. Of these rules, Ref and Lin
are restricted to ground terms. It is seen that all multisuccedent sequents in
derivations stem from instances of rule Lin.

Term b in rule Trans is a middle term. An inspection of the rules shows that
middle terms in Trans are the only terms in premisses that need not be also
terms in a conclusion. Because of permutability of logical rules past the math-
ematical rules observed above, we can consider derivations of sequents with
only atomic formulas in antecedents and succedents.

The rules above give a complete system for the theory of linear lattices because
we have:

Lemma 5.9. For arbitrary terms a and b the sequents = a < a and =
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a < b,b < a are derivable in the rule system for linear lattices, that is reflexivity
and linearity are derivable for arbitrary terms.

Proof: By induction on the length of the terms a, b. For ground terms the
sequents are zero-premiss rules of the system, thus derivable. For a compound
term a, for instance a = ajaas, reflexivity follows from the meet rules: La;
and Lnas give ajnras < a1 and ajnas < ao, and from these, by Ra, we obtain
a1nag < a1nag. If @ is a join, the proof uses instead the rules for join.

For linearity, we have to analyze the form of a and b. If @ and b are not both
ground terms, there are 8 cases, reduced to 5 by symmetry. In all such cases,
linearity is reduced to linearity on the components that is derivable by the
inductive hypothesis. For instance, in the case a = aiaaq, b = byvby, linearity
on a, b is derived by applying Ra to the sequents = ajaay < byvby, bivby < ay
and = ajnay < byvby, byvby < as. The former is derived by Lv from

. Lin
ainag < ap ™M ay < by, by < a
rans

——— RV
a1AG2 < b1>b1 < a1 b1 < bivby
Trans
ainay < bivba, by < ag

and

- Lin
ainag < ap ™M ay < by, by < ay -
ns

————— RV»
ainay < by, by < ay by < bivby
Trans
ainay < bivbo, by < as

The latter is derived in a similar way. O

The definition of new terms (def. 5.4) is here extended to the more general
setting of derivations with cases:

Definition 5.10. A new term in a derivation of a sequent I' = A is a term
that is not a term or a subterm in I', A.

Theorem 5.11. Subterm property. If a sequent is derivable in the theory
of linear lattices, it has a derivation with no new terms.

Before proving the theorem, we need preliminary notions for defining a suit-
able weight that indicates the presence of new terms and their depth in the
derivation. The theorem will be proved by giving transformations that reduce
such weight, until it becomes zero, with the removal of all new terms from the
derivation.

Terms are ordered lexicographically. Given any two terms a and b, either a
precedes b in the ordering, or b precedes a or a and b are syntactically identical.

Given a derivation D, consider all the occurrences of a new term which is max-
imal in the lexicographic ordering among the new terms of the derivation, and
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among such occurrences, consider those which are downmost in the derivation,
that is, not followed along a branch by other occurrences of the same term.
Downmost occurrences of maximal new terms appear in steps of transitivity
removing them from the derivation. Each branch of the derivation contains
at most one such downmost maximal new term occurrence. Branches B; in a
derivation are assigned weight zero if they do not contain such a term, else
they have as weight w(B;) the length of their segment measured from the leaf
down to the last occurrence of the term. The weight of the derivation is given
by the multiset of the weights of its branches By, ..., B,

w(D) = (w(By),...,w(B,))

Weights of derivations are multisets on natural numbers ordered as follows:
We put

(ny,y...,ng) < {mq,...,mp)
if either maz®_n; < max?_,m; or maz®_,n; = maz?_,m; and the number of
n; equal to the maximumm is less than the number of m; equal to the maximum.

This ordering is well founded and it is equivalent to the widely used Dershowitz-
Manna multiset ordering.

Proof of Theorem 5.10: We show how to transform derivations so that the
weight of the derivation in the multiset ordering gets reduced.

Consider a step of transitivity removing a downmost maximal new term b:

P1:>A1,agb P2:>A.2,b<CTm
Fl,rg = Al,AQ,U/ <cC " (7)

Consider the derivations D;, Dy of the premisses of Trans.

If the atoms a < b and b < ¢ are not themselves principal in the last rules of
D: or D,, they are found in the premisses of that rule, and transitivity can
be permuted above the rule. For example, if the last rule of Dy is Trans with
a < b not principal in it and middle term e different from b, we have, with
=14, A=A, A,

I, = A,,agbdge F12=>A12,e<fT
I'=A,a<bd<f e 'y = Ag,bge

Trans
F15F2:>A1aA25a < C,d< f
We permute as follows
Fll =>A11,G, < b,ds e I :>A2,b <cC
Trans
Fll,F2:>A11,A2,a<c,d<e F12:>A12,6<f
Trans

1_‘171_‘2 :>A17A25a < cad< f
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Observe that the height of the left premiss of Trans removing b is shortened,
so that one of the non-zero branches of the derivation has weight reduced by
the transformation.

If the middle term e is identical to b we have a block of two consecutive
transitivities with middle term b, and we do nothing.

If the last rule of D; is Trans with a < b principal, we have

Fll :>A11,U, < d Flz :>A12,d< bT
I'=Aq,a<b o I'y= Ay, b<ec
FI:FQ :>A1:A2aa< c

Trans

Observe a subtlety here (which explains why we have chosen the lexicographic
ordering on terms): since b is the downmost maximal new term occurrence, d
is smaller or equal than b in the lexicographic ordering. In case d is strictly
smaller, the transformed derivation is

F12:>A12,d<b F2:>A2,b<c
F11:>A11,a<d F12,P2:>A12,A2,d<0
FI’FQ = AI’AQ’G <C frans (8)

Trans

and the weight is reduced. Else d is identical to b, thus the original derivation
has the form

Fll :>A11,a <b Flz :>A12,b < bT
F1:>A1,a<b e F2:>A2,b<6
PlaPQjAlaA27a’ <C

Trans

and the transformed derivation with reduced weight is

F11:>A11,a<b F2:>A2,b<0
F117F2 = A117A27a/ <C
FI,FQ = AlaAQaa’ <C

Trans

Weak*

Observe that the original endsequent is restored by steps of weakening.

A similar permutation is performed in case the right premiss of transitivity is
derived by another transitivity.

If a < b has been concluded by Lv, the term a has a form a = dve and the
derivation

Fll :>A11,d< b F12 éAb,e < bL
F1=>A1,dve<b v F2=>A2,bgc
Fl,FQ :>A1,A2,dve <cC

Trans
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is transformed as follows, with Trans permuted up to the two premisses of Lv

Iy, =A,,d<b Te=Agbgc I, =A,,e<b To=Aybgec
Trans Trans

Fll,P2:>A11,A2,dgc P12,F2:>A12,A2,6§C
F17F2ar2 = AlaA27A27dV6 <C

Lv

A similar permutation is performed if the right premiss of Trans is derived by
RA. Observe that the permutation of Trans over Lv and Ra produces dupli-
cations in the contexts.

If b = byvby and the premisses of Trans are derived by Rvy; and Lv, the
derivation

Rv F1:>A'1,b1$0 F2:>A'2,b2$0
= by < byvby ' Fl,FQ = Al,AQ, bivby < ¢
P17P2 = A17A27b1 <C

Lv

Trans

is transformed into

F1:>A1,b1 <c

with the maximal new term occurrence b;vby removed and thus the weight of
the derivation reduced.

Next we permute blocks of transitivities with middle term b with iterated
conversions of the kind exemplified so far by analyzing the premisses of the
rules applied above the topmost transitivities of each block.

Eventually we reach a point in which we have a derivation starting with initial
sequents or zero-premiss rules immediately followed by a block of transitivities
with middle term b.

The term containing b must be principal in the initial sequents or zero-premiss
rules, else we can simplify the derivation because the conclusion of the first
rule below them would be again an initial sequents or a zero-premiss rule. We
can similarly rule out the possibility of one initial sequent above Trans being
derived by Ref: the conclusion if Trans would be identical to the other premiss.

If one premiss of the block is an initial sequent, then b would be a term in
the antecedent of the conclusion, contrary to the assumption of b being a new
term.

If it is a zero-premiss lattice rule, then we would have the atoms bac < b or
b < bvf. Since b is a maximal new term, then bac, bvf are not new term, but
then their subterm b is not a new term either.

We are thus left with the possibility that b is a ground term ¢ in a linearity
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axiom = p < ¢,q < p. Then there is a second occurrence of term ¢ in g < p
that has to disappear from the derivation. Since ¢ is a maximal new term,
q < p is active in an instance of transitivity, not in a lattice rule or else ¢
would be subterm of another new term. But this would lead to an infinite
derivation. O
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