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Abstract. A deductive system for Lewis counterfactuals is presented, based directly on the
influential generalisation of relational semantics through ternary similarity relations introduced by
Lewis. This deductive system builds on a method of enriching the syntax of sequent calculus by
labels for possible worlds. The resulting labelled sequent calculus is shown to be equivalent to the
axiomatic system VC of Lewis. It is further shown to have the structural properties that are needed
for an analytic proof system that supports root-first proof search. Completeness of the calculus is
proved in a direct way, such that for any given sequent either a formal derivation or a countermodel
is provided; it is also shown how finite countermodels for unprovable sequents can be extracted from
failed proof search, by which the completeness proof turns into a proof of decidability.

§1. Introduction. Counterfactual conditionals have been of interest in Philosophy
ever since the classic accounts of Chisholm (1946) and Goodman (1947), which were
motivated by the large role that counterfactual reasoning appears to play in ordinary life
and scientific inquiry. Counterfactuals still play a crucial role in current theories of cau-
sation, natural laws, in epistemology, and in metaphysics. In English, counterfactuals are
usually expressed by subjunctive conditionals; to use the famous example by Lewis (1973),
followed by his proposed two-place connective for the counterfactual conditional:

If kangaroos had no tails, they would topple over.
Kangaroos have no tail� Kangaroos topple over

Counterfactuals share some properties with other kinds of conditionals, most notably
the material conditional and the strict conditional introduced by C. I. Lewis. For instance,
they all validate modus ponens and modus tollens. Yet the logic of counterfactuals can’t be
simply analyzed in terms of either. Transitivity (Hypothetical Syllogism) is validated by
material and strict conditionals, but fails for counterfactuals:

If Hoover had been a Communist, he would have been a traitor.
If Hoover had been born in Russia, he would have been a Communist.

∴ If Hoover had been born in Russia, he would have been a traitor.
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The first sentence is intuitively true: had Hoover been a (secret) Communist, then since
he was head of the FBI, he would have been a traitor. The second sentence is also true:
had Hoover been a Russian, involved in politics as he was, it can be credibly assumed that
he would have been a member of the Party. It doesn’t seem, however, that being born on
Russian soil would have made Hoover a traitor. This Cold-War era example is taken from
Stalnaker’s (1968) pioneering work in the semantics of counterfactuals. Stalnaker (1968)
and Lewis (1971, 1973, 1973a) developed independently what is now considered - aside
from some important distinctions - the classic analysis of counterfactuals as “variable strict
conditionals” (the expression is from Lewis). Informally, a counterfactual A � B is true
under this analysis if and only if B is true in all possible worlds in which A is true that
are most similar (“closest”) to the world of evaluation. As for the Hoover case, Transitivity
fails because of the variability of the similarity relation: intuitively, in all worlds closest to
our world in which Hoover is a Russian, he is a Communist, and in all worlds closest to
our world in which he is a Communist, he is a traitor, but it is not the case that all worlds
closest to our world in which he is a Russian must be worlds in which he is a traitor. For
instance, he could have been born in Russia and lived as a good Communist.

The difference between Stalnaker’s and Lewis’s system is that Stalnaker makes, but
Lewis does not, two crucial stipulations: (i) the Uniqueness Assumption that there is at
most one closest world to the world of evaluation; (ii) the Limit Assumption that there is
at least one closest world to the world of evaluation.1 This makes for some subtle logical
distinctions, to which we will turn below, by way of concluding remarks. In this paper, we
concern ourselves only with Lewis’s account.

The classic analysis of counterfactuals is made possible by a Kripke-style relational
semantics for modal logic,2 one that Lewis augmented with a “similarity” metrics - in
effect a topological condition on a frame. The advent of Kripke frames marked a decisive
turning point for philosophical logic: earlier axiomatic studies of modal concepts were
replaced by a solid semantic method that displayed the connections between modal ax-
ioms and conditions on the accessibility relation between possible worlds. However, the
success of the semantic methods has not been followed by equally powerful syntactic
theories of modal and conditional concepts and reasoning, and this includes the case of
counterfactuals: Concerning the former, the situation was depicted by Melvin Fitting in his
article (2007) in the Handbook of Modal Logic as: “No proof procedure suffices for every
normal modal logic determined by a class of frames”; In the chapter on tableau systems for
conditional logics, Graham Priest states that there are presently no known tableau systems
for Lewis’s logic for counterfactuals (2008, p. 93). The present paper is a contribution to
fill in this gap by providing a proof-theoretic investigation of Lewis counterfactuals.3

In her article Proof analysis in modal logic, the first author showed in 2005 how Kripke
semantics can be exploited to enrich the syntax of systems of proof to answer to the
challenge of developing analytic proof systems for standard systems of modal logic.

1 Formally, the limit assumption states that for every world w and every proposition A there is a
world that satisfies A (in short, A-world) and which is closest to w. Lewis showed through an
example (Lewis 1973, p. 20) that for some propositions A a closest A-world does not exist. If l
is a given segment of length arbitrarily close to, say, one inch, and A is the proposition stating
that the length of l is greater than one inch, there are worlds wn where the length of l is 1 + 1/n
inches, but there is no world closest to the actual one where A is satisfied.

2 Cf. Kripke (1963).
3 From now on, we adopt the convention of writing “Lewis counterfactual” for “Lewis’s

counterfactual” much in the same style as “Kripke semantics.”
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The approach has been extended to wider frame classes in later work (Negri 2014), and
in Dyckhoff & Negri (2015) it was shown how the method can capture any nonclassical
logic characterized by arbitrary first-order frame conditions in their relational semantics.4

Notably, in these calculi, all the rules are invertible and a strong form of completeness
holds for them, with a simultaneous construction of formal proofs, for derivable sequents,
or countermodels, for underivable ones (Negri 2014a).

In particular, it has turned out that a more expressive language, with a formal notation
of labels to represent possible worlds, is the crucial component in answering to the chal-
lenge, set by the successful semantic methods, for a general proof theory of philosophical
logic. The way the rules of a labelled sequent calculus with good structural properties are
obtained from the semantic explanation of the logical constants is detailed for intuitionistic
and modal logic in Negri & von Plato (2015).5

The whole methodology is here extended to obtain analogous results for Lewis counter-
factuals. As mentioned above, Lewis’s truth conditions for counterfactuals are formulated
in terms of a notion of similarity that is defined by a ternary relation among possible worlds.
Formally, Lewis’s account is based on sphere semantics, a special form of neighbour-
hood semantics for conditionals. In this semantics, there is an ∃∀ nesting of quantifiers
in the truth conditions for the counterfactual conditional, which makes the determination
of the rules of the calculus an interesting and challenging task. Our solution uses indexed
modalities, which allow the splitting of the semantic clause in two separate parts, and
correspondingly, the dependence of the rules for the counterfactual conditional on rules
for the indexed modality, which are standard modal labelled rules. The result is a system,
called G3LC below, which is a sound and complete Gentzen-style sequent calculus for
the original Lewis counterfactual. The system has all the structural rules—weakening,
contraction, and cut—admissible, and all its rules are invertible.

Further comments on the characteristic properties of our approach in the context of
a broader discussion of previous proposals for the proof theory of counterfactuals are
postponed to the conclusion.

We introduce the system G3LC in Section 2 and then briefly discuss its extension
to a system provided with alethic modalities. In Section 3, we present some interest-
ing structural properties of G3LC and in particular a cut elimination theorem. Then we
show (Section 4) that Lewis’s axioms and rules are, respectively, admissible and derivable,
which allows us to show that the calculus is complete (by soundness and by Lewis’s own
proof of completeness). Finally, we prove directly completeness and decidability results in
Section 5. Related literature and further work are discussed in the concluding section.

§2. A sequent calculus for Lewis conditional. In this section, we shall present a
labelled sequent calculus for Lewis conditional starting from Lewis’s own semantics based
on a ternary relation (Lewis 1973, 1973a).

On the one hand the formulation of an analytic calculus for the Lewis counterfactual is
not an ad hoc process, but can be regarded as descending from an established methodol-
ogy, that we shall briefly summarize below. On the other hand, we are here considering
a much larger phenomenon that requires an extension of the methodology to account

4 Frame conditions beyond first-order formulations, such as Noetherianity, are covered in Negri
(2005) and Dyckhoff and Negri (2013).

5 See also the discussion in Read (2015), who shows—against charges of impurity—how the rules
of a labelled system obey the principles of inferentialism in no lesser way than the rules of
traditional Gentzen systems.
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for modalities—beyond the standard alethic ones—the explanation of which, in terms of
possible words, contains a nesting of quantifiers. Before diving into the subtleties of the
extension, we shall present the main ideas of the method.

The methodology for obtaining analytic sequent calculi for logics endowed with a re-
lational semantics (first presented in Negri 2005) is based on an internalization of the
semantics into the syntax of the calculus: to start with, the language is extended by labelled
formulas, of the form x : A, and by expressions of the form x Ry. Labelled formulas x : A
correspond to the statement that A is true at node/possible world x ; expressions of the form
x Ry correspond to relations between nodes/possible worlds in a frame. Once the language
has been extended, the way from meaning to rules goes along the following stages:6 first,
the compositional semantic clauses that define the truth of a formula at a world on the
basis of the truth of its components are translated into natural deduction inference rules
for labelled expressions. The logical structure of the semantic condition is replaced by
the structure of the rules, and quantification over worlds is replaced by the condition that
certain variables in the rules (eigenvariables) should be fresh. Secondly, through the use of
inversion principles one finds the corresponding elimination rules. As a third stage, such
rules are appropriately converted into sequent calculus rules; the translation from natural
deduction to sequent calculus will produce almost automatically a sequent calculus with
independent contexts, with right rules corresponding to the introduction rules of natural
deduction and the left rules corresponding to elimination rules. As a fourth stage the
calculus thus obtained is refined into a G3-style sequent calculus with invertible rules and
good structural properties. The characteristic frame properties that distinguish the modal
system at hand are converted into rules for the relational part of the calculus following
the method of translation of axioms into sequent calculus rules introduced in Negri & von
Plato (1998) for universal axioms and further developed in Negri (2003) and in Negri &
von Plato (2011) for geometric ones. In this way, the frame properties are carried over
to the calculus by the addition of rules for binary accessibility relations regarded as binary
atomic predicates with the labels as arguments. The same generality of relational semantics
is then achieved by proof systems. In the case of normal modal logics the method allows
one to obtain analytic sequent calculi for any system characterised by arbitrary first-order
frame conditions (Dyckhoff & Negri 2015).

The truth conditions for Lewis’s conditional are spelled out in terms of a three-place
similarity relation � among worlds, with the intuitive meaning of “x �w y” being “x is at
least as similar to w as y is”.

Lewis’s truth conditions for the counterfactual conditional are as follows:

w � A� B iff either

1. There is no x such that x � A, or

2. there is an x such that x � A and for all y, if y �w x then y � A ⊃ B.

As previously anticipated, the truth condition for A� B has a universal quantification in
the scope of an existential, and thus it is not of a form that can be directly translated into
rules following the method of generation of labelled sequent rules for intensional operators
(as expounded in Negri 2005); a more complex formalism in the line of the method of sys-
tems of rules (cf. Negri 2014) would have to be invoked to maintain the primitive language.

6 All these stages from meaning to rules are detailed in the case of intuitionistic and standard modal
logics in Negri & von Plato (2015).
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We observe however that the rules for the labelled calculus for Lewis’s conditional can
be presented following a general method for embedding the neighbourhood semantics for
non-normal modal logics into the standard relational semantics for normal modal systems
through the use of indexed modalities. The method is formulated in general terms in
Gasquet & Herzig (1996) for classical modal logics and used in Giordano et al. (2008)
for obtaining a tableau calculus for preference-based conditional logics.7 Specifically, the
relation of similarity is used to define a ternary accessibility relation

x Rw y ≡ y �w x .

In turn, this relation defines an indexed necessity modality with the truth condition

x � �w A iff for all y, if x Rw y then y � A .

Then the truth condition for the conditional gets replaced by the following

w � A� B iff either

1. There is no x such that x � A, or

2. there is x such that x � A and x � �w(A ⊃ B).

Observe that the presentation of a calculus formulated in terms of indexed modalities is
directly faithful to Lewis’s original idea of conditional implication as a variably strict
conditional.

The sequent system is obtained as an extension of the propositional part of the contraction
and cut-free sequent calculus G3K for basic modal logic introduced in Negri (2005). In
addition there are rules for the similarity and the equality relation. For the latter, we have
just two rules, reflexivity and the scheme of replacement, ReplAt, where At (x) stands for
an atomic labelled formula x : P or a relation of the form y = z, y Rwz, with x one of
y, w, z. Symmetry of equality follows as a special case of ReplAt as well as Euclidean
transitivity which, together with symmetry, gives the usual transitivity.8

The following properties are generally assumed for the ternary relation9:

1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x ,

3. �w-Minimality: If x �w w then x = w.

These correspond to the following sequent calculus rules:

x �w z, x �w y, y �w z, � ⇒ �

x �w y, y �w z, � ⇒ �
Trans

x �w y, � ⇒ � y �w x, � ⇒ �

� ⇒ �
SConn

x = w, � ⇒ �

x �w w, � ⇒ �
LMin

7 Further discussion on indexed modalities is postponed to the conclusion.
8 The general reasons for the architecture behind the rules of equality are discussed in section 6.5 of

Negri & von Plato (2001) for extensions of first-order systems and the equality rules for labelled
systems in Negri (2005) and Negri & von Plato (2011).

9 Lewis defined a strict relation ≺w as x ≺w y ≡ ¬y �w x and the condition of minimality was
formulated as: World w is ≺w-minimal, that is, for every x distinct from w we have w ≺w x . We
have preferred to give all the conditions in terms of just the primitive relation and use LMin as a
name of the corresponding rule-scheme.
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The intuitive meaning of the rules for the similarity relation is obtained directly by rephras-
ing them in terms of the meaning of the ternary similarity relation. For example,
�w-Minimality asserts that every world is as close as possible to itself.

Strongly connected similarity systems are immediately seen to be reflexive. It follows
that the rule corresponding to reflexivity of the relation Rw

x Rwx, � ⇒ �

� ⇒ �
RefR (x, w in �,�)

need not be taken as a primitive rule of the calculus because it is derivable, simply by
writing its premiss twice and applying SConn. This admissible rule will be useful to
simplify the derivation of the third of the Lewis axioms below.

With this preparation, the rules for Lewis conditional can be obtained from its truth con-
dition following the general method for turning the truth conditions of alethic modalities
into rules of a labelled sequent calculus. Since the truth condition for the Lewis conditional
is a disjunction of two conditions, there are two right rules and one left rule with two
premisses.

z : A, � ⇒ �, w : A� B
� ⇒ �, w : A� B

R�1 (z fresh)

� ⇒ �, w : A� B, x : A � ⇒ �, w : A� B, x : �w(A ⊃ B)

� ⇒ �, w : A� B
R�2

w : A� B, � ⇒ �, z : A x : A, x : �w(A ⊃ B), � ⇒ �

w : A� B, � ⇒ �
L� (x fresh)

The rules for the propositional part are standard and the rules for indexed modalities are
very much like the rules for the alethic modality. The system is presented in Table 1.

We can now state a couple of important results that will be needed below. First we need
a definition of weight of formulas:

DEFINITION 2.1. The weight w(A) of a formula A is defined inductively by the following:
w(γ ) = 1 for γ the constant ⊥, an atomic formula, or a relational atom,
w(A ◦ B) = w(A) + w(B) + 1 for ◦ conjunction, disjunction, or implication,
w(�x A) = w(A) + 1,
w(A� B) = w(A) + w(B) + 3.

Observe that since we have taken negation ¬A as defined by A ⊃⊥, we have w(¬A) ≡
w(A) + 2. Observe also that w(�x (A ⊃ B)) < w(A� B).

We can further prove the following lemma:

LEMMA 2.2. All the sequents of the form x : A, � ⇒ �, x : A are derivable in G3LC.

Proof. By induction on the weight of A. The base cases, with weight 1, hold because
x : A, � ⇒ �, x : A is either an initial sequent or conclusion of L ⊥. The inductive
steps, the propositional cases as well as the case of A ≡ �w A are obtained by root-first
application of the right and left rules of the outermost connective of A and the inductive
hypothesis. If A is B � C we have the following derivation, with the leaves derivable by
inductive hypothesis:

z : B, x : B � C, � ⇒ �, x : B � C, z : B

y : B, y : �x (B ⊃ C), z : B, � ⇒ �, x : B � C, y : B y : B, y : �x (B ⊃ C), z : B, � ⇒ �, x : B � C, y : �x (B ⊃ C)

y : B, y : �x (B ⊃ C), z : B, � ⇒ �, x : B � C
R �2

z : B, x : B � C, � ⇒ �, x : B � C
L �

x : B � C, � ⇒ �, x : B � C
R �1

�
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Table 1. Lewis counterfactual conditional sequent system (G3LC)
based on ternary similarity

Initial sequents:

x : P, � ⇒ �, x : P

Propositional rules:

x : A, x : B, � ⇒ �

x : A&B, � ⇒ �
L&

� ⇒ �, x : A � ⇒ �, x : B
� ⇒ �, x : A&B

R&

x : A, � ⇒ � x : B, � ⇒ �

x : A ∨ B, � ⇒ �
L∨ � ⇒ �, x : A, x : B

� ⇒ �, x : A ∨ B
R∨

� ⇒ �, x : A x : B, � ⇒ �

x : A ⊃ B, � ⇒ �
L⊃ x : A, � ⇒ �, x : B

� ⇒ �, x : A ⊃ B
R⊃

x :⊥, � ⇒ �
L⊥

Similarity rules:

x Rwz, x Rw y, y Rwz, � ⇒ �

x Rw y, y Rwz, � ⇒ �
Trans

x Rw y, � ⇒ � y Rwx, � ⇒ �

� ⇒ �
SConn (x, y, w in �, �)

x = x, � ⇒ �

� ⇒ �
Ref (x in �,�)

x = y, At (x), At (y), � ⇒ �

x = y, At (x), � ⇒ �
ReplAt

x = w,wRwx, � ⇒ �

wRwx, � ⇒ �
LMin

Conditional rules:

x Rw y, � ⇒ �, y : A
� ⇒ �, x : �w A

R�w (y fresh)
x Rw y, x : �w A, y : A, � ⇒ �

x Rw y, x : �w A, � ⇒ �
L�w

z : A, � ⇒ �,w : A� B
� ⇒ �,w : A� B

R�1 (z fresh)

� ⇒ �,w : A� B, x : A � ⇒ �, w : A� B, x : �w(A ⊃ B)

� ⇒ �,w : A� B
R�2

w : A� B, � ⇒ �, z : A x : A, x : �w(A ⊃ B), � ⇒ �

w : A� B, � ⇒ �
L� (x fresh)

2.1. Adding the alethic modality. We can consider also alethic modalities defined in
terms of a suitable binary accessibility relation R defined in terms of the given ternary
relation. Building on Lewis’s idea10 that worlds accessible from x are worlds in the union
of the set of spheres around x , and using the relation between spheres and ternary relations,

10 Cf. Counterfactuals, pp. 22–23, where such modalities—called outer modalities—are defined
through the conditional and characterized semantically through systems of spheres.
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we establish the following equivalence:

x Ry ≡ z Rx y for some z

By standard prenex conversions we thus have that the alethic modality defined by R is
expressed, in terms of the ternary accessibility relations, as follows:

x � �A iff for all z and y, if z Rx y then y � A

The forcing condition gives the following rules for � in terms of the ternary accessibility
relation

y : A, x : �A, z Rx y, � ⇒ �

x : �A, z Rx y, � ⇒ �
L�

z Rx y, � ⇒ �, y : A
� ⇒ �, x : �A

R� (y, z fresh)

As usual for systems with a classical base, � does not have to be treated separately since
it can defined in terms of � and negation.

The definition of necessity in terms of conditional

�A ≡ ¬A� A

can now be formally derived as an equivalence in the calculus G3LC extended with the
above two rules as follows (for brevity, we omit to copy the main formula in the premisses).
In one direction we have

z : ¬A ⇒ z : ¬A

z Rx y, y : ¬A, x : �A, y : A ⇒ y : A
z Rx y, y : ¬A, x : �A ⇒ y : A

L�

z Rx y, x : �A ⇒ y : ¬A ⊃ A
R⊃

x : �A ⇒ z : �x (¬A ⊃ A)
R�x

z : ¬A, x : �A ⇒ x : ¬A� A
R�2

x : �A ⇒ x : ¬A� A
R�1

where the topmost sequents are derivable by Lemma 2.2. For the converse direction we
have

z Rx y, y : A,⇒ y : A
z Rx y ⇒ y : A, y : ¬A

R¬

z Rx y, wRxw,w : ¬A, w : ¬A ⊃ A ⇒ y : A

z Rx y, wRxw,w : ¬A, w : �x (¬A ⊃ A) ⇒ y : A
L�x

z Rx y, w : ¬A, w : �x (¬A ⊃ A) ⇒ y : A
RefR

z Rx y, x : ¬A� A ⇒ y : A
L�

x : ¬A� A ⇒ x : �A
R�

where the topmost sequents are derivable, the left one by Lemma 2.2 and the right one by
a step of L ⊃ and Lemma 2.2. The similar proof of the equivalence

�A ≡ ¬(A� ¬A)

is left to the reader.
The above rules for � are found in full generality. In the case we are considering the

rules can be simplified because Rx is a reflexive relation and therefore R then turns out
to be total; the necessity modality then becomes the universal modality and the rules are
simply obtained by removing the accessibility relation.

y : A, x : �A, � ⇒ �

x : �A, � ⇒ �
L�

� ⇒ �, y : A
� ⇒ �, x : �A

R� (y fresh)
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If the analysis of counterfactuals is embedded in a Kripke frame for modalities, then the
truth conditions are the following11:

w � A� B iff either

1. There is no z such that wRz and z � A, or

2. there is x such that wRx and x � A and for all y, if y �w x then y � A ⊃ B.

Lewis also considers another possibility for the definition of an alethic modality in terms
of counterfactuals12, namely what he calls inner modality and denotes by ·�A, with the
condition of being true at a world w if there is a non-empty sphere around w where A is
true in every world. In our setting, in terms of similarity systems, the condition becomes

x � ·�A iff there is y such that for all z, if y Rx z then z � A

and the corresponding rules are then easily formulated in terms of indexed modalities

y : �x A, � ⇒ �

x : ·�A, � ⇒ �
L ·� (y fresh)

� ⇒ �, x : ·�A, y : �x A
� ⇒ �, x : ·�A

R ·�

The equivalence of ·�A and 
� A is then shown by the following derivations

. . . ⇒ z : 

y : �x (
 ⊃ A) ⇒ x : ·�A, y : �x A

y : �x (
 ⊃ A) ⇒ x : ·�A
L ·�

x : 
� A ⇒ x : ·�A
L�

and
. . . ⇒ z : 
 y : �x A ⇒ y : �x (
 ⊃ A)

y : �x A ⇒ x : 
� A
R�

x : ·�A ⇒ x : 
� A
L ·�

where the topsequents are easily derivable.
For the sake of simplicity, we shall refer below only to the version of the system without

an accessibility relation, but the same results can be obtained, mutatis mutandis for the full
systems. To consider the system without an accessibility relation is equivalent to assuming
that the accessibility relation is total, i.e. that all the worlds are accessible as in the case here
considered. The analysis thus becomes relevant when one considers weaker conditions on
the similarity system.

§3. Structural properties. The proof of admissibility of the structural rules in G3LC
follows the pattern presented in Negri & von Plato (2011), section 11.4. Likewise, some
preliminary results are needed, namely height-preserving admissibility of substitution (in
short, hp-substitution) and height-preserving invertibility (in short, hp-invertibility) of the
rules. We recall that the height of a derivation is its height as a tree, i.e. the length of its
longest branch, and that �n denotes derivability with derivation height bounded by n in a
given system. In what follows, the results are all referred to system G3LC. The definition
of substitution of labels is obtained by extending in the obvious way the clauses given in
the definition of substitution given in the aforementioned reference to the ternary relations
and the indexed modalities of G3LC.

11 Cf. Counterfactuals, p. 49.
12 Cf. Counterfactuals, p. 30.
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PROPOSITION 3.1. If �n � ⇒ �, then �n �(y/x) ⇒ �(y/x).

Proof. By induction on the height of the derivation. If it is 0, then � ⇒ � is an
initial sequent or a conclusion of L⊥. Then the same is true of �(y/x) ⇒ �(y/x). If
the derivation height is n > 0, we consider the last rule in the derivation. If � ⇒ � has
been derived by a propositional or a relational rule, or by L�w or R �2, we apply the
induction hypothesis and then the rule. Rules with variable conditions require that we avoid
a clash of the substituted variable with the fresh variable in the premiss. This is the case
of R�w, R �1, and L �. So, if � ⇒ � has been derived by any of these rules, we
apply the inductive hypothesis twice to the premiss, first to replace the fresh variable with
another fresh variable different, if necessary, from the one we want to substitute, then to
make the substitution, and then apply the rule. �

PROPOSITION 3.2. The rules of left and right weakening are hp-admissible in G3LC.

Proof. Straightforward induction, with a similar proviso as in the above proof for rules
with variable conditions. �

Next, we prove hp-invertibility of the rules of G3LC, i.e. for every rule of the form
�′⇒�′
�⇒� , if �n � ⇒ � then �n �′ ⇒ �′, and for every rule of the form �′⇒�′ �′′⇒�′′

�⇒� if
�n � ⇒ � then �n �′ ⇒ �′ and �n �′′ ⇒ �′′.

LEMMA 3.3. All the propositional rules of G3LC are hp-invertible.

Proof. Similar to the proof of Lemma 11.7 in Negri & von Plato (2011). �

LEMMA 3.4. The following hold:

(i) If �n � ⇒ �, x : �w A, then �n x Rw y, � ⇒ �, y : A,

(ii) If �n w : A� B, � ⇒ �, then �n x : A, x : �w(A ⊃ B), � ⇒ �.

Proof. Both proofs are by induction on n.
(i) Base case: suppose that � ⇒ �, x : �w A is an initial sequent or conclusion of L⊥.

Then, in the former case, x : �w A not being atomic, x Rw y, � ⇒ �, y : A is an initial
sequent, in the latter it is a conclusion of L ⊥. Inductive step: assume hp-invertibility up
to n, and assume �n+1 � ⇒ �, x : �w A. If x : �w A is principal, then the premiss
x Rw y, � ⇒ �, y : A (possibly obtained through hp-substitution) has a derivation of
height n. Otherwise, it has one or two premisses of the form �′ ⇒ �′, x : �w A of
derivation height ≤ n. By induction hypothesis we have x Rw y, �′ ⇒ �′, y : A for each
premiss, with derivation height at most n. Thus, �n+1 x Rw y, y : A, � ⇒ �, y : A.

(ii) Base case: Similar to the above. Inductive step: assume hp-invertibility up to n, and
assume �n+1 w : A � B, � ⇒ �. If w : A � B is principal in the last rule, then the
left premiss is, or gives by hp-substitution on the eigenvariable, a derivation of height at
most n of x : A, x : �w(A ⊃ B), � ⇒ �. If the last rule is a relational rule, or a logical
rule in which w : A � B is not principal, consider the one or two premisses of the form
w : A� B, �′ ⇒ �′ of derivation height ≤ n. Then, by induction hypotesis, we have at
most �n x : A, x : �w(A ⊃ B), �′ ⇒ �′ for each premiss. By application of the last rule,
the conclusion �n+1 x : A, x : �w(A ⊃ B), � ⇒ � follows. �

Observe that Lemma 3.4(ii) states hp-invertibility of L � with respect to the second
premiss; its hp-invertibility with respect to the first premiss is a special case of Proposi-
tion 3.2. Therefore, as a general result, we have:
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COROLLARY 3.5. All the rules of G3LC are hp-invertible.

Proof. By Lemmas 3.3 and 3.4, and Proposition 3.2 for all the other cases. �
The rules of contraction of G3LC have the following form, where φ is either a relational

atom of the form x Rw y or a labelled formula x : A:

φ, φ, � ⇒ �

φ, � ⇒ �
LC

� ⇒ �, φ, φ

� ⇒ �, φ
RC

Since relational atoms never appear on the right, there are just three contraction rules to be
considered. We do not need to give different names for these rules since we can prove that
all of them are hp-admissible:

THEOREM 3.6. The rules of left and right contraction are hp-admissible in G3LC.

Proof. By simultaneous induction on the height of derivation for left and right contrac-
tion.

If n = 0 the premiss is either an initial sequent or a conclusion of a zero-premiss rule.
In each case, the contracted sequent is also an initial sequent or a conclusion of the same
zero-premiss rule.

If n > 0, consider the last rule used to derive the premiss of contraction. If the con-
traction formula is not principal in it, both occurrences are found in the premisses of the
rule and they have a smaller derivation height. By the induction hypothesis, they can be
contracted and the conclusion is obtained by applying the rule to the contracted premisses.
If the contraction formula is principal in it, we distinguish three cases: 1. A rule in which
the principal formulas appear also in the premiss (such as Trans, SConn, LMin, the left rule
for �w or the rules for�). 2. A rule in which the active formulas are proper subformulas
of the principal formula (such as the rules for &, ∨, ⊃). 3. A rule in which active formulas
are relational atoms and proper subformulas of the principal formula (like rule R�w). 4.
Rule L�.

In the first case we have, for instance,

x Rw y, x : �w A, x : �w A, y : A, � ⇒ �

x Rw y, x : �w A, x : �w A, � ⇒ �
L�w

By the induction hypothesis applied to the premiss we obtain

x Rw y, x : �w A, y : A, � ⇒ �

with height n, and by a step of L�w we have

x Rw y, x : �w A, � ⇒ �

with height n + 1.
In the second case, contraction is reduced to contraction on shorter derivations (and

smaller formulas).
In the third case, a subformula of the contraction formula and a relational atom are found

in the premiss, for instance

x Rw y, � ⇒ �, x : �w A, y : A
� ⇒ �, x : �w A, x : �w A

R�w

By Lemma 3.4 applied to the premiss, we obtain a derivation of height n − 1 of

x Rw y, x Rw y, � ⇒ �, y : A, y : A
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that yields, by the induction hypothesis for left and right contraction, a derivation of height
n − 1 of

x Rw y, � ⇒ �, y : A

and the conclusion � ⇒ �, x : �w A follows in one more step by R�w.
Finally, if the premiss of contraction is derived by L� we have

w : A� B, w : A� B, � ⇒ �, z : A x : A, x : �w(A ⊃ B), w : A� B, � ⇒ �

w : A� B, w : A� B, � ⇒ �
L�

By inductive hypothesis applied to the left premiss we have a derivation of height n − 1
of w : A � B, � ⇒ �; by Lemma 3.4 and inductive hypothesis applied to the second
premiss we have a derivation of height n − 1 of x : A, x : �w(A ⊃ B), � ⇒ �. Thus, by
a step of L� we obtain a derivation of height n of w : A� B, � ⇒ �. �

THEOREM 3.7. Cut is admissible in G3LC.

Proof. The proof is by induction on the weight of the cut formula and subinduction
on the sum of the heights of derivations of the premisses (cut-height). The cases pertaining
initial sequents and the propositional rules of the calculus are dealt with as in Theorem 11.9
of Negri & von Plato (2011) and therefore omitted here. Also the cases with cut formula
not principal in both premisses of cut are dealt with in the usual way by permutation of
cut, with possibly an application of hp-substitution to avoid a clash with the fresh variable
in rules with variable condition. So, the only cases to focus on are those with cut formula
of the form �w A or A � B which is principal in both premisses of cut. The former case
presents, apart from the indexing on the accessibility relation, no difference with respect to
the case of a plain modality, so we proceed to analyse the latter. This case splits into two
cases, depending on whether the left premiss is derived by R�1 or R�2.

In the first case we have a derivation of the form

D1
y : A, � ⇒ �, w : A� B

� ⇒ �, w : A� B
R�1

D2
w : A� B, �′ ⇒ �′, z : A

D3
y : A, y : �w(A ⊃ B), �′ ⇒ �′

w : A� B, �′ ⇒ �′ L�

�, �′ ⇒ �, �′ Cut

This is converted into a derivation with three cuts of reduced height as follows (we have to
split the result of the conversion to fit it in the page): First, we have a derivation D4

D1
� ⇒ �, w : A� B

D2
w : A� B, �′ ⇒ �′, z : A

�, �′ ⇒ �, �′, z : A
Cut

Further, by application of hp-substitution, we have another derivation D5

D1(z/y)
z : A, � ⇒ �, w : A� B

D2
w : A� B, �′ ⇒ �′, z : A

D3
y : A, y : �w(A ⊃ B), �′ ⇒ �′

w : A� B, �′ ⇒ �′ L�

z : A, �, �′ ⇒ �, �′ Cut

The two derivations are then used as premisses of a third cut of reduced weight as follows

D4
�, �′ ⇒ �, �′, z : A

D5
z : A, �, �′ ⇒ �, �′

�2, �′2 ⇒ �2, �′2 Cut

�, �′ ⇒ �, �′ Ctr∗
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In the second case we have a derivation of the form
D1

� ⇒ �, w : A� B, x : A
D2

� ⇒ �, w : A� B, x : �w(A ⊃ B)

� ⇒ �,w : A� B
R�2

D3

w : A� B, �′ ⇒ �′, z : A
D4

y : A, y : �w(A ⊃ B), �′ ⇒ �′

w : A� B, �′ ⇒ �′ L�

�,�′ ⇒ �, �′ Cut

The cut is converted into four cuts of reduced height or weight of cut formula as follows:
First we have the derivation (call it D5)

D1
� ⇒ �, w : A� B, x : A

D3
w : A� B, �′ ⇒ �′, z : A

D4
y : A, y : �w(A ⊃ B), �′ ⇒ �′

w : A� B, �′ ⇒ �′ L�

�, �′ ⇒ �, �′, x : A
Cut

with a cut of reduced height. We also have the derivation (call it D6)

D2
� ⇒ �, w : A� B, x : �w(A ⊃ B)

D3

w : A� B, �′ ⇒ �′, z : A
D4

y : A, y : �w(A ⊃ B), �′ ⇒ �′

w : A� B, �′ ⇒ �′ L�

�, �′ ⇒ �, �′, x : �w(A ⊃ B)
Cut

D4(x/y)

x : A, x : �w(A ⊃ B), �′ ⇒ �′

x : A, �, �′2 ⇒ �, �′2 Cut

with two cuts, the upper of reduced height, and the lower of reduced weight; finally we
obtain the derivation

D5 D6

�2, �′3 ⇒ �2, �′3 Cut

�, �′ ⇒ �, �′ Ctr∗

with a cut of reduced weight and repeated applications of contraction. �
To ensure the consequences of cut elimination we need to establish another crucial

property of our system. We say that a labelled system has the subterm property if every
variable occurring in any derivation is either an eigenvariable or occurs in the conclusion.13

Clearly, the rules of G3LC do not, as they stand, satisfy the subterm property, but we can
prove that we can, without loss of generality, restrict proof search to derivations that have
the subterm property.

PROPOSITION 3.8. Every sequent derivable in G3LC is derivable by a derivation that
satisfies the subterm property.

Proof. By induction on the height of the derivation. For the inductive step, the conclusion
follows immediately if the last step is one of the rules in which all the labels in the
premisses satisfy the subterm property. For the other rules (in this specific calculus, rules
Ref and R�1), we consider the violating cases in which the premisses contain a label
which is not in the conclusion. Using hp-substitution, we replace it to a label in the con-
clusion and obtain a derivation of the same height that satisfies the subterm property. �

By the above result, in the following we shall always restrict attention to derivations
with the subterm property.

§4. Lewis’s axioms and rules. In this section we shall prove that Lewis’s axiomatic
system for counterfactuals VC, regarded as Lewis’s official logic of counterfactuals, is

13 This property is called analyticity in Dyckhoff and Negri (2012).
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captured by our system G3LC by showing that Lewis’s axioms are provable in G3LC and
that the inference rules of VC are admissible.14 Together with a proof of soundness of our
rules with respect to Lewis’s semantics for counterfactuals based on a ternary accessibility
relation, this result will give an indirect completeness proof for our system. We shall
however present in Section 5 a direct completeness proof for G3LC with respect to the
same semantics. For brevity, in the following proofs the repetition of the main formula in
the premisses is not indicated.

As discussed in natural language examples at the beginning, the counterfactual condi-
tional is not, in general, transitive, and therefore a rule of the form

� D � A � A� B
� D � B (1)

should not be taken as part of the corresponding axiomatic system. A form of transitivity
does however hold, namely

� D � A � A ⊃ B
� D � B (2)

Such a rule follows through modus ponens from

� A ⊃ B
� (D � A) ⊃ (D � B) (3)

In the other direction, observe that 3 does not follow from 2 by the deduction theorem
because the antecedent in question is a derivation, not an assumption.15 However, some-
thing stronger than 2 does hold in a system assumed to be complete with respect to Lewis
semantics, namely, for an arbitrary world w we have, directly from the definitions,

w � D � A � A ⊃ B
w � D � B (4)

In turn, 3 is obtained from 4 by definition of validity of material implication and com-
pleteness. The generalisation in 3 to an antecedent of implication formed by an n-ary
conjunctions is called deduction within conditionals and is one of the three rules of the
Hilbert system for Lewis counterfactual. The other rules are modus ponens and interchange
of logical equivalents.

PROPOSITION 4.1. The following rules are admissible in G3LC:

1. Modus Ponens:
� A � A ⊃ B

� B

2. Deduction within Conditionals: for any n ≥ 1

� A1& . . . &An ⊃ B
� ((D � A1)& . . . &(D � An)) ⊃ (D � B)

3. Interchange of logical equivalents: if � A ⊃⊂ B and � �(A) then � �(B), where
� is an arbitrary formula in the language.

14 Cf. p. 132 of Counterfactuals.
15 For a discussion on these distinctions for the deduction theorem, its validity, and claims of failure,

especially in relation to modal systems, see Hakli & Negri (2012).
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Proof. (1) The rule of modus ponens of an axiomatic system is translated as the sequent
calculus rule

⇒ x : A ⇒ x : A ⊃ B
⇒ x : B

The rule is shown admissible in G3LC using invertibility of R ⊃ and admissibility of cut.
(2) Assume ⇒ z : A1& . . . &An ⊃ B for an arbitrary z. By invertibility of R ⊃ and

L& we obtain z : A1, . . . , z : An ⇒ z : B. Then for an arbitrary x we have to derive
⇒ x : ((D � A1)& . . . &(D � An)) ⊃ (D � B). Consider the following proof
search (divided in two parts for lack of page width):16

z : D ⇒ z : D

....
y1 : D, . . . , yn : D, y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An) ⇒ x : D � B

z : D, x : D � A1, . . . , x : D � An ⇒ x : D � B
L�, n times

x : D � A1, . . . , x : D � An ⇒ x : D � B
R�1

x : (D � A1)& . . . &(D � An) ⇒ x : D � B
L&, n times

⇒ x : ((D � A1)& . . . &(D � An)) ⊃ (D � B)
R⊃

y1 Rx w1, . . . , yn Rx wn , y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An), w1 : D, . . . , wn : D ⇒ w1 : B, . . . , wn : B

y1 Rx w1, . . . , yn Rx wn , y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An) ⇒ w1 : D ⊃ B, . . . , wn : D ⊃ B
R⊃, n times

y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An) ⇒ y1 : �x (D ⊃ B), . . . , yn : �x (D ⊃ B)
R�x , n times

y1 : D, . . . , yn : D, y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An) ⇒ x : D � B
R�2, n times

Observe that we cannot conclude by applications of L�x to obtain a sequent derivable
from the assumption because the formulas in the right topsequent of the above tree have
different labels by the freshness conditions. Instead we apply at most n times SConn with
the following pattern on the right premiss:

.

.

.
y1 Rx y3, y1 Rx y2, �

′′ ⇒ �

.

.

.
y3 Rx y1, y1 Rx y2, �

′′ ⇒ �

y1 Rx y2, �
′ ⇒ �

.

.

.
y2 Rx y3, y2 Rx y1, �

′′′ ⇒ �

.

.

.
y3 Rx y2, y2 Rx y1, �

′′′ ⇒ �

y2 Rx y1, �
′ ⇒ �

y1 Rx w1, . . . , yn Rx wn , � ⇒ �

Thus by Trans at each topsequent there is a yh such that y1 Rx yh, . . . , yn Rx yh . Correspond-
ingly, there is a wh such that (again by n applications of Trans), y1 Rxwh, . . . , yn Rxwh . On
this wh we apply n times L�x , obtaining the following (the relational atoms are omitted
for brevity):

wh : D ⇒ wh : D wh : A1, . . . , wh : An ⇒ wh : B
wh : D ⊃ A1, . . . , wh : D ⊃ An, wh : D ⇒ wh : B

L⊃, n times

y1 : �x (D ⊃ A1), . . . , yn : �x (D ⊃ An), wh : D ⇒ wh : B
L�x , n times

The right premiss is now derivable from the assumption (with the arbitrary label z chosen
to be wh).

(3) By induction on the structure of �. If � is ⊥ or an atomic formula the claim is trivial;
if it is a conjunction, disjunction, implication, or an indexed modality, corresponding steps
and invertibility of R ⊃ give the claim. If � is a conditional and the interchange is done in
the succedent, the conclusion follows from (2). If the interchange is in the antecedent, the

16 For brevity, some of the repetitions of principal formulas in the premisses as well as the derivable
left premisses of R�2 have been omitted. Use of indexes for formulas should be obvious.
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claim follows from admissibility of

� A ⊃⊂ B
A� C � B � C

First, we observe that from the assumption we have that for arbitrary y, z the sequents
y : A ⇒ y : B and z : B ⇒ z : A are derivable, hence also the sequent y : �w(A ⊃ C) ⇒
y : �w(B ⊃ C) is. We then have the following derivation

z : B ⇒ z : A
. . . y : A ⇒ y : B . . . . . . y : �w(A ⊃ C) ⇒ y : �w(B ⊃ C) . . .

y : B, y : �w(A ⊃ C) ⇒ w : B � C
R�2

z : B, w : A� C ⇒ w : B � C
L�

w : A� C ⇒ w : B � C
R�1 �

Next, we prove that all the axioms of VC are derivable in G3LC, i.e. for each axiom A the
sequent ⇒ x : A is derivable in the calculus where x is an arbitrary label.

PROPOSITION 4.2. The following are derivable in G3LC:

1. Propositonal tautologies,

2. A� A,

3. (¬A� A) ⊃ (B � A),

4. (A� ¬B) ∨ (((A&B)� C) ⊃⊂ (A� (B ⊃ C))),

5. (A� B) ⊃ (A ⊃ B),

6. (A&B) ⊃ (A� B).

Proof. All propositional tautologies are clearly derivable because G3LC is an exten-
sion of a complete calculus for classical propositional logic. For items 2–6 we have the
following derivations:
(2)

z : A ⇒ z : A

z Rx y, z : A, y : A ⇒ y : A
z Rx y, z : A ⇒ y : A ⊃ A

R⊃

z : A ⇒ z : �x (A ⊃ A)
R�x

z : A ⇒ x : A� A
R�2

⇒ x : A� A
R�1

(3)

z : B ⇒ z : B

y : A ⇒ y : A
⇒ y : A, y : ¬A

R⊃

w : A ⇒ w : A
⇒ w : ¬A, w : A

R⊃

w : ¬A ⇒ w : ¬A
L⊃ w : A ⇒ w : A

w : ¬A, w : A ⇒ L⊃

wRxw, w : ¬A, w : ¬A ⊃ A ⇒ L⊃

wRxw, w : ¬A, w : �x (¬A ⊃ A) ⇒ L�x

w : ¬A, w : �x (¬A ⊃ A) ⇒ Ref

z Rx y, y : B, x : ¬A� A ⇒ y : A
L�

z Rx y, x : ¬A� A ⇒ y : B ⊃ A
R⊃

x : ¬A� A ⇒ z : �x (B ⊃ A)
R�x

z : B, x : ¬A� A ⇒ x : B � A
R�2

x : ¬A� A ⇒ x : B � A
R�1

⇒ x : (¬A� A) ⊃ (B � A)
R⊃
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(4)
...

⇒ x : A� ¬B, x : A&B � C ⊃⊂ A� (B ⊃ C)
R&

⇒ x : (A� ¬B) ∨ (A&B � C ⊃⊂ A� (B ⊃ C))
R∨

The proof branches; we continue below with the two premisses

⇒ x : A� ¬B, x : ((A&B)� C) ⊃ (A� (B ⊃ C))

and

⇒ x : A� ¬B, x : (A� (B ⊃ C)) ⊃ ((A&B)� C)

Proof of the former:17

y : A ⇒ y : A y : B ⇒ y : B

y : A, y : B ⇒ y : A&B
R&

t : A ⇒ t : A t : B ⇒ t : B
t : A, t : B ⇒ t : A&B

R&
t : C ⇒ t : C

t : A&B ⊃ C, t : A, t : B ⇒ t : C
L⊃

t : A&B ⊃ C, t : A ⇒ t : B ⊃ C
R⊃

wRx t, t : A&B ⊃ C ⇒ t : A ⊃ (B ⊃ C)
R⊃

wRx t, w : �x (A&B ⊃ C) ⇒ t : A ⊃ (B ⊃ C)
L�x

w : A, w : B, w : �x (A&B ⊃ C) ⇒ w : �x (A ⊃ (B ⊃ C))
R�x

w : A, w : B, w : �x (A&B ⊃ C) ⇒ x : A� (B ⊃ C)
R�2

w : A&B, w : �x (A&B ⊃ C) ⇒ x : A� (B ⊃ C)
L&

y : A, y : B, x : A&B � C ⇒ x : A� (B ⊃ C)
L�

y : A, x : A&B � C ⇒ y : ¬B, x : A� (B ⊃ C)
R⊃

z Rx y, x : A&B � C ⇒ y : A ⊃ ¬B, x : A� (B ⊃ C)
R⊃

x : A&B � C ⇒ z : �x (A ⊃ ¬B), x : A� (B ⊃ C)
R�x

z : A, x : A&B � C ⇒ x : A� ¬B, x : A� (B ⊃ C)
R�2

x : A&B � C ⇒ x : A� ¬B, x : A� (B ⊃ C)
R�1

⇒ x : A� ¬B, x : A&B � C ⊃ A� (B ⊃ C)
R⊃

Proof of the latter:18

y : A ⇒ y : A y : B ⇒ y : B

y : A, y : B ⇒ y : A&B
R&

z : A ⇒ z : A
z : B ⇒ z : B z : C ⇒ z : C

z : B, z : B ⊃ C ⇒ z : C
L⊃

z : A, z : B, z : A ⊃ (B ⊃ C) ⇒ z : C
L⊃

wRx z, wRx y, y Rx z, z : A&B, z : A ⊃ (B ⊃ C) ⇒ z : C
L&

wRx z, wRx y, y Rx z, z : A&B, w : �x (A ⊃ (B ⊃ C)) ⇒ z : C
L�x

wRx y, y Rx z, z : A&B, w : �x (A ⊃ (B ⊃ C)) ⇒ z : C
T rans

wRx y, y Rx z, w : �x (A ⊃ (B ⊃ C)) ⇒ z : A&B ⊃ C
R⊃

wRx y, w : �x (A ⊃ (B ⊃ C)) ⇒ y : �x (A&B ⊃ C)
R�x

wRx y, y : A, y : B, w : �x (A ⊃ (B ⊃ C)) ⇒ x : A&B � C
R�2

wRx y, y : A, w : �x (A ⊃ (B ⊃ C)) ⇒ y : ¬B, x : A&B � C
R⊃

wRx y, w : �x (A ⊃ (B ⊃ C)) ⇒ y : A ⊃ ¬B, x : A&B � C
R⊃

w : A, w : �x (A ⊃ (B ⊃ C)) ⇒ w : �x (A ⊃ ¬B), x : A&B � C
R�x

w : A, w : �x (A ⊃ (B ⊃ C)) ⇒ x : A� ¬B, x : A&B � C
R�2

t : A, x : A� (B ⊃ C) ⇒ x : A� ¬B, x : A&B � C
L�

x : A� (B ⊃ C) ⇒ x : A� ¬B, x : A&B � C
R�1

⇒ x : A� ¬B, x : A� (B ⊃ C) ⊃ A&B � C
R⊃

17 Here an below, to save space, the (derivable) premisses of R�2 and L� that have the same
formula in the antecedent and succedent have been omitted.

18 Observe that this derivation, among others, shows that the left premiss of R�2 is not
dispensable.
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(5)

w : A ⇒ w : A w : B ⇒ w : B
w : A ⊃ B, w : A ⇒ w : B

L⊃

wRxw,w : �x (A ⊃ B), w : A ⇒ w : B
L�x

x = w, x Rxw,w : �x (A ⊃ B), x : A ⇒ x : B
Repl

x Rxw,w : �x (A ⊃ B), x : A ⇒ x : B
L Min

x : A ⇒ x : A x : B ⇒ x : B
x : A ⊃ B, x : A ⇒ x : B

L⊃

wRx x, w : �x (A ⊃ B), x : A ⇒ x : B
L�x

w : A, w : �x (A ⊃ B), x : A ⇒ x : B
SConn

x : A� B, x : A ⇒ x : B
L�

x : A� B ⇒ x : A ⊃ B
R⊃

⇒ x : A� B ⊃ (A ⊃ B)
R⊃

(6)

x : A ⇒ x : A

y : A, y : A, y : B ⇒ y : B
y : A, y : B ⇒ y : A ⊃ B

R⊃

x = y, x Rx y, x : A, x : B ⇒ y : A ⊃ B
Repl

x Rx y, x : A, x : B ⇒ y : A ⊃ B
L Min

x : A, x : B ⇒ x : �x (A ⊃ B)
R�x

x : A, x : B ⇒ x : A� B
R�2

x : A&B ⇒ x : A� B
L&

⇒ x : (A&B) ⊃ (A� B)
L⊃

�

4.1. Equivalence with L-SC. We can show that the rules of G3LC are interderivable
with Lewis’s defining semantic condition for the counterfactual, suitably formalized in a
first-order language with variables ranging over possible worlds as follows:

w : A� B ⊃⊂ ∀z(z : ¬A) ∨ ∃x(x : A ∧ x : �w(A ⊃ B)) L-SC

For brevity, we will shorten the right-hand side of the biconditional L-SC with the
letter K .

Observe that the proofs below use a hybrid language with metalinguistic elements which
are not part of the calculus that we have introduced. The derivations have to be read as
a formal account of the meta-reasoning that justifies the rules in view of the semantic
explanation of the counterfactual, and vice versa. As possible worlds can be regarded as
first-order entities, we take the usual rules for the quantifiers for that purpose.

Given the above constraints, we show:

PROPOSITION 4.3. The rules of G3LC are interderivable with L-SC.

Proof. To save space, we shall not copy the main formula in the premisses and omit
mentioning Lemma 2.2 for the derivability of initial sequents with arbitrary formulas. The
following is a proof that L� gives the left-to-right direction of L-SC:

z : A ⇒ z : A

x : A, x : �w(A ⊃ B) ⇒ x : A x : A, x : �w(A ⊃ B) ⇒ x : �w(A ⊃ B)

x : A, x : �w(A ⊃ B) ⇒ x : A ∧ x : �w(A ⊃ B)
R∧

x : A, x : �w(A ⊃ B) ⇒ ∃x(x : A ∧ x : �w(A ⊃ B))
R∃

x : A, x : �w(A ⊃ B), z : A ⇒ ∃x(x : A ∧ x : �w(A ⊃ B))
LW

w : A� B, z : A ⇒ ∃x(x : A ∧ x : �w(A ⊃ B))
L�

w : A� B ⇒ z : ¬A, ∃x(x : A ∧ x : �w(A ⊃ B))
R¬

w : A� B ⇒ ∀z(z : ¬A),∃x(x : A ∧ x : �w(A ⊃ B))
R∀

w : A� B ⇒ K
R∨

⇒ w : A� B ⊃ K
R⊃
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The following is a derivation of the right-to-left direction of L-SC that uses rules R�1
and R�2:

y : A ⇒ y : A
y : ¬A, y : A ⇒ L¬

∀z(z : ¬A), y : A ⇒ L∀

∀z(z : ¬A) ⇒ w : A� B
R�1

x : A ⇒ x : A x : A, x : �w(A ⊃ B) ⇒ x : �w(A ⊃ B)

x : A, x : �w(A ⊃ B) ⇒ w : A� B
R�2

x : A ∧ x : �w(A ⊃ B) ⇒ w : A� B
L∧

∃x(x : A ∧ x : �w(A ⊃ B)) ⇒ w : A� B
L∃

K ⇒ w : A� B
L∨

⇒ K ⊃ w : A� B
L⊃

For the remaining derivations that prove the equivalence, we use the right-to-left direc-
tion of L-SC to get first a derivation of rule R�1

z : A, � ⇒ �, w : A� B
� ⇒ �, z : ¬A, w : A� B

R¬

� ⇒ �, ∀z(z : ¬A), w : A� B
R∀

� ⇒ �, ∀z(z : ¬A), ∃x(x : A ∧ x : �w(A ⊃ B)), w : A� B
RW

� ⇒ �, K , w : A� B
R∨

K ⇒ w : A� B
� ⇒ �, w : A� B

Cut

and then a derivation of R�2 by the second disjunct

� ⇒ �, x : A, w : A� B � ⇒ �, x : �w(A ⊃ B), w : A� B
� ⇒ �, x : A ∧ x : �w(A ⊃ B), w : A� B

R∧

� ⇒ �, ∃x(x : A ∧ x : �w(A ⊃ B)), w : A� B
R∃

� ⇒ �,∀z(z : ¬A), ∃x(x : A ∧ x : �w(A ⊃ B)), w : A� B
RW

� ⇒ �, K , w : A� B
R∨

K ⇒ w : A� B
� ⇒ �,w : A� B

Cut

Finally we have a derivation of L� using the left-to-right direction of L-SC

w : A� B ⇒ K

w : A� B, � ⇒ �, z : A
w : A� B, z : ¬A, � ⇒ �

L¬

w : A� B,∀z(z : ¬A), � ⇒ �
L∀

x : A, x : �w(A ⊃ B), � ⇒ �

x : A ∧ x : �w(A ⊃ B), � ⇒ �
L∧

∃x(x : A ∧ x : �w(A ⊃ B)), � ⇒ �
L∃

w : A� B, K , � ⇒ �
L∨

w : A� B, � ⇒ �
Cut �

§5. Completeness. In this section we shall give a direct completeness proof for G3LC
with respect to Lewis semantics. The proof has the overall structure of the completeness
proof for labelled systems for modal and non-classical logics given in Negri (2009, 2014a),
but the semantics is here based on comparative similarity systems rather than on Kripke
models.

DEFINITION 5.1. A comparative similarity system S is given by is a set W of possible
worlds and for every w ∈ W a set of two-place relations �w which satisfy the conditions:

1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x,

3. �w-Minimality: If x �w w then x = w.

An interpretation of a set of labels L in W is a map �·� : L → W . A valuation of atomic
formulas in S is a map V : AtFrm → P(W ). Instead of writing �w� ∈ V(P), we adopt the
standard notation �w� � P.
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Valuations are extended to arbitrary formulas by the following inductive clauses:
V⊥: x � ⊥ for no x .
V&: x � A&B iff x � A and x � B.
V∨: x � A ∨ B iff x � A or x � B.
V⊃: x � A ⊃ B iff if x � A then x � B.
V�w : x � �w A iff for all y, if y �w x then y � A.
V�: x � A� B iff either z � A for no z, or y � A and y � �x (A ⊃ B) for some y.

DEFINITION 5.2. A labelled formula x : A (resp. a relational atom x Rw y) is true for an
interpretation �·� and a valuation V in a system S iff �x� � A (resp. �y� ��w� �x�).
A sequent � ⇒ � is true for an interpretation �·� and a valuation V in a system S if,
whenever for all labelled formulas x : A and relational atom x Rw y in �, if it is the case
that �x� � A and �y� ��w� �x�, then for some w : B in �, �w� � B. A sequent is valid
in a system S iff it is true for every interpretation and valuation in S .

THEOREM 5.3 (Soundness). If a sequent is derivable in G3LC then it is valid in every
comparative similarity system S .

Proof. The proof is by induction on the height of the derivation and follows the
methodology employed for modal and non-classical logics in Negri & von Plato (2011),
Negri (2009) and Negri (2014a). We use �′ to denote the set � without the principal
formula of the inference step considered, which should be everywhere clear from the
context.

Assume that � ⇒ � is derivable and that �·� makes true all the formulas in �.
If � ⇒ � is an initial sequent, it is valid since both � and � contain some formula

x : A, and then the claim is obvious. Likewise, if it is the conclusion of L⊥, since no
interpretation would then make all the formulas in � true.

If � ⇒ � is the conclusion of L&, then �x� � A&B, whence �x� � A and �x� � B
by V&. By inductive hypothesis, x : A, x : B, �′ ⇒ � is valid, and so �·� makes true
some formula in �. Hence � ⇒ � is valid. The argument is routine for the remaining
propositional rules, and similarly for Ref and ReplAt.

If � ⇒ � is the conclusion of Trans, then �y� ��w� �x� and �z� ��w� �y�, whence
�z� ��w� �x� by Transitivity of S . By inductive hypothesis, x Rwz, x Rw y, y Rwz, �′ ⇒ �
is valid, and so �·� makes true some formula in �. Hence � ⇒ � is valid.

If � ⇒ � is the conclusion of SConn, then for any w, x, y, either �x� ��w� �y� or
�y� ��w� �x�, by Strong connectedness of S . By inductive hypothesis, both (i) x Rw y, � ⇒
� and (ii) y Rwx, � ⇒ � are valid. So if �x� ��w� �y�, then by (i) �·� makes true some
formula in �. Otherwise if �y� ��w� �x�, then by (ii) �·� makes true some formula in �.
In either case, � ⇒ � is valid.

If � ⇒ � is the conclusion of LMin, then �x� ��w� �w�, whence �x� = �w� by
�w-Minimality of S . By inductive hypothesis, x = w, wRwx, �′ ⇒ � is valid, and so �·�
makes true some formula in �. Hence � ⇒ � is valid.

If � ⇒ � is the conclusion of R�w, let z be an arbitrary element of W such that
z ��w� �x� holds in S . Let �·�′ be the same as �·� except possibly on �y�, where
we set �y�′ = z. Then �·�′ makes all the formulas in x Rw y, � true. By inductive hy-
pothesis, x Rw y, � ⇒ �′, y : A is valid, so either some formula in �′ or y : A is
true under �·�′. If the former holds, then � ⇒ � is valid independently of the choice
of �·�′. If the latter, then �y�′ � A for arbitrary �y�′. Hence �x�′ � �w A by V�w .
But �·�′ be the same as �·� w.r.t. �x�, and so �x� � �w A. Either case, � ⇒ � is
valid.
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If � ⇒ � is the conclusion of R�w, then �y� ��w� �x� and �x� � �w A, whence
�y� � A by V�w . By inductive hypothesis, x Rw y, x : �w A, y : A, � ⇒ � is valid, and
so �·� makes true some formula in �. Hence � ⇒ � is valid.

If � ⇒ � is the conclusion of R�1, choose z � �, � and let �·�′ be the same as �·�
except possibly on �z�, which we set �z�′ = y for some arbitrary y ∈ W such that y � A.
By inductive hypothesis, z : A, � ⇒ �′, w : A � B is valid. The case in which there is
such a y is obvious. If there is no such y, notice that �·�′ ≡ �·� and �w� � A � B by
V�. Hence � ⇒ � is valid.

If � ⇒ � is the conclusion of R �2, then both � ⇒ �, x : A and � ⇒ �, x :
�w(A ⊃ B) are valid by inductive hypothesis. If �·� makes some formula in � true, then
� ⇒ � is valid. Otherwise, �x� � A and �x� � �w(A ⊃ B). So by V�, �w� � A� B.
Hence � ⇒ � is valid.

If � ⇒ � is the conclusion of L �, then �w� � A � B, whence either for no z,
�z� � A, or for some x , �x� � A and �x� � �w(A ⊃ B), by V�. Suppose the former.
By inductive hypothesis, � ⇒ �, z : A is valid, so �·� makes true some formula in �,
since �z� � A is ruled out. Hence � ⇒ � is valid. Suppose now the latter. By inductive
hypothesis, x : A, x : �w(A ⊃ B), �′ ⇒ � is valid, and so �·� makes true some formula
in �. Hence � ⇒ � is valid. �

THEOREM 5.4 (Completeness). Let � ⇒ � be a sequent in the language of G3LC. If it
is valid in every comparative similarity system, it is derivable in G3LC.

Proof. Immediate by Proposition 4.1, Proposition 4.2, Theorem 5.3 and Lewis’s own
completeness proof (cf. Counterfactuals, pp. 118-134). �

Completeness can be established also as a corollary of the following:

THEOREM 5.5. Let � ⇒ � be a sequent in the language of G3LC. Then either it is
derivable in G3LC or it has a countermodel in the class of comparative similarity systems.

Proof. We define inductively a reduction tree for an arbitrary sequent � ⇒ � in the
language of G3LC by applying the rules of G3LC root first in every possible way. If the
construction terminates, we have a proof of the sequent. If it doesn’t, then by König’s
lemma the reduction tree has an infinite branch which is used to define a countermodel to
� ⇒ �.

1. Construction of the reduction tree. Let us take an arbitrary sequent � ⇒ � and take
it as the root of the tree (stage 0). At stage n, we distinguish two cases:

Either all topmost sequents are an initial sequent or a conclusion of L⊥, in which case
the construction terminates.

Otherwise, we continue the construction by applying every possible rule to all topmost
sequents in a given order. There are 11 + 5 different stages, 11 for the rules of G3LC, 5
for the similarity rules. At stage n = 11 + 5 + 1 we repeat stage 1, at stage n = 11 + 5 + 2
we repeat stage 2, and so on.

We start for n = 1 with L&. Suppose all topmost sequents have the form

x1 : B1&C1, ..., xm : Bm&Cm, �′ ⇒ �

On top of each, we write

x1 : B1, x1 : C1, ..., xm : Bm, xm : Cm, �′ ⇒ �

This step corresponds to applying root first m times rule L&.
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For n = 2 we consider all sequents of the form

� ⇒ x1 : B1&C1, ..., xm : Bm&Cm, �′

We write on top of each 2m sequents of the form

� ⇒ x1 : D1, ..., xm : Dm, �′

where Di is either Bi or Ci and all possible choices are taken. This step corresponds to
applying root first R& for each conjunction in the right-hand side.

For n = 3 we consider all sequents of the form

x1 : B1 ∨ C1, ..., xm : Bm ∨ Cm, �′ ⇒ �

We write on top of each 2m sequents of the form

x1 : D1, ..., xm : Dm, �′ ⇒ �

This case is analogous to step n = 2 and corresponds to the application root first of L∨.
For n = 4 we consider all sequents of the form

� ⇒ x1 : B1 ∨ C1, ..., xm : Bm ∨ Cm, �′

On top of each, we write

� ⇒ x1 : B1, x1 : C1, ..., xm : Bm, xm : Cm, �′

This step corresponds to applying root first m times rule R∨.
For n = 5 we consider all sequents of the form

x1 : B1 ⊃ C1, ..., xm : Bm ⊃ Cm, �′ ⇒ �

On top of each, we write 2m sequents of the form

xi1 : Ci1 , ..., xik : Cik , �
′ ⇒ x jk+1 : B jk+1 , ..., x jm : B jm , �

where i1, ...ik ∈ {1, ..., m} and jk+1, ..., jm ∈ {1, ..., m}−{i1, ..., ik}. This step correspond
to the root first application of L ⊃.

For n = 6 we consider all sequents of the form

� ⇒ x1 : B1 ⊃ C1, ..., xm : Bm ⊃ Cm, �′

On top of each, we write

x1 : B1, ..., xm : Bm, � ⇒ C1, ..., xm : Cm, �′

This step corresponds to applying root first m times rule R ⊃.
For n = 7 we consider all sequents with relational atoms x1 Rw y1, ..., xm Rw ym and

formulas x1 : �w B1, ..., xm : �w Bm on the left-hand side. On top of each, we write

x1 Rw y1, ..., xm Rw ym, x1 : �w B1, ..., xm : �w Bm, y1 : B1, ..., ym : Bm, �′ ⇒ �

This step corresponds to applying root first m times rule L�w.
For n = 8 we consider all sequents of the form

� ⇒ x1 : �w B1, ..., xm : �w Bm, �′

Let y1, ..., ym be fresh variables, not yet used in the reduction tree. Then on top of each
sequent we write

x1 Rw y1, ..., xm Rw ym, � ⇒ y1 : B1, ..., ym : Bm, �′
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This step corresponds to applying root first m times rule R�w.
For n = 9 we consider all sequents of the form

x1 : B1 � C1, ..., xm : Bm � Cm, �′ ⇒ �

Let y1, ..., ym be fresh variables, not yet used in the reduction tree, and suppose z1, ..., zm

are any variables already used in the reduction tree, hence disjoint from the y’s. Then on
top of each sequent, we write 2m sequents with formulas yi1 : Bi1, ..., yik : Bik together
with yi1 : �xi1

(Bi1 ⊃ Ci1), ..., yik : �xik
(Bik ⊃ Cik ), as well as x jk+1 : B jk+1 � C jk+1,

..., x jm : B jm � C jm , on the left-hand side, and formulas z jk+1 : B jk+1, ..., z jm : B jm on
the right-hand side, where i1, ...ik ∈ {1, ..., m} and jk+1, ..., jm ∈ {1, ..., m} − {i1, ..., ik}.
This step correspond to the root first application of L�.

For n = 10, we consider all sequents with formulas x1 : B1 � C1, ..., xm : Bm � Cm

on the right-hand side. Let y1, ..., ym be fresh variables, not yet used in the reduction tree.
We write on top of each the sequent

y1 : B1, ...ym : Bm, � ⇒ x1 : B1 � C1, ..., xm : Bm � Cm, �′

This step corresponds to applying root first m times rule R�1.
For n = 11, we consider again all sequents with formulas x1 : B1 � C1, ..., xm :

Bm � Cm on the right-hand side. Then suppose z1, ..., zm are any variables already used
in the reduction tree and write 2m sequents of the form

� ⇒ x1 : B1 � C1, ..., xm : Bm � Cm, z1 : D1, ..., zm : Dm, �′

on top of each, where Di is either zi : Bi or zi : �xi (Bi ⊃ Ci ), and all possible choices are
taken. This step corresponds to applying root first m times rule R�2.

Finally, for n = 11 + j we consider the generic case of a frame rule, viz. rules for the
relation Rw and identity. Because of the subterm property, these rules need to be instanti-
ated only on terms in the conclusion (notice there are no frame rules with eigenvariables).
Thus, e.g., for Ref, a step corresponding to the rule consists in adding to the left-hand side
all atoms x = x for all x in � ⇒ � and then writing the sequent thus obtained on top of
each topmost sequent.

For any n, for sequents that are neither initial nor conclusions of L⊥ nor treatable by
any one of the above reductions, we copy the sequent above itself. This step is needed to
treat uniformly the failure of proof search in the following two cases: the case in which
the search goes on for ever because new rules always become applicable, and the case in
which a sequent is reached which is not a conclusion of any rule nor an initial sequent.

If the reduction tree is finite, all its leaves are initial or conclusions of L⊥, and the
tree read from the leaves to the root, yields a derivation by spelling out in individual rule
applications the simultaneous reduction steps.

2. Construction of the countermodel. If the reduction tree is infinite, it has an infinite
branch. Let �0 ⇒ �0 ≡ � ⇒ �, �1 ⇒ �1, ..., �i ⇒ �i , ... be one such branch.
Consider the set of labelled formulas and relational atoms

��� ≡
⋃

i>0

�i ��� ≡
⋃

i>0

�i

We define a model that forces all the formulas in ��� and no formula in ��� and is therefore
a countermodel to the sequent � ⇒ �. Consider the system S whose elements are all the
worlds denoted by the labels appearing in ��� and whose relations are all those expressed by
the relations x Rw y in ���. The system S is transitive, strongly connected and �w-minimal
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by construction. The model is defined as follows: for all atomic formulas P such as x : P
is in ���, we stipulate that x � P .

We now show inductively on the weight of formulas that A is forced at world x if x : A
is in ��� and is not forced at world x if x : A is in ���.

If x : A ≡ x : ⊥, x : A cannot be in ��� since no sequent in �0 ⇒ �0 has x : ⊥ on the
left-hand side, so it is not forced at any world of the model.

The antecedent atomic case has already been taken care of by definition, and the succe-
dent one follows from the fact that no initial sequent is in the branch.

If x : A ≡ x : B&C is in ���, there exists i such that x : B&C appears first in �i and
therefore, for some g ≥ 0, x : B and x : C appear in �i+g . By inductive hypothesis, x � B
and x � C , hence x � B&C .

If x : A ≡ x : B&C is in ���, consider the step i in which the reduction for x : B&C
applies. This gives a branching, such that one of the branches belongs to �0 ⇒ �0. So
either x : B or x : C is in ���, and so by inductive hypothesis, either x � B or x � C .
Hence x � B&C .

If x : A ≡ x : B ∨ C is in ���, consider the step i in which the reduction for x : B ∨ C
applies. This gives a branching, such that one of the branches belongs to �0 ⇒ �0. So
either x : B or x : C is in ���, and so by inductive hypothesis, either x � B or x � C . Hence
x � B ∨ C .

If x : A ≡ x : B ∨ C is in ���, there exists i such that x : B ∨ C appears first in �i

and therefore, for some g ≥ 0, x : B and x : C appear in �i+g . By inductive hypothesis,
x � B and x � C , hence x � B ∨ C .

If x : A ≡ x : B ⊃ C is in ���, consider the step i in which the reduction for x : B ⊃ C
applies. This gives a branching, and one of the premisses belongs to the infinite branch. So
either x : B is in ��� or x : C is in ���. In the former case, by inductive hypothesis we have
x � B and so x � B ⊃ C . Otherwise, by inductive hypothesis we have x � C and so
x � B ⊃ C . Hence x � B ⊃ C .

If x : A ≡ x : B ⊃ C is in ���, there exists i such that x : B ⊃ C appears first in �i

and therefore, for some g ≥ 0, x : B appears in �i+g and x : C in �i+g . By inductive
hypothesis, x � B and x � C , hence x � B ⊃ C .

If x : A ≡ x : �w B is in ���, we consider all the relational atoms x Rw y that occur in ���
(notice that at least there occurs the atom x Rwx). For any such atom, we find an occurrence
of y : B in ��� by construction of the reduction tree. So by inductive hypothesis, y � B,
hence x � �w B.

If x : A ≡ x : �w B is in ���, consider the step i in which the reduction for x : �w B
applies. Then for some g ≥ 0, we find y : B in �i+g for some x Rw y in �i+g . So by
inductive hypothesis, y � B, hence x � �w B.

If x : A ≡ x : B � C is in ���, consider the step i in which the reduction for x : B � C
applies. This gives a branching, such that one of the premisses belongs to �0 ⇒ �0 . So
either z : B is in ��� for any given z already occurring in the reduction tree, or else we
find some y : B and y : �x (B ⊃ C) in ���. In the latter case, by inductive hypothesis we
have y � B and y � �x (B ⊃ C), and so x � B � C . In the former case we have by
inductive hypothesis z � B, which does not yet allow us to infer x � B � C . However,
x : B � C always gets repeated in the premiss and for each branching determined by an
application of L � either the first or the second premiss belongs to the infinite branch.
It is enough that the right premiss belongs to the infinite branch once to conclude that
x � B � C . In the opposite case, we have that the left premiss always belongs to the
infinite branch, and therefore z � B for each available label. So, by the forcing condition
for�, we have that x � B � C because the antecedent is never satisfied.
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If x : A ≡ x : B � C is in ���, consider the step i in which the first reduction for
x : B � C applies. Then z : B appears in �i . So by inductive hypothesis, z � B. This
is not sufficient to conclude that x � B � C , but proves that the first disjunct in the
semantic clause for� is false. We need to prove that also the second disjunct is false, i.e.
that there is no y in the model such that y � B and y � �x (B ⊃ C). By the saturation
clause for R �2 we have that for all available labels y, either y : B or y : �x (B ⊃ C)
are in the succedent in the infinite branch. In case the former holds for all available labels,
then in particular we would have that z : B would be in the succedent in the branch, with
z : B in the antecedent introduced by the clause for R �1. Since the infinite branch
cannot contain an initial (or derivable) sequent, this is excluded. So for at least one label
the latter case holds and we obtain by inductive hypothesis that y � �x (B ⊃ C). Since y
was an arbitrary y in the model such that y � A, together with the first part, we have the
conclusion, namely x � B � C . �

To illustrate the direct completeness proof, consider again Stalnaker’s example given in
the introduction:

If Hoover had been a Communist, he would have been a traitor.
If Hoover had been born in Russia, he would have been a Communist.

∴ If Hoover had been born in Russia, he would have been a traitor.

This inference corresponds to transitivity of the counterfactual and we can show how
the calculus accounts for its failure by showing how to construct a countermodel for the
sequent

(T) w : P � Q, w : Q � R ⇒ w : P � R

from a failed proof search. In the following, we avoid tedious application of unnecessary
rules. We also consider only the non-terminating branch, for brevity. After a few steps, the
(simplified) reduction tree looks like this:

...
x Rw y, s : P, x : P, y : P, y : Q, z : Q, z : �w(Q ⊃ R), x : �w(P ⊃ Q) ⇒ w : P � R, y : R

x Rw y, s : P, x : P, y : P, y : Q, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R, y : R
L �

x Rw y, s : P, x : P, y : P, y : P ⊃ Q, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R, y : R
L ⊃

x Rw y, s : P, x : P, y : P, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R, y : R
L�w

x Rw y, s : P, x : P, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R, y : P ⊃ R
R ⊃

s : P, x : P, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R, x : �w(P ⊃ R)
R�w

s : P, x : P, x : �w(P ⊃ Q), w : Q � R ⇒ w : P � R
R �2

s : P, w : P � Q, w : Q � R ⇒ w : P � R
L �

w : P � Q, w : Q � R ⇒ w : P � R
R �1

It should be clear that application of other rules or that other orders of application
wouldn’t improve the proof search. The topmost sequent of the branch above is not an
initial sequent nor conclusion of L⊥. Moreover, there is no relational atom of the form
z Rwv for some v , so we cannot apply L�w to z : �w(Q ⊃ R). Hence the only sensible
move is to apply R �2 to w : P � R, which could introduce such atom via a
subsequent application of R�w. The rule R �2 however introduces a branching: if the
rightmost branch is to append the formula z : �w(P ⊃ R) to the right of the sequent
arrow,

x Rw y, s : P, x : P, y : P, y : Q, z : Q, z : �w(Q ⊃ R), x : �w(P ⊃ Q) ⇒ w : P � R, y : R, z : �w(P ⊃ R)
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thus giving a terminating branch (it suffices to apply a step of SConn), the leftmost branch
appends the formula z : P to the right of the sequent arrow,

x Rw y, s : P, x : P, y : P, y : Q, z : Q, z : �w(Q ⊃ R), x : �w(P ⊃ Q) ⇒ w : P � R, y : R, z : P

and this branch does not terminate. Clearly we could keep applying rules (since R �-rules
copy the main formula, they can be applied indefinitely many times), but we can already
“read off” a countermodel from this branch. We follow the steps for the construction of a
countermodel given in the course of the proof of the above theorem. A countermodel to
(T) is defined by the following clauses:

• y �w x ;
• s � P;
• x � P , x � Q;
• y � P, y � Q, y � R;
• z � Q, z � R.

In SC , x � P and x � �w(P ⊃ Q) so w � P � Q for clause 2 in Lewis’s truth
conditions of the counterfactual conditional. So in (T), the first formula to the left of the
sequent arrow is true (which correspond to the first premise in an instance of an argument
by Transitivity). Moreover, z � Q and z � �w(Q ⊃ R), so w � Q � R in SC for
clause 2 in Lewis’s truth conditions of the counterfactual conditional. So in (T), the second
formula to the left of the sequent arrow is true (which correspond to the second premise
in an instance of an argument by Transitivity). However, let y be such that y �w x and
let y � P and y � R. Then w � P � R (to visualize such model, suppose further that
e.g. z �w y and z � P). Hence SC is a countermodel to (T).

§6. Decidability. In general cut elimination alone does not ensure terminating proof
search in a given calculus. The exhaustive proof search used in the proof of Theorem 5
is not a decision method nor an effective method of finding countermodels when proof
search fails, as it may produce infinite branches and therefore infinite countermodels. By
way of example, consider the following branch in the search for a proof of the sequent
⇒ w : �x¬�x A ⊃ �x B (this is analogous to the case for S4 discussed in Section 11.5 of
Negri & von Plato 2011):

...
wRx y, y Rx z, wRx z, z Rx t, w : �x¬�x A ⇒ t : A, z : A, y : B
wRx y, y Rx z, wRx z, w : �x¬�x A ⇒ z : �x A, z : A, y : B

R�x

wRx y, y Rx z, wRx z, w : �x¬�x A, z : ¬�x A ⇒ z : A, y : B
L⊃

wRx y, y Rx z, wRx z, w : �x¬�x A ⇒ z : A, y : B
L�x

wRx y, y Rx z, w : �x¬�x A ⇒ z : A, y : B
T rans

wRx y, w : �x¬�x A ⇒ y : �x A, y : B
R�x

wRx y, w : �x¬�x A, y : ¬�x A ⇒ y : B
L⊃

wRx y, w : �x¬�x A ⇒ y : B
L�x

w : �x¬�x A ⇒ w : �x B
R�x

⇒ w : �x¬�x A ⊃ �x B
R⊃

Clearly the search goes on forever because of the new accessibility relations that are created
by the right rules for the indexed modalities, R�x , together with Trans. To see that this
search does not end up in a derivation, we may nevertheless exhibit a finite countermodel by
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a suitable truncation of the otherwise infinite countermodel provided by the completeness
proof.

Following the method of finitization of countermodels generated by proof search in a
labelled calculus, presented for intuitionistic propositional logic in Negri (2014a) and for
multi-modal logics in Garg et al. (2012), we define a saturation condition for branches
on a reduction tree. Intuitively, a branch is saturated when its leaf is not an initial sequent
nor a conclusion of L⊥, and when it is closed under all the rules except for R�x in case
it generates a loop modulo new labelling. To obtain the finite countermodel, we define a
partial order through the reflexive and transitive closure of the similarity relation together
with a relation that witnesses such loops. Let ↓ �(↓ �) be the union of the antecedents
(succedents) in a branch from the endsequent up to � ⇒ �.

Let us define the following sets of formulas:

F1
�⇒�(w) ≡ {A |w : A ∈↓�} ∪ {�x A | y : �x A, y Rxw ∈ �}

F2
�⇒�(w) ≡ {A |w : A ∈↓�}

and let w ≤�⇒� y iff F i
�⇒�(w) ⊆ F i

�⇒�(y) for i = 1, 2.

DEFINITION 6.1. A branch in a proof search up to a sequent � ⇒ � is saturated if the
following conditions are satisfied:19

1. If w is a label in �, �, then w = w and wRxw are in �.

2. If wRx y and y Rx z are in �, then wRx z is.

3. If wRwx is in �, then x = w is.

4. If w, x, y are labels in �, �, then either wRx y or y Rxw is in �

5. There is no w such that w : ⊥ is in �.

6. If w : A&B is in ↓�, then w : A and w : B are in ↓�.

7. If w : A&B is in ↓�, then either w : A or w : B is in ↓�.

8. If w : A ∨ B is in ↓�, then either w : A or w : B is in ↓�.

9. If w : A ∨ B is in ↓�, then w : A and w : B are in ↓�.

10. If w : A ⊃ B is in ↓�, then either w : A is in ↓� or w : B is in ↓�.

11. If w : A ⊃ B is in ↓�, then w : A is in ↓� and w : B is in ↓�.

12. If w : �x A and wRx y are in �, then y : A is in ↓�.

13. If w : �x A is in ↓�, then either

a. for some y, there is wRx y in � and y : A is in ↓�, or

b. for some y such that y � w, there is y Rxw in � and w ≤�⇒� y.

14. If w : A � B is in �, then either z : A is in ↓ � for z in �, �, or for some y,
y : A, y : �w(A ⊃ B) is in �.

15. If w : A� B is in ↓�, then y : A is in ↓� and either z : A or z : �w(A ⊃ B) is
in ↓� for z in �, �.

Notice that this definition blocks the proof search in the example above when it produces
the formula t : �x A because of clause 13.b (since we then have t ≤�⇒� z). The finite
countermodel is defined as in the proof of Theorem 5.5 starting from the sets ↓�, ↓�.

19 Observe that some of the clauses take into account the cumulative character of some rules of the
calculus, with the repetition of the principal formulas in the premisses an thus the avoidance of
the downward closure in the respective saturation clauses.
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PROPOSITION 6.2. The finite countermodel defined by the saturation procedure is a
comparative similarity system.

Proof. We need to show (i) that the saturated branch provides a countermodel, and
(ii) that the countermodel thus obtained is a comparative similarity system. For a given
� ⇒ �, let W be the set of labels in �, the relation Rw be the reflexive and transitive
closure of Rw together with ≤�⇒�, the definition of interpretation and valuation being as
usual. Then:

(i) 〈W,Rw〉 is a countermodel to � ⇒ � iff x � A for all x : A in �, and x � A for all
x : A in �. Notice that this is a consequence of the following:

(a) If A is in F1(x), then x � A.
(b) If A is in F2(x), then x � A.

The two claims are proved by induction on the length of the formula. If it is atomic, they
hold by definition of �. If it is a conjunction, disjunction, implication or conditional, they
hold by the corresponding saturation clauses and the inductive hypothesis. If A ≡ �w B
is in F1(x), let x ≡ x0Rw . . .Rwxn ≡ y. For n = 0, either x : �w B is in ↓ �, hence
in �, or for some y, y : �w B and y Rwx are in �. In both cases we get the conclusion by
step (12) of the saturation procedure. For the inductive step, suppose first A ≡ �w B is in
F2(x). Then either for some y we have x Rw y in � and y : B in ↓�, or there is a y distinct
form x and such that y Rwx is in � and x ≤ y. From the former, we have B ∈ F2(y) and
so by inductive hypothesis, y � B, whence x � �w B. From the latter, F2(x) ⊆ F2(y),
and so �x B ∈ F2(y). By inductive hypothesis (y is a smaller label in the Rw-ordering),
y � �w B, whence x � �w B.

(ii) 〈W,Rw〉 is a comparative similarity system iff Rw is transitive, strongly connected
and �w-minimal. The result follows immediately from points (2), (3) and (4) of the defini-
tion of saturation. �

We further observe that by the subterm property the number of distinct formulas in the
sequents of an attempted proof is bounded. Since duplication of the same labelled formulas
is not possible by hp-admissibility of contraction, we can prove the following result:

THEOREM 6.3. The system G3LC allows a terminating proof search.

Proof. Let F be the set of (unlabelled) subformulas of the endsequent and consider a
string of labels w0 Rxw1, w1 Rxw2, w2 Rxw3, . . . generated by the saturation procedure.
For an arbitrary w j consider the values of the sets F i (wk) for k < j at the step in which
w j was introduced. Clearly F i (w j ) � F i (wk) or else w j would not have been introduced.
So each new label corresponds to a new subset of F × F . Since the number of these subsets
is finite, also the length of each chain of labels must be finite. �

§7. Concluding remarks and related work. We presented G3LC, a Gentzen-style
sequent calculus for David Lewis’s logic of counterfactuals VC, and proved it sound and
complete with respect to Lewis’s semantics. In G3LC, substitution of labels and left and
right weakening and contraction are height-preserving admissible and cut is admissible.
Moreover, all the rules are invertible. Finally, we proved a decidability result based on a
bounded procedure of root-first proof search that for any given sequent either provides a
derivation or a countermodel.

What remains to be spelled out in detail are similar results for the extension with an
alethic modality which we presented in Section 2. In his book Counterfactuals, Lewis
presents a class V of axomatic systems for conditional logics, among which is VC.
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We leave for further work a detailed deductive analysis of the entire class, as well as of
conditional logics that are based on alternative versions of Lewis’s semantics. We expect
these further results to be achieved by application of the method developed here. Imple-
mentation of the calculi presented is also left for future work.

The first tableau proof systems for counterfactuals have been presented by de Swart
(1983). These systems can be read either as Beth-tableaux systems, with rules for signed
formulas, or as sequent systems, and they cover Stalnaker’s system VCS and Lewis’s sys-
tem VC. The primitive connective chosen in de Swart’s work is ≤, with the formula A ≤ B
read as “A is at least as possible as B”. We use instead the counterfactual conditional
A � B, read as “If A were the case, then B would be the case”. These two connectives
are interdefinable, as shown by Lewis, but a different choice of the primitive connective
clearly gives origin to different proof systems. De Swart gives direct and constructive
completeness proofs by using the calculi for defining a systematic proof search procedure
that either gives a proof or a finite countermodel. Also in our system the completeness proof
is direct and constructive, but the countermodel is constructed directly from the syntactic
elements contained in a failed proof search branch, whereas in the Beth-tableaux approach
the possible worlds are defined by nodes in the open search tree. There are other important
differences which highlight the usefulness of the labelled approach that we have followed.

De Swart’s system has, in addition to the standard classical propositional rules, a number
m · n of distinct rules F ≤ (m, n) for each m, n, where m and n are positive integers
that denote, respectively, the number of signed formulas of the form F(A ≤ B) or of
the form T (A ≤ B) considered as principal formulas of the rule. Each such rule has the
effect of discarding all the other formulas, which results in a lack of invertibility. It follows
that in the proof search procedure what needs to be explored is not a single tree, but a
set of trees.20 Lastly, in our approach the rules are motivated through a robust meaning
explanation that respects the general guidelines of inferentialism, as emphasized in Negri
& von Plato (2015). On the contrary, the rules of the unlabelled approach seem to involve
a not fully explicable genesis, being found “by the method of trial and error” (cf. de Swart
1983, p. 6). The inherent risk in the lack of a full methodological transparency became
evident in a later correction by Gent (1992), who gave an example of a valid formula not
derivable in de Swart’s system and proposed an alternative sound a complete system for
VC, while maintaining the main features of de Swart’s original system.

Lellman & Pattinson (2012) present an unlabelled sequent calculus for Lewis’s basic
system and some of its extension with both the connective ≤ and the strong conditional21

as primitive. The calculi are obtained through a procedure of cut-elimination by saturation
which consists in closing a given set of rules under cut adding new rules. As a result,
an optimal PSPACE complexity and Craig interpolation are established. Similar results
are stated (without details) for the hybrid version of counterfactual logics proposed by
Sano (2009). Although the latter work is not explicitly proof-theoretical, one may expect
that an approach on the proof theory of counterfactuals based on hybrid logic22 could
be successfully developed. In hybrid logic the accessibility relation is not primitive but

20 In an example detailed in de Swart (1983, p. 10–11), a proof search for a sequent that contains
only two formulas of the form F(A ≤ B) and F(B ≤ D) results, because of all the combinatorial
possibilities, in the construction of 24 different partial trees.

21 The strong conditional� can be defined in terms of ≤ by A� B ≡ ¬(A&¬B) ≤ (A&B).
22 See Blackburn (2000) for a good survey presentation of the motivations and main results of the

methodology of hybrid logic.
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absorbed at the level of the object language in a different way from ours through the
extension of the scope of the modalities to act also on indices for possible worlds. In
particular, among the systems proposed for the proof theory of hybrid logic, the Seligman-
style approach (for which results of completeness and termination have been recently
established in Blackburn et al. 2015) appears as a good candidate for further generalization.

The work by Olivetti et al. (2007) presents a labelled sequent calculus for Lewis con-
ditional logics using the overall methodology of Negri (2005). It thus is methodologically
close to our approach, but rests crucially on the limit assumption, which results in the
avoidance of the problematic nesting of quantifiers in the truth condition for the condi-
tional. In so far as Lewis’s preferred interpretation of the counterfactual conditional rejects
the limit assumption, the strategy followed in the present paper appears to be a more faithful
proof-theoretic analysis of Lewis’s work.

Indexed modalities have already been used in the treatment of conditionals, in different
ways. The idea of conditionality as a “sententially indexed modality” was hinted at already
by Lewis (1971, p. 80) and further explicated by Chellas (1975, Section 5) in a proposal of
using propositionally indexed modalities as a unifying framework for conditionals: “If A,
then B means that the proposition expressed by B is in some way necessary with respect
to that expressed by A”. The conditional is thus suggestively rewritten as [A]B. Equivalent
sentences A and A′ give equivalent propositional indexed modalities [A] and [A′] and each
[A] satisfies a normality condition written as the rule (for n ≥ 0)

B1& . . . &Bn ⊃ B
[A]B1& . . . &[A]Bn ⊃ [A]B RCK

Modalities indexed by possible worlds represent a different notion which is used in our
work to factorize the explanation of the conditional with a family of ordinary modalities
obtained in the usual way from possible worlds and accessibility relations. Indexed modal-
ities (with indices ranging among possible worlds) are used by Giordano et al. (2008)
in association to a preferential semantics for conditionals. Their explanation rests on the
limit assumption and indexed modalities are used to identify the closest worlds to world
x that satisfy the antecedent of the conditional, denoted Minx (A), and thus appear in the
antecedent of its truth condition; the resulting calculus is therefore quite different from
ours, not just for being a tableau style system that uses the limit assumption. Indexed
modalities are found also in other venues, such as the formalization of deontic reasoning
(Gabbay & Governatori 1998), but there seem to be no general theory of indexed modalities
on their own.
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