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ABSTRACT. A general method for generating contraction- and cut-free sequent calculi
for a large family of normal modal logics is presented. The method covers all modal logics
characterized by Kripke frames determined by universal or geometric properties and it can
be extended to treat also Gödel–Löb provability logic. The calculi provide direct decision
methods through terminating proof search. Syntactic proofs of modal undefinability results
are obtained in the form of conservativity theorems.

1. INTRODUCTION

The possibility of a systematic development of a proof theory of modal
logic in terms of Gentzen sequent calculus has been looked at with overall
skepticism. The question has been stepped over very often in the literature
by choosing Hilbert type proof systems.

The difficulties in finding cut-free sequent systems are encountered al-
ready for quite simple modal systems such as S5. Partial solutions have
been proposed by relaxing on the usual requirements on sequent formula-
tions, such as the subformula property (in Mints, 1968) or locality of the
rules (in Braüner, 2000). An indirect solution, characterizing S5 derivabil-
ity of A as derivability of �A in a system without cut, was given in Shvarts
(1989).

Standard sequent systems for modal logic typically fail to be modular
and do not satisfy most of the properties usually demanded on sequent
calculus (as observed in Wansing, 2002). These shortcomings have led to
look for generalizations of standard sequent systems, such as higher-level
sequents, hypersequents, and display logic (cf. the above-cited survey).

In recent years an approach based on the internalization of the Kripke
semantics of modal logic into its inference systems has gained prominence.
This idea, with precursors as far as in Kanger (1957), has taken several
forms. The accessibility relation of Kripke frames has, either implicitly
or explicitly, become part of the syntax in tableau systems (Fitting, 1983;
Catach, 1991; Nerode, 1991; Goré, 1998), in natural deduction (Simpson,
1994; Basin, Matthews, and Viganò, 1998), in sequent calculus (Mints,
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1997; Viganò, 2000; Kushida and Okada, 2003), in first-order encodings
of modal logic (Ohlbach, 1993), and in hybrid logic (Blackburn, 2000).

In this work, we present a method for generating sequent calculi with
excellent structural properties, with the accessibility relation as part of the
syntax, for a large family of modal logics, including Gödel–Löb provabil-
ity logic.

The modal systems we present are obtained by extending a basic modal
sequent system with rules for the accessibility relation. The method is
founded on a general result (Negri and von Plato, 1998) by which it is
possible to extend contraction-free sequent calculi with rules for math-
ematical axioms in such a way that the resulting system maintains the
good structural properties of the basic, purely logical, system. The method
encompasses all universal axioms and is extended to cover also what are
known as geometric implications (Negri, 2003).

Our calculi carefully avoid any use of context-dependent rules that usu-
ally make cut elimination problematic and impair modularity. The rule of
necessitation need not be imposed but is shown admissible.

Validity of the structural properties, invertibility of all the rules, ad-
missibility of substitution, contraction, and cut, are proved following the
standard methods as for the G3 sequent calculi (cf. Troelstra and Schwicht-
enberg, 2000; Negri and von Plato, 2001). We establish cut elimination in
a direct way through an algorithm of proof transformation, whereas other
approaches obtain only the weaker property of closure with respect to cut
as a consequence of semantical completeness.

The modal logic of provability, also called Gödel–Löb provability logic
(GL), is characterized by the frame condition that the accessibility relation
is transitive and has no infinite chains. The latter is not a first-order prop-
erty, and therefore the method of extensions with rules for the accessibility
relation cannot be applied. We can, nevertheless, extend to GL all our
results on sequent calculi with internalized Kripke semantics by a simple,
semantically justified, modification of the rules for the necessity operator
in the basic modal calculus. In this way we solve the long-standing open
problem of finding a contraction- and cut-free sequent calculus for GL.

Our calculi, although not satisfying a full subformula property, enjoy a
subterm property: all terms in minimal derivations are terms found in the
endsequent. This property, together with height-preserving admissibility
of contraction, makes our calculi suitable for proof search. In particular,
decidability properties get established in the strong form of an effective
bound on proof search.

In the final section, we show that a relation of equality can be added to
the frame properties along with suitable replacement rules (following the
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TABLE I

The sequent calculus G3c.

Initial sequents:
P, � ⇒ �, P

Logical rules:

A, B, � ⇒ �

A&B, � ⇒ �
L&

� ⇒ �, A � ⇒ �, B

� ⇒ �, A&B
R&

A, � ⇒ � B, � ⇒ �

A ∨ B, � ⇒ �
L∨

� ⇒ �, A, B

� ⇒ �, A ∨ B
R∨

� ⇒ �, A B, � ⇒ �

A ⊃ B, � ⇒ �
L⊃

A, � ⇒ �, B

� ⇒ �, A ⊃ B
R⊃

⊥, � ⇒ �
L⊥

A(t/x), ∀xA, � ⇒ �

∀xA, � ⇒ �
L∀

� ⇒ �, A(y/x)

� ⇒ �, ∀xA
R∀

A(y/x), � ⇒ �

∃xA, � ⇒ �
L∃

� ⇒ �, ∃xA, A(t/x)

� ⇒ �, ∃xA
R∃

treatment of equality in Negri and von Plato, 2001) while maintaining the
structural properties of the resulting systems.

We conclude with an alternative approach to proofs of negative results
in correspondence theory (Van Benthem, 1984; Blackburn, Rijke, and Ven-
ema, 2001). The lack of modal correspondents to certain frame properties,
usually proved by not so straightforward model extension methods, is here
an immediate consequence of a conservativity theorem.

2. PRELIMINARIES

We recall here the basic results on the method for generating extensions
of sequent calculi with rules for axiomatic theories while preserving all
the structural properties of the logical calculus. For historical background,
proofs, and further details, the reader is referred to Negri and von Plato
(1998, 2001) and Negri (2003).

The sequent calculus we shall be using here is the contraction- and
cut-free sequent calculus G3c.



510 SARA NEGRI

The structural rules of weakening, contraction, and cut are formulated
as follows:

� ⇒ �

A, � ⇒ �
LW

� ⇒ �

� ⇒ �, A
RW

A, A, � ⇒ �

A, � ⇒ �
LC

� ⇒ �, A, A

� ⇒ �, A
RC

� ⇒ �, A A, �′ ⇒ �′

�, �′ ⇒ �, �′ Cut

The system G3c has the remarkable structural properties that all its
rules are invertible and all the structural rules are admissible. We recall
that a rule is admissible in a given system if, whenever its premisses are
derivable, then also its conclusion is derivable. Weakening and contraction
are height-preserving admissible, that is, whenever their premiss is deriv-
able with height bounded by n, also the conclusion is derivable, with the
same bound on the derivation height (recall that the height of a derivation
is its height as a tree, that is, the length of its longest branch). Moreover,
the calculus enjoys height-preserving admissibility of substitution. Also
invertibility of the rules of G3c is height-preserving. For a proof of these
properties cf. Chapters 3 and 4 of Negri and von Plato (2001)

It was proved in Negri and von Plato (1998) that these remarkable
structural properties of G3c are maintained in extensions of the logical
calculus with suitably formulated mathematical rules representing axioms
for specific theories. Universal axioms are first transformed, through the
rules of G3c, into conjunctive normal form, that is conjunctions of formu-
las of the form P1& · · · &Pm ⊃ Q1 ∨ · · · ∨ Qn, where the consequent is
⊥ if n = 0. Each conjunct is then converted into a rule, called regular rule
scheme, of the form

Q1, � ⇒ � . . . Qn, � ⇒ �

P1, . . . , Pm, � ⇒ �
Reg

Two more details need to be added: (1) The formulas P1, . . . , Pm in the
antecedent of the conclusion of the scheme above have to be repeated in
the antecedent of each of the premisses. (2) It can happen that instantiation
of free parameters in atoms produces a duplication (two identical atoms
in the conclusion of a rule instance), say P1, . . . , P , P, . . . , Pm, � ⇒ �.
Then, by (1) each premiss has the duplication. We now require that the
rule with the duplication P, P contracted into a single P is added to the
system of rules (closure condition). For each axiom system, there is only
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a bounded number of possible cases of contracted rules to be added, very
often none at all.

We have:

THEOREM 2.1. The structural rules are admissible in extensions of G3c
following the rule-scheme and satisfying the closure condition. Weakening
and contraction are height-preserving admissible.

By this method, all universal theories can be formulated as contraction
and cut-free systems of sequent calculi. Examples and applications can be
found in Chapter 6 of Negri and von Plato (2001).

Recently (Negri, 2003), the method has been extended to cover also
geometric theories, that is, theories axiomatized by geometric implica-
tions.

We recall that a geometric formula is a formula not containing ⊃ or ∀
and a geometric implication is a sentence of the form

∀z(A ⊃ B)

where A and B are geometric formulas. Geometric implications can be
reduced to a normal form consisting of conjunctions of formulas, called
geometric axioms, of the form

∀z(P1& · · · &Pm ⊃ ∃x(M1 ∨ · · · ∨ Mn))

where Mj is the conjunction of the atomic formulas Qj1, . . . , Qjkj
. For

simplicity we only deal with the case where the sequence x of bound
variables has length 1, and distribute the existential quantifier over the
disjunctions, as in ∃x1M1 ∨ · · · ∨ ∃xnMn.

The left rule scheme for geometric axioms takes the form

Q1(y1/x1), P , � ⇒ � . . . Qn(yn/xn), P , � ⇒ �

P, � ⇒ �
GRS

where Qj and P indicate the multisets of atomic formulas Qj1, . . . , Qjkj

and P1, . . . , Pm, respectively, and the eigenvariables y1, . . . , yn of the pre-
misses satisfy the condition of not having free occurrences in the conclu-
sion of the scheme.

As in the rule scheme for universal axioms, the repetition of the prin-
cipal atom in the premisses and satisfaction of the closure condition are
required in order to satisfy height-preserving admissibility of contraction.

We recall from Negri (2003, Theorems 2, 4, 5):
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TABLE II

The system G3K.

Initial sequents:
x : P,� ⇒ �, x : P xRy, � ⇒ �, xRy

Propositional rules:

x : A, x : B,� ⇒ �

x : A&B,� ⇒ �
L&

� ⇒ �, x : A � ⇒ �, x : B

� ⇒ �, x : A&B
R&

x : A,� ⇒ � x : B,� ⇒ �

x : A ∨ B,� ⇒ �
L∨ � ⇒ �, x : A, x : B

� ⇒ �, x : A ∨ B
R∨

� ⇒ �, x : A x : B,� ⇒ �

x : A ⊃ B,� ⇒ �
L⊃ x : A,� ⇒ �, x : B

� ⇒ �, x : A ⊃ B
R⊃

x :⊥, � ⇒ �
L⊥

Modal rules:

y : A, x : �A, xRy, � ⇒ �

x : �A, xRy, � ⇒ �
L� xRy, � ⇒ �, y : A

� ⇒ �, x : �A
R�

xRy, y : A,� ⇒ �

x : �A,� ⇒ �
L� xRy, � ⇒ �, x : �A, y : A

xRy, � ⇒ �, x : �A
R�

Rules R� and L� have the condition that y is not in the conclusion.

THEOREM 2.2. The structural rules are admissible in extensions of G3c
following the geometric rule-scheme and satisfying the closure condition.
Weakening and contraction are height-preserving admissible.

3. SEQUENT CALCULI FOR MODAL LOGIC

In this section we shall present a G3-style system for the basic modal logic
K and a general method for extending the system to cover a wide range
of modal logics: These are all the modal logics characterized by frame
properties expressible by means of universal axioms, and more generally
by means of geometric implications. Admissibility of the structural rules
will be proved in a uniform way for all such systems.

The method for generating the basic sequent calculus and its extensions
is based on the internalization of the Kripke semantics. The rules for the
modal operators of necessity and possibility are obtained directly from
their semantical explanation in terms of Kripke frames.
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Instead of the forcing relation x � A of Kripke models, we have an
internal relation written x : A. The accessibility relation is denoted as
usual by R. In our calculus, sequents are expressions of the form � ⇒ �

where � and � are multisets of relational atoms xRy and labelled formulas
x : A, with x, y ranging in a set W and with A any formula in the language
of propositional logic extended with the modal operators of necessity and
possibility, � and �. Relational atoms will sometimes be simply called
atoms, and labels will also be called worlds, variables, or prefixes.

The systems of sequent calculi for the modal logics that will be con-
sidered are all obtained as extensions of the basic sequent calculus for the
modal logic K.

In the first initial sequent, P is an arbitrary atomic formula. Observe
that no rule removes an atom of the form xRy from the right-hand side of
sequents, and such atoms are never active in the logical rules. Moreover,
the modal axioms corresponding to the properties of the accessibility rela-
tion are derived from their rule presentations alone. As a consequence, ini-
tial sequents of the form xRy, � ⇒ �, xRy are needed only for deriving
properties of the accessibility relation, namely, the axioms corresponding
to the rules for R given below. Thus such initial sequents can as well be
left out from the calculus without impairing completeness of the system.

All the rules of the calculus are obtained from the inductive definition
of validity in a Kripke frame. For the propositional part this is straightfor-
ward. From the semantical explanation of the modality �,

x � �A iff for all y, xRy implies y � A

we arrive at the rule: If y : A can be derived for an arbitrary y accessible
from x, then x : �A can be derived. In the presence of contexts, this
gives rule R� above, in which the arbitrariness of y is expressed by the
variable condition that y is not (free) in �, �. This restriction is identical
to the variable restriction in rule R∀ of first-order sequent calculi. Rule
L� expresses the other side of the equivalence, namely that if x : �A

and y is accessible from x, then y : A. The principal formula x : �A is
repeated in the premiss of the rule in order to make the rule invertible. This
is analogous to the repetition of ∀xA in the premiss of rule L∀ in G3c.

The rules for � are obtained similarly from the semantical explanation

x � �A iff for some y, xRy and y � A

The left to right direction gives the rule L�. The converse direction gives
the two-premiss rule

� ⇒ �, xRy � ⇒ �, y : A

� ⇒ �, x : �A
R�
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TABLE III

Modal logics, axioms, and frame properties.

Name Axiom Frame property

T �A ⊃ A ∀xxRx reflexivity

4 �A ⊃ ��A ∀xyz(xRy&yRz ⊃ xRz) transitivity

5 �A ⊃ ��A ∀xyz(xRy&xRz ⊃ yRz) euclideanness

B A ⊃ ��A ∀xy(xRy ⊃ yRx) symmetry

3 �(�A ⊃ B) ∨ �(�B ⊃ A) ∀xyz(xRy&xRz ⊃ yRz ∨ zRy) connectedness

D �A ⊃ �A ∀x∃yxRy seriality

2 ��A ⊃ ��A ∀xyz(xRy&xRz ⊃ ∃w(yRw&zRw)) directedness

W �(�A ⊃ A) ⊃ �A no infinite R-chains + transitivity

which is turned into the equivalent one-premiss rule

xRy, � ⇒ �, x : �A, y : A

xRy, � ⇒ �, x : �A
R�

Dually to the rules for �, the left rule for � has the variable restriction
that y must not occur in the conclusion, and the right rule has the repetition
of the principal formula in the premiss, as in rule R∃ of G3c.

The modal logic K is characterized by arbitrary frames. Correspond-
ingly, there are no rules for the accessibility relation. The sequent cal-
culi for the modal logics T, K4, KB, S4, B, S5 are obtained by adding
to G3K the rules expressing the properties of the accessibility relation
characterizing their frames. The rules for the accessibility relation, given
below, are in the form of “mathematical rules” and follow the regular rule
scheme described in Negri and von Plato (1998, 2001) and recalled in
Section 2.

Before presenting the rules, we give a table of some well-known modal
logics with their characteristic axioms and frame properties.

The standard logics that can be obtained by the addition of any of the
above axioms to K are usually denoted by K followed by the axioms’
identifiers, but alternative nomenclatures are found in the literature, for
instance T for KT, S4 for KT4, S5 for KT4B or equivalently KT45, Deontic
T for KD, Deontic S5 for KD45, Brouwer system for KTB, . . . . Axiom 3
is known as Geach’s axiom.

Observe that the frame properties in the first group (T, 4, 5, B, 3)
are universal axioms, and those in the second group geometric implica-
tions, whereas the last one is not expressible as a first-order property.
Our method for obtaining cut- and contraction-free sequent calculi will
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directly cover any modal logic with a Kripke frame characterized by uni-
versal axioms or geometric implications, but we shall see in Section 5
how the method can be extended to cover also the case of provability
logic.

In order to illustrate the method, we focus first on the modal logics of
the first group. By transforming axioms into rules, we obtain the following
sequent calculus rules for R:

xRx, � ⇒ �

� ⇒ �
Ref

xRz, xRy, yRz, � ⇒ �

xRy, yRz, � ⇒ �
Trans

yRx, xRy, � ⇒ �

xRy, � ⇒ �
Sym

yRz, xRy, xRz, � ⇒ �

xRy, xRz, � ⇒ �
Eucl

The corresponding Gentzen systems are obtained by adding combina-
tions of the above rules to the basic modal sequent system G3K. Among
the systems obtained are

G3T = G3K + Ref
G3K4 = G3K + Trans
G3KB = G3K + Sym
G3S4 = G3K + Ref + Trans
G3TB = G3K + Ref + Sym
G3S5 = G3K + Ref + Trans + Sym

Seriality is converted into a rule following the general pattern of the
geometric rule scheme

xRy, � ⇒ �

� ⇒ �
Ser

with the variable condition y /∈ �, �.
Directedness can be converted into the rule

yRu, zRu, xRy, xRz, � ⇒ �

xRy, xRz, � ⇒ �
Dir

with the condition that u is not in the conclusion.
Thus, a Gentzen system for Deontic logic is obtained by adding rule Ser

to G3K. Similarly, a Gentzen system for the extension of K with axiom 2
is obtained with the addition of the rule Dir.

In analogy with the notation used in Negri von Plato (1998, 2001) for
extensions of G3c with rules, we shall denote with G3K* any extension of
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G3K with rules following the regular rule scheme or, more generally, the
geometric rule scheme.

4. ADMISSIBILITY OF THE STRUCTURAL RULES

In this section we shall prove that all the structural rules – weakening, con-
traction, and cut – are admissible in the system G3K and all its extensions
with rules for the accessibility relation R. We shall also prove that the
characteristic axioms are derivable in each of the systems considered and
that the necessitation rule is admissible, so that our systems are complete.

Some features of the calculi will be highlighted that will be crucial for
proving decidability in Section 6. These features are the invertibility of all
the rules and the height-preserving admissibility of contraction.

LEMMA 4.1. Sequents of the form x : A, � ⇒ �, x : A, with A an
arbitrary modal formula, are derivable in G3K*.

Proof. By induction on A. �
LEMMA 4.2. For arbitrary A and B, the sequent

⇒ x : �(A ⊃ B) ⊃ (�A ⊃ �B)

is derivable in G3K*.
Proof. Apply root-first the rules of G3K and Lemma 4.1. �

In order to prove that the necessitation rule of the basic modal system K is
admissible, we first need a substitution lemma. Although we are consider-
ing a propositional system, the use of possible worlds as explicit elements
of the syntax creates a strong analogy to first-order logic. The substitution
lemma is similar, both in the statement and in the proof, to the substitution
lemma of the classical predicate calculus (Lemma 4.1.2 in Negri and von
Plato, 2001).

We define substitution in the obvious way as follows:

xRy(z/w) ≡ xRy if w 
= x and w 
= y

xRy(z/x) ≡ zRy if x 
= y

xRy(z/y) ≡ xRz if x 
= y

xRx(z/x) ≡ zRz

x : A(z/y) ≡ x : A if y 
= x

x : A(z/x) ≡ z : A

and extend the definition to multisets componentwise. We then have:
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LEMMA 4.3. If � ⇒ � is derivable in G3K*, then �(y/x) ⇒ �(y/x)

is also derivable, with the same derivation height.
Proof. By induction on the height n of the derivation of � ⇒ �.
If n = 0, and (y/x) is not a vacuous substitution, the sequent can

either be an initial sequent of the form x : P, �′ ⇒ �′, x : P or of
the form xRy, �′ ⇒ �′, xRy, or a conclusion of L⊥, ⊥, �′ ⇒ �. In each
case �(y/x) ⇒ �(y/x) is either an initial sequent of the same form or a
conclusion of L⊥.

Suppose n > 0, and consider the last rule applied in the derivation. If
it is a propositional rule, apply the inductive hypothesis to the premiss(es)
of the rule, and then the rule. Proceed similarly if the last rule is a modal
rule without variable condition, i.e., L� or R�. If the last rule is a modal
rule with variable condition, observe that either the substitution is vacuous
or x is not an eigenvariable of the rule. If the first case, the result of the
substitution is identical to � ⇒ � and there is nothing to prove. In the
second case, assume that neither y is an eigenvariable. We have, in case
the last rule is R� and x : �A appears as principal, a derivation ending
with

...
xRz, � ⇒ �′, z : A

� ⇒ �′, x : �A
R�

where z 
= x and z is not in �, �. By applying the inductive hypothesis to
the shorter derivation of the premiss, and R�, we obtain the derivation in
n steps

...
yRz, �(y/x) ⇒ �′(y/x), z : A

�(y/x) ⇒ �′(y/x), y : �A
R�

If y is the eigenvariable, the derivation ends with

...
xRy, � ⇒ �′, y : A

� ⇒ �′, x : �A
R�

We first apply the inductive hypothesis in order to replace the eigenvariable
y with a fresh variable w. By the variable condition the substitution does
not affect � or �′, and we obtain a derivation of height n − 1 of

xRw, � ⇒ �′, w : A
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then we apply the inductive hypothesis to substitute x with y and conclude
with R� in n steps

...
yRw, �(y/x) ⇒ �′(y/x), w : A

�(y/x) ⇒ �′(y/x), y : �A
R�

If x is not the label of a formula principal in the rule, the proof does not
present any significant difference, and the case of L� is detailed similarly.

For extensions of G3K with regular rules for R, observe that the rules
are schematic, thus closed under substitution. In other words, the induction
proceeds as for the propositional rules.

For geometric extensions some care is needed in order to avoid a clash
with the eigenvariables of the geometric rule scheme. Suppose the last rule
in the derivation is one of the form

Q1(y1/x1), P , � ⇒ � . . . Qn(yn/xn), P , � ⇒ �

P, � ⇒ �
GRS

If y 
= yi for all i = 1, . . . , n, apply the inductive hypothesis to each of
the premisses to obtain derivations of

Qi(yi/xi)(y/x), P (y/x), �(y/x) ⇒ �(y/x)

and by application of the geometric rule scheme obtain

P(y/x), �(y/x) ⇒ �(y/x)

If y = yi for some i, we first replace the eigenvariable yi with a fresh vari-
able y ′

i by inductive hypothesis applied to the i-th premiss of the rule. Then
by inductive hypothesis applied to each of the new premisses, we perform
the substitution y/x and obtain the conclusion by applying rule GRS. �
PROPOSITION 4.4. The rules of weakening

� ⇒ �

x : A, � ⇒ �
LW

� ⇒ �

� ⇒ �, x : A
RW

� ⇒ �

xRy, � ⇒ �
LW

� ⇒ �

� ⇒ �, xRy
RW

are height-preserving admissible in G3K*.
Proof. Straightforward induction on the height of the derivation of the

premiss, for the propositional rules and the modal and nonlogical rules
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without variable condition. In case the last step is a modal rule with vari-
able condition, the substitution lemma is applied to the premisses of the
rule in order to have a fresh eigenvariable not clashing with those in x : A

or xRy. The conclusion is then obtained by applying the inductive hypoth-
esis and the modal rule. An identical procedure is applied if the last step is
a geometric rule and x : A or xRy contain some of its eigenvariables. �

We are now ready to prove admissibility of the necessitation rule:

PROPOSITION 4.5. The necessitation rule

⇒ x : A

⇒ x : �A

is admissible in G3K*.
Proof. Suppose we have a derivation of ⇒ x : A. By the substitu-

tion lemma we obtain a derivation of ⇒ y : A and, by admissibility of
weakening, of xRy ⇒ y : A. By R� we have ⇒ x : �A. �
Observe that having the necessitation rule admissible rather than as an ex-
plicit rule of the calculus is crucial for our development. A proper addition
of a rule like the necessitation rule above (a context-dependent rule) usu-
ally destroys any possibility of attaining a satisfactory system of sequent
calculus.

The standard properties of distribution of the modalities over the con-
nectives and of the interdefinability of the modal operators are easily deriv-
able in G3K:

PROPOSITION 4.6. The following sequents are derivable in G3K:

(1) ⇒ x : �(A ⊃ B) ⊃ (�A ⊃ �B)

(2) ⇒ x : ∼�⊥
(3) ⇒ x : �(A ∨ B) ⊃ (�A ∨ �B)

(4) ⇒ x : (�A ⊃ �B) ⊃ �(A ⊃ B)

(5) ⇒ x : �A ⊃ ∼�∼A and ⇒ x : ∼�∼A ⊃ �A

(6) ⇒ x : �A ⊃ ∼�∼A and ⇒ x : ∼�∼A ⊃ �A

Proof. By root-first proof search from the sequent to be derived. �
Next, we show that the characteristic axioms of the modal logics T, K4,
B, S5 are derivable in the respective sequent calculi G3T, G3K4, G3TB,
G3S5. The simple proofs of Lemmas 4.7–4.9 are left to the reader.

PROPOSITION 4.7. The following sequents are derivable in G3K + Ref
(G3T):
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(1) ⇒ x : �A ⊃ A

(2) ⇒ x : A ⊃ �A.

PROPOSITION 4.8. The following sequents are derivable in G3K+Trans
(G3K4):

(1) ⇒ x : �A ⊃ ��A

(2) ⇒ x : ��A ⊃ �A.

PROPOSITION 4.9. The following is derivable in G3K + Sym (G3KB):
⇒ x : A ⊃ ��A.

PROPOSITION 4.10. The sequent ⇒ x : �A ⊃ �A is derivable in
G3K + Ser. The sequent ⇒ x : ��A ⊃ ��A is derivable in G3K + Dir.

Proof. We have the inferences

y : A, xRy, x : �A ⇒ x : �A, y : A

xRy, x : �A ⇒ x : �A, y : A
L�

xRy, x : �A ⇒ x : �A
R�

x : �A ⇒ x : �A
Ser

⇒ x : �A ⊃ �A
R⊃

xRy, xRz, yRu, zRu, u : A, z : �A ⇒ y : �A, u : A

xRy, xRz, yRu, zRu, u : A, z : �A ⇒ y : �A
R�

xRy, xRz, yRu, zRu, z : �A ⇒ y : �A
L�

xRy, xRz, z : �A ⇒ y : �A
Dir

xRy, x : ��A ⇒ y : �A
L�

x : ��A ⇒ x : ��A
R�

⇒ x : ��A ⊃ ��A
R⊃

in which the topsequents are derivable by Lemma 4.1. �
In order to prove height-preserving admissibility of contraction we need
to show height-preserving invertibility of the rules of the modal sequent
calculi.

PROPOSITION 4.11. All the rules of G3K* are height-preserving invert-
ible.

Proof. The proof of height-preserving invertibility for the propositional
rules is done exactly as for G3c (Theorem 3.1.1 in Negri and von Plato,
2001). Rules L� and R� are trivially height-preserving invertible, since
their premisses are obtained by weakening from the conclusion, and weak-
ening is height-preserving invertible. The same holds for the rules for R.
As usual, some care is needed for the rules with variable condition.
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We show height-preserving invertibility of R� by induction on the
height n of the derivation of � ⇒ �, x : �A. If n = 0, it is an initial
sequent or conclusion of L⊥, but then also xRy, � ⇒ �, y : A is an initial
sequent or conclusion of L⊥ (observe that it is essential here that the initial
sequents are restricted to atomic formulas). If n > 0 and � ⇒ �, x : �A

is concluded by any rule R other than R� or L�, we apply the inductive
hypothesis to the premiss(es) �′ ⇒ �′, x : �A (�′′ ⇒ �′′, x : �A) and
obtain derivation(s) of height n − 1 of xRy, �′ ⇒ �′, y : A (xRy, �′′ ⇒
�′′, y : A). By applying rule R we obtain a derivation of height n of
xRy, � ⇒ �, y : A. If � ⇒ �, x : �A is concluded by L�, we have, in
the first case, a derivation ending with

zRw, w : B, � ⇒ �, x : �A

z : �B, � ⇒ �, x : �A
L�

where without loss of generality we can assume that the eigenvariable of
L� is not y (else apply the substitution lemma). By inductive hypothesis
applied to the premiss we obtain a derivation with the same derivation
height ending with

xRy, zRw, w : B, � ⇒ �, y : A

xRy, z : �B, � ⇒ �, y : A
L�

If � ⇒ �, x : �A is conclusion of R� with principal formula in �,
we proceed in a similar way. If instead the principal formula is �A, the
premiss of the last step gives the conclusion (possibly with a different
eigenvariable, but the desired one can be obtained by height-preserving
substitution). The proof of height-preserving invertibility of L� is simi-
lar. �
We are now in a position to prove the most important structural property
of our calculi besides cut-admissibility, namely height-preserving admissi-
bility of contraction. First observe that there are, a priori, four contraction
rules, left and right contraction for expressions of the form x : A and of
the form xRy. Explicitly stated, the rules of left and right contraction are:

x : A, x : A, � ⇒ �

x : A, � ⇒ �
L-Ctr

xRy, xRy, � ⇒ �

xRy, � ⇒ �
L-CtrR

� ⇒ �, x : A, x : A

� ⇒ �, x : A
R-Ctr

� ⇒ �, xRy, xRy

� ⇒ �, xRy
R-CtrR

Observe that rule R-CtrR is not needed in case we are using the calculus
without the initial sequent xRy, � ⇒ �, xRy.
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THEOREM 4.12. The rules of contraction are height-preserving admis-
sible in G3K*.

Proof. By simultaneous induction on the height of derivation for left
and right contraction.

If n = 0 the premiss is either an initial sequent or conclusion of L⊥. In
each case the contracted sequence is also an initial sequent or conclusion
of L⊥.

If n > 0, consider the last rule R used to derive the premiss of contrac-
tion. If the contraction formula is not principal in it, both occurrences are
found in the premiss(es) of the rule, which have smaller derivation height.
By the induction hypothesis, they can be contracted and the conclusion is
obtained by applying rule R to the contracted premiss(es). If the contrac-
tion formula is principal in it, we distinguish three cases: Either R is a rule
in which the principal formulas appear also in the premiss (such as L�
or R� or the rules for R), or it is a rule where active formulas are proper
subformulas1 of the principal formula (such as the rules for &, ∨, ⊃), or it
is a rule where active formulas are atoms xRy and proper subformulas of
the principal formula (like the rules R� or L�).

In the first case we have, for instance,

x : �A, x : �A, xRy, y : A, � ⇒ �

x : �A, x : �A, xRy, � ⇒ �
L�

By induction hypothesis applied to the premiss we obtain

x : �A, xRy, y : A, � ⇒ �

x : �A, xRy, � ⇒ �
L�

Observe that the case in which both contraction formulas are principal in
a rule for R is taken care of by the closure condition.

In the second case, contraction is reduced to contraction on smaller
formulas as in the standard proof for G3c.

In the third case, a subformula of the contraction formula and an atom
xRy are found in the premiss, for instance

x : �A, xRy, y : A, � ⇒ �

x : �A, x : �A, � ⇒ �
L�

By height-preserving invertibility applied to the premiss, we obtain a deri-
vation of height n − 1 of

xRy, y : A, xRy, y : A, � ⇒ �

that yields, by induction hypothesis for both forms of contraction, a deriva-
tion of height n − 1 of

xRy, y : A, � ⇒ �
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and the conclusion x : �A, � ⇒ � follows in one more step by L�. �
Also cut can take two forms, namely

� ⇒ �, x : A x : A, �′ ⇒ �′

�, �′ ⇒ �, �′ Cut

and

� ⇒ �, xRy xRy, �′ ⇒ �′

�, �′ ⇒ �, �′ CutR

However, CutR is not needed if the variant of G3K without the initial
sequent xRy, � ⇒ �, xRy is used.

We have:

THEOREM 4.13. The cut rule is admissible in G3K*.
Proof. The proof has the same structure as the proof of admissibility of

cut for sequent calculus extended with the left rule-scheme (Theorem 6.2.3
in Negri and von Plato, 2001). In case the geometric rule-scheme is con-
sidered, the proof follows the pattern of Negri (2003). We observe that
in all the cases of permutation of cuts that may give a clash with the
variable conditions in the modal rules (and in the rules for R in case of
geometric extensions), an appropriate substitution (Lemma 4.3) prior to
the permutation will be used.

We recall that the proof is by induction on the length of the cut formula
with subinduction on the sum of the heights of the derivations of the pre-
misses of cut. We consider in detail only the case of a cut with cut formula
principal in modal rules in both premisses of cuts.

If the cut formula is x : �A, we transform the derivation

xRy, � ⇒ �, y : A

� ⇒ �, x : �A
R� xRz, x : �A, z : A, �′ ⇒ �′

xRz, x : �A, �′ ⇒ �′ L�
xRz, �, �′ ⇒ �, �′ Cut1

into

xRz, � ⇒ �, z : A

� ⇒ �, x : �A xRz, x : �A, z : A,�′ ⇒ �′
xRz, z : A,�, �′ ⇒ �,�′ Cut1

xRz, xRz, �, �, �′ ⇒ �,�,�′ Cut1

xRz, �, �′ ⇒ �,�′ Ctr∗

where the upper cut is of smaller derivation height and the lower on a
smaller cut formula, Ctr∗ denotes repeated applications of contraction rules,
and the leftmost premiss is obtained by the substitution (z/y) from
xRy, � ⇒ �, y : A.
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If the cut formula is x : �A, we transform the derivation

xRy, � ⇒ �, x : �A, y : A

xRy, � ⇒ �, x : �A
R� xRz, z : A, �′ ⇒ �′

x : �A, �′ ⇒ �′ L�
xRy, �, �′ ⇒ �, �′ Cut1

into

xRy, � ⇒ �, x : �A, y : A x : �A, �′ ⇒ �′
xRy, �, �′ ⇒ �, �′, y : A

Cut1
xRy, y : A, �′ ⇒ �′

xRy, xRy, �, �′, �′ ⇒ �, �′, �′ Cut1

xRy, �, �′ ⇒ �, �′ Ctr∗

where the upper cut is of smaller derivation height and the lower on a
smaller cut formula, and the rightmost premiss is obtained by the substitu-
tion (y/z) from xRz, z : A, �′ ⇒ �′. �

5. GÖDEL–LÖB PROVABILITY LOGIC

Gödel-Löb provability logic, nowadays commonly called GL, is charac-
terized by the frame condition that the accessibility relation is irreflex-
ive, transitive and Noetherian (every chain eventually becomes stationary),
or, equivalently, transitive and with no infinite R-chains. The Noetherian
condition is also called converse well-foundedness. The method detailed
in the previous sections covers all the modal logics with frame condi-
tions characterized by universal axioms or geometric implications. The
Noetherian property is not even first-order, so a cut-free sequent calculus
for GL cannot be obtained as a direct application.

We can, nevertheless, extend to GL all our results on sequent calculi
with internalized Kripke semantics by a simple modification the � rules
of G3K. The rules are formulated in a way that reflects a characterization
of the standard forcing relation in irreflexive, transitive, and Noetherian
Kripke frames.

LEMMA 5.1. For every interpretation in irreflexive, transitive, and
Noetherian Kripke frames we have, for all x and for all A,

x � �A iff for all y, xRy and y � �A implies y � A

Proof. Suppose x � �A and let y be such that xRy. Then y � A holds,
and a fortiori it follows with the extra assumption y � �A.
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For the converse, assume the right-hand side and suppose that x � �A.
Then there exists x1 such that xRx1 and x1 � A. From the assumption it
follows that x1 � �A, hence there exists x2 such that x1Rx2 and x2 � A.
By transitivity we have xRx2 and so from the assumption x2 � �A fol-
lows. In this way, we build a chain xRx1, x1Rx2, . . . which never becomes
stationary because of irreflexivity, so we have a contradiction. �
The above characterization of the forcing relation justifies the following
rules for �: the right rule

xRy, y : �A, � ⇒ �, y : A

� ⇒ �, x : �A
R�-L

with the same variable condition as R�, namely, that y must not appear in
the conclusion, and the left rule

x : �A, xRy, � ⇒ �, y : �A y : A, x : �A, xRy, � ⇒ �

x : �A, xRy, � ⇒ �
L�-L

Let G3GL be the system obtained from G3K by allowing also initial
sequents of the form

x : �A, � ⇒ �, x : �A

by replacing the rules R� and L� with R�-L and L�-L, respectively,
and by adding rule Trans that corresponds to the axiom �A ⊃ ��A, and
rule Irref in the form of the zero-premiss rule xRx, � ⇒ �.

It is an easy task to verify that all the preliminary results (from
Lemma 4.1 to Proposition 4.5) proved for G3K* continue to hold for
G3GL. In particular, we have height-preserving admissibility of the ne-
cessitation rule and height-preserving admissibility of weakening.

In addition, we have invertibility (not height-preserving) of all the rules
of G3GL and of contraction:

PROPOSITION 5.2. All the rules of the system G3GL are invertible.
Proof. For invertibility of the rules for &, ∨, ⊃ see Proposition 4.11.
Rule L�-L is (height-preserving) invertible by (height-preserving) in-

vertibility of weakening. We show invertibility of R�-L by induction on
the height n of the derivation of � ⇒ �, x : �A. If n = 0 and x : �A is
not principal, then also xRy, y : �A, � ⇒ �, y : A is an initial sequent,
or an instance of Irref . If it is principal, we have � ≡ x : �A, �′, and we
need to prove that xRy, y : �A, x : �A, �′ ⇒ �, y : A is derivable. This
follows by L�-L from the initial sequent xRy, y : �A, x : �A, �′ ⇒
�, y : A, y : �A and the derivable sequent y : A, xRy, y : �A,
x : �A, �′ ⇒ �, y : A. �
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Without loss of generality we shall assume that derivations are pure, i.e.,
the eigenvariables used at steps of R�-L appear only in the subtree above
the rule introducing them. Clearly, by height-preserving substitution, such
a condition can always be met.

Before proving admissibility of contraction, we introduce the notion
of range of a world in a derivation, to be used as one component of the
inductive parameter in the proof of cut elimination:

DEFINITION 5.3. The range of x in a derivation D is the (finite) set of
worlds y such that either xRy or for some n � 1 and for some x1, . . . , xn,
the atoms xRx1, x1Rx2, . . ., xnRy appear in the antecedent of sequents of
D . Ranges of variables are ordered by set inclusion.

We shall say that a rule is range-preserving admissible if the elimina-
tion of the rule does not increase the ranges of variables in the derivation.
We then have:

THEOREM 5.4. The rules of contraction are range-preserving admissi-
ble in G3GL.

Proof. By simultaneous induction for left and right contraction, with in-
duction on the size of the contraction formula and subinduction on deriva-
tion height. We detail the proof in one case specific to G3GL: assume we
have proved admissibility of contraction for formulas of size up to n on
the left and up to n − 1 on the right and assume the contraction formula
is x : �A on the right, of size n. If the last rule in the derivation is not
R�-L on the contraction formula, we apply the inductive hypothesis to
the premiss of the rule (of smaller height) and then apply the rule. If the
last step is R�-L, the premiss is xRy, y : �A, � ⇒ �, x : �A, y : A. By
using invertibility of R�-L, we derive a sequent of the form xRy, xRy, y :�A, y : �A, � ⇒ �, y : A, y : A, and by using the inductive hypothe-
ses we obtain a derivation of xRy, y : �A, � ⇒ �, y : A hence the
conclusion of contraction by R�-L.

Although invertibility of R�-L is not, in general, range-preserving, be-
cause it introduces a new world, the special instance of invertibility used
here does not, as the world needed in the inversion is already a label used in
the derivation. It follows that contraction is range-preserving admissible. �
THEOREM 5.5. The cut rule is admissible in G3GL.

Proof. The proof follows the structure of the proof of Theorem 4.13, but
with a modified induction parameter: an uppermost cut is shown admissi-
ble by induction on the weight of the cut. The weight of a cut on x : A is
defined as the triple consisting of



PROOF ANALYSIS IN MODAL LOGIC 527

(1) The size of the cut formula A;
(2) The range of x;
(3) The sum of the heights of the derivations of the two premisses of the

cut.

Observe that we can exclude the possibility of a cut formula labelled
by a variable occurring in the range of itself: if a loop xRx1, x1Rx2, . . . ,

xnRx occurs in the conclusion of cut, then the conclusion can be obtained
without cut from Irref and steps of Trans. Else, if there is no loop in
the conclusion of cut, there is no loop in the premisses either. The only
way then to produce a loop (possibly spread among different antecedents)
would be by introduction of eigenvariables at steps of R�-L that violate
either the variable or the pureness condition.

Clearly, if y is in the range of x, then the range of y is included in the
range of x, and by the above argument, we can always assume that the
inclusion is proper.

The triples are ordered lexicographically in the usual way.
The proof of cut elimination for G3GL is structured as the proof

for G3K*. The cases in which the cut formula is not principal in both
premisses of cut are dealt with as usual, with the additional observation
that permutations do not increase the range since they change neither the
cut formula nor its label. The only case specific to G3GL is the one in
which the cut formula is principal in both premisses of Cut:

xRy, y : �A,� ⇒ �, y : A

� ⇒ �, x : �A
R�-L

xRz, x : �A,�′ ⇒ �′, z : �A z : A, xRz, x : �A,�′ ⇒ �′

xRz, x : �A,�′ ⇒ �′ L�-L

xRz, �′, � ⇒ �,�′ Cut

The derivation is transformed into one containing four cuts, each of lower
weight.

(1) First, we construct the derivation

� ⇒ �, x : �A xRz, x : �A, �′, ⇒ �′, z : �A

xRz, �, �′ ⇒ �, �′, z : �A
Cut

using a cut of smaller weight, on the same labelled formula x : �A (and
thus the same range) but with lower sum of heights of derivations.

(2) Second, we construct the derivation

� ⇒ �, x : �A xRz, x : �A, z : A, �′ ⇒ �′

xRz, z : A, �′, � ⇒ �, �′ Cut

reduced in weight in the same way.
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(3) Third, we use derivation (1) and height-preserving substitution (z/y)

on the premiss of R�-L to obtain

....
xRz, �′, � ⇒ �, �′, z : �A xRz, z : �A, � ⇒ �, z : A

xRz, xRz, �, �′, � ⇒ �, �′, �, z : A
Cut

using a cut on the labelled formula z : �A, of smaller range, given by the
union of the range of y and the range of z. This is strictly included in the
range of x because by the pureness condition z cannot be in the range of
y.

(4) Fourth, we combine (3) and (2) by a cut on the labelled formula
z : A of smaller size, followed by several contractions:

....
xRz, xRz, �′, �, � ⇒ �, �, �′, z : A

....
xRz, z : A, �′, � ⇒ �, �′

xRz, xRz, xRz, �′, �′, �, �, � ⇒ �, �, �, �′, �′ Cut

xRz, �′, � ⇒ �, �′ Ctr*

Since no transformation in the process of cut elimination increases the
range and contraction is range-preserving admissible, we can conclude that
cut is range-preserving admissible as well. �
We observe that Theorem 5.5 gives a solution to the problem of finding a
syntactic proof of cut-elimination for Gödel–Löb provability logic. A proof
of cut elimination was proposed by Leivant (1981), but a gap was found
by Valentini (cf. Sambin and Valentini, 1982 and Valentini, 1983). In the
former, the proposed sequent calculus for provability logic was proved to
be semantically complete, and therefore the weaker property of closure
with respect to cut was established. In the latter, a syntactic proof of cut
elimination was given. However, the proofs use a treatment of contexts as
sets that cannot be made formally complete without the addition of a rule of
contraction. When an explicit rule of contraction is added to the calculus,
the reduction used as starting point in the procedure of cut elimination
needs further justification. For a discussion of the difficulties, see Moen
(2001). Our approach avoids the problem altogether by using a calculus in
which contraction is not part of the system but an admissible rule.

As an application of the cut-free calculus we have:

COROLLARY 5.6 (Second incompleteness theorem). The sequent
⇒ x : ∼�⊥ is not derivable in G3GL.
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Proof. Proceeding root-first, if a derivation exists, it ends with

x : �⊥ ⇒ x : ⊥
⇒ x : �⊥⊃⊥ R⊃

but no rule of G3GL is applicable to the premiss. �
Finally, in order to obtain the derivability of the characteristic axiom of GL
we show:

LEMMA 5.7. All sequents of the form xRy, x : �A, � ⇒ �, y : �A are
derivable in G3GL.

Proof. Root-first, by steps of R�-L, Trans, and L�-L. �
COROLLARY 5.8. The standard rule L� is derivable in G3GL.

Proof. By Lemma 5.7, the left premiss of L�-L is derivable in G3GL. �
Although the two left � rules are interderivable, the use of L�-L seems
essential in the proof of cut elimination. If the standard L� were used
instead, a cut with a sequent of the form xRy, x : �A, � ⇒ �, y : �A

would be needed. However, its derivation introduces new worlds, thus
breaking the property of range admissibility of all cut reductions.

COROLLARY 5.9. The Löb axiom is derivable in G3GL.
Proof. Using Corollary 5.8, we have the derivation:

y : �A ⊃ A, xRy, x : �(�A ⊃ A), y : �A ⇒ y : A

xRy, x : �(�A ⊃ A), y : �A ⇒ y : A
L�

x : �(�A ⊃ A) ⇒ x : �A
R�-L

⇒ x : �(�A ⊃ A) ⊃ �A
R⊃

�
By Corollary 5.8, the system G3GL (with rules R�-L and L�-L) and the
system with rules R�-L and L� (that we shall call G3KGL) are equiva-
lent. In the latter system, initial sequents can be restricted to atomic formu-
las, as in G3K, and therefore stronger structural properties such as height-
preserving admissibility of contraction, hold with no limitations. Cut elim-
ination for G3KGL can be established through translation to G3GL, cut
elimination in this system, and translation back to G3KGL. The structural
properties of G3KGL will be exploited in the following section.

6. DECIDABILITY

In general, cut-elimination alone does not ensure terminating proof search
in a given system of sequent calculus. Cut-elimination often has the sub-
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formula property as one of its immediate consequences. Sometimes the
subformula property does not require full cut-elimination, as in systems
with analytic cut, i.e., with cut restricted to subformulas of the conclusion.
Even the subformula property is not always sufficient to delimit the space
of proof search, either because the notion of subformula is extended (as in
first-order logic) to include all substitution instances of a given formula, or
because of the presence in the calculus of structural rules like contraction.

In our systems, a suitable version of the subformula property, adequate
for proving syntactic decidability, will emerge as a consequence of the
structural properties of the calculi.

Before proceeding with the analysis of the subformula properties of our
systems we state precisely what we mean by “subformula” and “subfor-
mula property” of derivations in the context of prefixed formulas
x : A:

SUBFORMULA. For every propositional connective ◦, the subformulas
of x : A ◦ B are x : A ◦ B and all the subformulas of x : A and of x : B.
The subformulas of x : �A and x : �A, resp., are x : �A and x : �A,
resp., and all the subformulas of y : A for arbitrary y.

SUBFORMULA PROPERTY. All formulas in a derivation are subformu-
las of formulas in the endsequent.

WEAK SUBFORMULA PROPERTY. All formulas in a derivation are
either subformulas of formulas in the endsequent or atomic formulas of
the form xRy.

A priori, such properties do not ensure decidability, unless a bound is found
on the number of eigenvariables and “new worlds” in a derivation of a
given sequent.

For obtaining a bound on the number of atomic formulas that can ap-
pear in a derivation it is useful to look at minimal derivations, that is,
derivations where shortenings are not possible. A derivation where a rule,
read root first, produces a duplication of an atom xRy can be shortened by
applying height-preserving admissibility of contraction in place of the rule
that introduces that atom. Similarly, a derivation that contains a sequent
that matches the conclusion of a zero-premiss rule can be shortened by
removing the subtree concluding that sequent.

More precisely, we have:

PROPOSITION 6.1. All variables (worlds) in a minimal derivation of a
sequent � ⇒ � in G3K and in its extensions with rules for R, G3T,
G3K4, G3KB, G3S4, G3TB, G3S5, and in G3KGL, are either eigen-
variables or else variables in �, �.
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Proof. Immediate for G3K and its extensions with Trans and/or Sym
(G3K4, G3KB) and for G3KGL. For extension with Ref, the proof follows
from the lemma below. �
Before stating the lemma, we observe that the hypothesis of minimality is
redundant in the absence of Ref. Nevertheless, it is useful in any case since
it precludes the possibility of applying rules that produce duplications.

LEMMA 6.2. All variables in atoms of the form xRx removed by Ref in
a minimal derivation of a sequent � ⇒ � in G3T, G3S4, G3TB, G3S5,
are variables in �, �.

Proof. Consider a minimal derivation of a sequent � ⇒ � and suppose
there is a variable x in an atom xRx removed by Ref. Consider a last
occurrence of x and the step of Ref removing it

xRx, � ⇒ �

� ⇒ �
Ref

Trace the atom xRx up in the derivation (observe that nothing, in particular
no atom xRy, is removed going up in the derivation).

If xRx is never principal in a rule, we trace it up to the leaves (initial
sequents) of the derivation tree. If it is principal in the initial sequent, it has
the form

xRx, � ⇒ �, xRx

and we find x in the succedent. No atom of the form xRy is removed from
the right-hand side of sequents in a derivation, so x is found in the conclu-
sion. If xRx is not principal in any of the leaves, it can be removed tout
court from the derivation, together with the step of Ref, so the derivation
is shortened, contrary to the assumption.

If xRx is principal in a rule, this can happen in a step of L�, or R�, or
Trans, or Sym. We analyze each of these possibilities.

If xRx is principal in L�, we have the derivation steps

x : A, xRx, x : �A, �′ ⇒ �′

xRx, x : �A, �′ ⇒ �′ L�
.... D

xRx, � ⇒ �

� ⇒ �
Ref

By tracing the variable x, another occurrence of the variable has been
found in a modal expression x : �A. Since by hypothesis the premiss of
Ref contains the last occurrence of x, the occurrence in x : �A has been
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removed from the derivation before the step of Ref. The expression x : �A

can be active in propositional rules that either maintain x on the left-hand
side of the sequent, or that move it to the right-hand side. Eventually we
find in D

xRx, x : B, �′′ ⇒ �′′ or(1)

xRx, �′′ ⇒ �′′, x : B(2)

Observe that, because of the variable condition, x cannot disappear from
(1) by L�, nor from (2) by R�. If x : B is active in L� (1) or R� (2),
then we find another occurrence of x in an atom zRx in the conclusion
of the rule. The atom zRx can be removed only by Ref, so we must have
z ≡ x and therefore, for each of the two alternatives

x : B, xRx, x : �B,� ⇒ �

xRx, x : �B,� ⇒ �
L� xRx, � ⇒ �, x : �B, x : B

xRx, � ⇒ �, x : �B
R�

so we still have x in the conclusion.
If xRx is principal in R�, the analysis is similar.
If xRx is principal in Trans, we have the derivation

xRx, xRz, xRz, �′ ⇒ �′

xRx, xRz, �′ ⇒ �′ Trans

....
xRx, � ⇒ �

� ⇒ �
Ref

By applying height-preserving admissibility of contraction to the premiss
of Trans, we obtain a shorter derivation of the same endsequent, contrary
to the assumption:

xRx, xRz, �′ ⇒ �′
....

xRx, � ⇒ �

� ⇒ �
Ref

If xRx is principal in Sym, we have

xRx, xRx, �′ ⇒ �′

xRx, �′ ⇒ �′ Sym

....
xRx, � ⇒ �

� ⇒ �
Ref

Again, by applying height-preserving admissibility of contraction as above,
we obtain a shorter derivation of the same endsequent, with the step of Sym
made superfluous, contrary to the assumption. �
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The property stated by the above proposition will be referred to in brief as
subterm property of a derivation:

SUBTERM PROPERTY. All terms (variables, worlds) in a derivation are
either eigenvariables or terms (variables, worlds) in the conclusion.

Proofs of the subterm property for systems of linear order and lattice theory
have been obtained by similar methods in Negri and von Plato (2004) and
in Negri, von Plato and Coquand (2004).

Another source of potentially non-terminating proof search is the rep-
etition of the principal formulas in the premisses of L� and R�. By the
following lemmas and their corollary, it is enough to apply them only once
on any given pair of principal formulas xRy, x : �A or xRy, x : �A.
First we prove that if there are two applications of L� or R� on the same
pair of principal formulas, such applications can be made consecutive by
the permutation of rules:

LEMMA 6.3. Rule L� permutes down with respect to rules L&, R&, L∨,
R∨, L ⊃, R ⊃, L�, R�. It also permutes with instances of R�, R�-L,
L�, and with mathematical rules in case the principal atom of L� is not
active in them.

Proof. The permutation is straightforward in the case of a one-premiss
propositional rule. For instance, for L& we have

y : A, x : �A, xRy, z : C, z : D, � ⇒ �

x : �A, xRy, z : C, z : D, � ⇒ �
L�

x : �A, xRy, z : C&D, � ⇒ �
L&

�
y : A, x : �A, xRy, z : C, z : D, � ⇒ �

y : A, x : �A, xRy, z : C&D, � ⇒ �
L&

x : �A, xRy, z : C&D, � ⇒ �
L�

In the case of a two-premiss rule, use of height-preserving admissibility of
weakening is needed; for instance, the derivation

y : A, x : �A, xRy, � ⇒ �, z : C

x : �A, xRy, � ⇒ �, z : C
L�

x : �A, xRy, � ⇒ �, z : D

x : �A, xRy, � ⇒ �, z : C&D
R&

is transformed into

y : A, x : �A, xRy, � ⇒ �, z : C

x : �A, xRy, � ⇒ �, z : D

y : A, x : �A, xRy, � ⇒ �, z : D

y : A, x : �A, xRy, � ⇒ �, z : C&D
R&

x : �A, xRy, � ⇒ �, z : C&D
L�
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in which the right premiss of R& is obtained by weakening from the right
premiss of the given derivation.

The permutation is performed similarly for the other propositional rules.
For the modal rules and the mathematical rules, by the additional hy-

pothesis of no clash of active/principal formulas, the permutation is straight-
forward. For instance, the permutation of L� over R� is as follows:

y : A, x : �A, xRy, zRw,� ⇒ �,w : B

x : �A, xRy, zRw,� ⇒ �,w : B
L�

x : �A, xRy, � ⇒ �, z : �B
R�

�
y : A, x : �A, xRy, zRw,� ⇒ �,w : B

y : A, x : �A, xRy, � ⇒ �, z : �B
R�

x : �A, xRy, � ⇒ �, z : �B
L�

In the system G3KGL, rule L� permutes down as follows with respect
to R�-L in case the principal atoms of L� are not principal in it:

y : A, x : �A, xRy, zRw,w : �B,� ⇒ �,w : B

x : �A, xRy, zRw,w : �B,� ⇒ �,w : B
L�

x : �A, xRy, � ⇒ �, z : �B
R�-L

�
y : A, x : �A, xRy, zRw,w : �B,� ⇒ �,w : B

y : A, x : �A, xRy, � ⇒ �, z : �B
R�-L

x : �A, xRy, � ⇒ �, z : �B
L�

�
A similar lemma holds, mutatis mutandis, for the dual case of rule R�:

LEMMA 6.4. Rule R� permutes down with respect to rules L&, R&,
L∨, R∨, L⊃, R⊃, L�, R�. It also permutes with instances of R�, L�,
and with mathematical rules in case the principal atom of R� is not active
in them.

COROLLARY 6.5. In a minimal derivation in G3K and in any of its
extensions with rules for R, rules L� and R� cannot be applied more than
once on the same pair of principal formulas on any branch. In G3KGL,
rule L� cannot be applied more than once on the same pair of principal
formulas on any branch.

Proof. Suppose we have, say, L� applied twice on x : �A, xRy. Then
the derivation contains the steps

y : A, x : �A, xRy, �′ ⇒ �′

x : �A, xRy, �′ ⇒ �′ L�
....

y : A, x : �A, xRy, � ⇒ �

x : �A, xRy, � ⇒ �
L�
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By permuting down L� with respect to the steps in the dotted part of the
derivation, we obtain a derivation of the same height ending with

y : A, y : A, x : �A, xRy, � ⇒ �

y : A, x : �A, xRy, � ⇒ �
L�

x : �A, xRy, � ⇒ �
L�

By applying height-preserving contraction on y : A in place of the up-
per L�, a shorter derivation is obtained, contrary to the assumption of
minimality. �
Decidability for the basic modal logic K is obtained in the strongest form
of an effective bound on proof search in the system G3K:

THEOREM 6.6. The system G3K allows terminating proof search.
Proof. Consider any given sequent to be shown derivable. Apply root-

first the (applicable) propositional rules and the modal rules. All the propo-
sitional rules reduce the complexity of the sequents. Rules R� and L�
remove one modal operator and add an atomic relation, rules L� and R�
increase the complexity. However, by the corollary above, rules L� and
R�, once applied on a given pair of formulas, need not be so applied again.
Thus the number of applications of L� with principal formula x : �A is
bounded by the number of atoms of the form xRy that may appear on the
left-hand side of sequents in the derivation. This, in turn, is bounded by the
number of existing atoms of that form and atoms that can be introduced by
applications of R� with principal formula x : �B or applications of L�
with principal formula x : �B. A similar bound holds for the number of
applications of R� on a given principal formula. �
Explicit bounds are computed as follows: First define negative and positive
parts of a sequent � ⇒ � as the negative and positive parts of the formula
&� ⊃ ∨�. For any given sequent, let n(�) be the number of � in the
negative part of the sequent, p(�) the number of � in the positive part
of the sequent, n(�) the number of � in the negative part of the sequent,
p(�) the number of � in the positive part of the sequent.

In case the endsequent does not contain any atom xRy, the number of
applications of L� in a minimal derivation is bounded by

n(�)(p(�) + n(�))

and in case there are r atoms in the antecedent of the endsequent, it is
bounded by

n(�)(p(�) + n(�) + r)



536 SARA NEGRI

The number of applications of R� is bounded by

p(�)(p(�) + n(�))

in case there are no atoms xRy in the endsequent, and by

p(�)(p(�) + n(�) + r)

if there are r such atoms.
By a similar argument we have:

THEOREM 6.7. The system G3T allows terminating proof search.
Proof. First, observe that by the subterm property, reflexivity can be

restricted to atoms xRx where x is a world in the conclusion or an eigen-
variable introduced by R� or L�. Therefore, if w denotes the number of
worlds in the endsequent, the bound to the number of applications of L�
and R� is as above, with the parameter r replaced by r + w + p(�) +
n(�). �
The addition of rule Sym to G3K or G3T has the following effect on proof
search (of minimal derivations): Whenever an atom xRy appears on the
left-hand side of sequents, the symmetric atom yRx has to be added. In
case x ≡ y, no addition is needed, because such addition would cause a du-
plication and use of height-preserving admissibility of contraction would
shorten the derivation. With the notation introduced above, in G3KB, the
bound to the number of applications of L� is n(�)(2p(�) + 2n(�) + 2r)

and for R�, p(�)(2p(�)+2n(�)+2r). For G3TB, the bounds are given
by n(�)(3p(�)+ 3n(�)+ 2r +w) and p(�)(3p(�)+ 3n(�)+ 2r +w),
respectively. We have thus proved:

THEOREM 6.8. The systems G3KB and G3TB allow terminating proof
search.

In G3S4, the situation is more complicated: by the rule of transitivity and
its interaction with R� that brings in new accessible worlds, we can build
chains of accessible worlds on which L� can be applied ad infinitum.
However, by our results on height-preserving admissibility of substitu-
tion and height-preserving admissibility of contraction, we can truncate
an attempted proof search after a finite number of steps. Before giving
precise bounds, we illustrate the method with an example (based upon
a similar example discussed in Section 11.2 of Viganò, 2000). In what
follows, we shall for simplicity restrict the language to the � modality
alone. The results can be generalized by symmetry to the full language
that includes �.
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We attempt to find a proof for the sequent ⇒ x : �∼�A ⊃ �B.
Proceeding root-first, we build the following inference tree (in which we
have omitted the derivable right premisses of L⊃)

....
zRw, xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : A, w : A

xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : A, z : �A
R�

z : ∼�A, xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : �A
L⊃

xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : �A
L�

xRy, yRz, x : �∼�A ⇒ y : B, z : A
Trans

xRy, x : �∼�A ⇒ y : B, y : �A
R�

y : ∼�A, xRy, x : �∼�A ⇒ y : B
L⊃

xRy, x : �∼�A ⇒ y : B
L�

x : �∼�A ⇒ x : �B
R�

⇒ x : �∼�A ⊃ �B
R⊃

Consider now the topsequent. By applying the substitution z/w we obtain
a derivation of the same height of

zRz, xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : A, z : A

hence, by height-preserving contraction, of

zRz, xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : A

By a step of reflexivity we obtain a derivation of

xRz, xRy, yRz, x : �∼�A ⇒ y : B, z : A

with a resulting shortening by two steps of the original derivation. Since
we can assume that the attempted proof search is for a minimal derivation,
we have a contradiction, thus the sequent is not derivable.

This argument can be formalized through providing a bound to the
number of successive applications of R� with principal formula x : �A

on successive worlds accessible from x. Intuitively, only those applications
that contribute to unfold all the boxed negative subformulas of the endse-
quent through steps of L� are needed. Additional steps are superfluous as
they give rise to duplications (modulo substitution) as soon as the inner-
most boxed formula in the negative part has been reached, as shown in the
above example.

PROPOSITION 6.9. In a minimal derivation of a sequent in G3S4, for
each formula x : �A in its positive part there are at most n(�) applica-
tions of R� iterated on a chain of accessible worlds xRx1, x1Rx2, . . . ,
with principal formula xi : �A.
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Proof. Let m be n(�), and suppose that the antecedent of the derivable
sequent contains a formula of the form �mQ, where �m denotes a block
of m boxes. This assumption can be done without loss of generality: The
modalities in the negative part of the sequent do not necessarily occur in
a block, but may be interleaved with propositional connectives. However,
these connectives can be unfolded by the application, root-first, of propo-
sitional rules without changing the number of applications of R� that are
necessary to reach the innermost non-modal formula. Suppose that we iter-
ate R� on a chain of accessible worlds x0Rx1, . . . , etc., with x0 ≡ x. After
the first application of R�, we have the accessibility x0Rx1 and applica-
tion of L� produces an antecedent containing x0 : �mQ, x1 : �m−1Q.
After the second application we have the new accessibility x1Rx2, and,
by transitivity, x0Rx2, and applications of L� add to the antecedent the
formulas x2 : �m−2Q, x2 : �m−1Q. After m applications, the antecedent
contains in addition xm : Q, . . . , xm : �m−1Q and the succedent xm−1 : A.
If we apply R� one more time, by the newly available steps of L� li-
censed by the accessibility xmRxm+1, we add to the antecedent also the
formulas xm+1 : Q, . . . , xm+1 : �m−1Q. These latter steps are superflu-
ous. By Lemma 4.3, we can perform the height-preserving substitution
xm+1/xm, and by Theorem 4.12 eliminate all the duplications that arise,
while maintaining the derivation height. By the single steps of reflexiv-
ity that eliminates the atom xmRxm, we obtain a shorter derivation of the
sequent reached after m steps of R�. �
We therefore have:

COROLLARY 6.10. The systems G3S4 allows terminating proof search.

By the remarks before Theorem 6.8, the result above directly extends to
G3S5.

7. EXTENSIONS AND APPLICATIONS

7.1. Frame Properties with Equality

If we allow also the relation of equality in frame properties, then we need
to extend G3K* with appropriate rules. The rules are similar to the rules
added to the sequent systems G3c in Section 6.5 of Negri and von Plato
(2001) for obtaining predicate logic with equality. A contraction- and cut-
free system G3K-Eq of modal logic with equality is obtained by adding
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to G3K the rules of reflexivity and Euclidean transitivity of equality, and
rules of substitution of equals:

x = x, � ⇒ �

� ⇒ �
Eq-Ref

y = z, x = y, x = z, � ⇒ �

x = y, x = z, � ⇒ �
Eq-Trans

yRz, x = y, xRz, � ⇒ �

x = y, xRz, � ⇒ �
ReplR1

xRz, y = z, xRy, � ⇒ �

y = z, xRy, � ⇒ �
ReplR2

y : A, x = y, x : A, � ⇒ �

x = y, x : A, � ⇒ �
Repl

As in Section 6.5 of Negri and von Plato (2001), it can be shown that rule
Repl can be restricted to atomic formulas

y : P, x = y, x : P, � ⇒ �

x = y, x : P, � ⇒ �
ReplAt

because its general form Repl becomes admissible.
For instance, the modal axiom

�(A&�B) ⊃ �(A ∨ �A ∨ B)

corresponds to the frame property

∀xyz(xRy&xRz ⊃ z = y ∨ zRy ∨ yRz)

that can be represented as the following rule

z = y, xRy, xRz, � ⇒ � zRy, xRy, xRz, � ⇒ � yRz, xRy, xRz, � ⇒ �

xRy, xRz, � ⇒ �

added to the sequent calculus G3K-Eq.
All the extensions with frame properties involving equality are ob-

tained in a modular way by adding the corresponding rules to the system
G3K-Eq.

7.2. Negative Results in Correspondence Theory

The range of modal logics for which the method is available goes beyond
the commonly known and studied modal logics: There are in fact simple
first-order frame properties that do not correspond to any modally express-
ible axiom (cf. Example 2.4.3 in Van Benthem, 1984, and Exercise 4.12
in Popkorn, 1994) but that can nevertheless receive a complete syntactic
treatment through a cut-free sequent calculus. By the same method we
can give a proof-theoretical proof of a class of negative results in what
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is known as correspondence theory. The lack of a modal correspondent
to a given frame property is obtained as a straightforward corollary to a
conservativity theorem.

We start with the frame property of irreflexivity

∀x ∼ xRx

that corresponds to the zero-premiss rule

xRx, � ⇒ �
Irref

We have:

THEOREM 7.1. The system G3K + Irref is conservative over G3K.
Proof. Suppose that the sequent � ⇒ � (not containing relational

atoms) is derivable in G3K+ Irref. The atoms of the form xRy that appear
on the left-hand side of sequents in the derivation originate from appli-
cations of rule R�. By the variable condition, x 
= y, so the derivation
contains no atom of the form xRx, hence no application of Irref. Therefore
the sequent is derivable in G3K. �
Intransitivity is the axiom

∀x∀y∀z(xRy&yRz ⊃ ∼xRz)

that correspond to the zero-premiss rule

xRy, yRz, xRz� ⇒ �
Intrans

A similar result obtains:

THEOREM 7.2. The system G3K + Intrans is conservative over G3K.
Proof. As above, observe that relational atoms on the left in derivations

of a sequent � ⇒ � originate from applications of R�. In order to have
both xRz and yRz, two applications of R� with the same eigenvariable
are needed, but this is ruled out by the variable condition. �
We can generalize the above two results to the following results for a
generalization of intransitivity:

THEOREM 7.3. Let P1, . . . , Pn� ⇒ � be a rule, called G-Intrans, that
corresponds to the axiom ∼(P1& · · · &Pn) with Pi ≡ xiRyi , and assume
that for some i, j , yi = yj . Then G3K + G-Intrans is conservative over
G3K.
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Proof. Straightforward. �
By similar arguments, we can prove conservativity for extensions with
rules for geometric axioms, such as the property that there exists a reflexive
world, ∃xxRx, or compositions thereof, such as the property stating that
every world has access to a reflexive one, ∀x∃y(xRy & yRy).

Let Eref be the geometric rule stating the existence of a reflexive world

xRx, � ⇒ �

� ⇒ �

with the variable condition that x is not in �, �. We have

THEOREM 7.4. The system G3K + Eref is conservative over G3K.
Proof. Assume that � ⇒ � is derivable in G3K + Eref and consider a

step of Eref in the derivation. Trace its active atom xRx until it is principal
in a rule. The rule can be L� of R�. In the former case, the derivation
above the step of Eref contains a sequent of the form xRx, x : �A, �′ ⇒
�′. By the variable condition on Eref, the label x in x : �A has to disappear
before the application of Eref. However, by the presence of x in xRx in
the context, such a step would not be correct. The other possibility (xRx

principal in R�) is excluded in a similar way. If xRx is principal in an
initial sequent, then xRx is found in the succedent � since no relational
atom disappear from the right-hand side of sequents. But this violates the
variable condition of Eref. The only possibility left is that the atom xRx is
nowhere principal. Then we can remove it everywhere from the derivation,
together with the step of Eref.

This procedure, combined with an induction on the number of occur-
rences of Eref in the derivation, produces a derivation in G3K. �
Therefore we have:

COROLLARY 7.5. The frame properties of irreflexivity, intransitivity and
its generalization, and existence of a reflexive world do not have any modal
correspondent.

Proof. By the conservativity theorems, there is no modal formula that
can be proved in the systems extended with the above frame properties that
could not be proved in the ground system. �

8. RELATED WORK

When this work was essentially completed we were informed of the related
development of Viganò (2000), where sequent systems with internalized
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Kripke semantics are presented in the style of labelled deductive systems.
There are some major points where our approach differs from Viganò’s:
first, the use of a contraction-free sequent calculus gives us straightforward
decision procedures; in contrast, a partial elimination of contraction is a
major issue in Viganò’s approach, and it is limited to only some of the
systems considered; second, our method for converting axioms into rules
permits to treat frame properties beyond the limitation to the Harrop class
(Horn clauses) of Viganò (2000).

Further recent related work on labelled systems for modal logic, by
Castellini and Smaill (Castellini and Smaill, 2002; Castellini, 2005) was
pointed out to us after the present article was submitted. In this work,
arbitrary first-order frame properties are reduced to universal axioms us-
ing Skolemization. Then universal axioms A are turned into rules by a
procedure called “strengthening” that consists in decomposing the sequent
A, � ⇒ � by the logical rules and taking as premisses of the rule the
leaves of the tree, and as conclusion the sequent � ⇒ �. This is equivalent
to a cut with the sequent ⇒ A.

A translation of modal axioms into rules in an unlabelled style can be
found in Kracht (1996), where extensions of a modal display calculus are
investigated.
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NOTES

1 A formal definition of subformula of a labelled formula is given in Section 6.
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