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The duality of proofs and counterexamples, or more generally, refutations, is
ubiquitous in science, but involves distinctions often blurred by the rethoric of
argumentation. More crisp distinctions between proofs and refutations are found
in mathematics, especially in well defined formalized fragments.

Every working mathematician knows that finding a proof and looking for
a counterexample are two very different activities that cannot be carried on
simultaneusly. Usually the latter starts when the hope to find a proof is fading
away, and the failed attempts will serve as an implicit guide to chart the territory
in which to look for a counterexample. No general recipe is, however, gained from
the failures, and a leap of creativity is required to find a counterxample, if such
is at all obtained.

In logic, things are more regimented because of the possibility to reason
within formal analytic calculi that reduce the proving of theorems to automatic
tasks. Usually one can rest upon a completeness theorem that guarantees a per-
fect duality between proofs and countermodels. So in theory. In practice, we are
encountered with obstacles: completeness proofs are often non-effective (non-
constructive) and countermodels are artificially built from Henkin sets or Lin-
denbaum algebras, and thus far away from what we regard as counterexamples.
Furthermore, the canonical countermodels provided by traditional completeness
proofs may fall out of the intended classes and need a model-theoretic fine tuning
with such procedures as unravelling and bulldozing.

The question naturally arises as to whether we can find in some sense “con-
crete” countermodels in the same automated way in which we find proofs. Refu-
tation calculi (as those found in [5, 9, 20, 23]) produce refutations rather than
proofs and can be used as a basis for building countermodels. These calculi are
separate from the direct inferential systems, their rules are not invertible (root-
first, the rules give only sufficient conditions of non-validity) and sometimes the
decision method through countermodel constructions uses a pre-processing of
formulas into a suitable normal form (as in [11]). As pointed out in [10] in the
presentation of a combination of a derivation and a refutation calculus for bi-
intuitionistic logic, these calculi often depart from Gentzen’s original systems,
because the sequent calculus LI or its contraction-free variant LJT [2] have
rules that are not invertible; thus, while preserving validity, they do not pre-
serve refutability. Prefixed tableaux in the style of Fitting, on the other hand,
restrict the refutations to relational models, and countermodels can be read off
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from failed proof search. As remarked in [6], the tree structure inherent in these
calculi makes them suitable to a relatively restricted family of logics and, fur-
thermore, the non-locality of the rules makes the extraction of the countermodel
not an immediate task.

We shall present a method for unifying proof search and countermodel con-
struction that is a synthesis of a generation of calculi with internalized seman-
tics (as presented in [14] and in chapter 11 of [19]), a Tait-Schütte-Takeuti style
completeness proof [15] and, finally, a procedure to finitize the countermodel
construction. This final part is obtained either through the search of a mini-
mal, or irredundant, derivation (a procedure employed to establish decidability
of basic modal logics in [14] and formalized in [7] for a labelled sequent system
for intuitionistic logic), a pruning of infinite branches in search trees through
a suitable syntactic counterpart of semantic filtration (a method employed in
[1] for Priorean linear time logic and in [8] for multimodal logics) or through a
proof-theoretic embedding into an appropriate provability logic that internalizes
finiteness in its rules, as in [4].

The emphasis here is on the methodology, so we shall present the three stages
in detail for the case of intuitionistic logic. Our starting point is G3I, a labelled
contraction- and cut-free intuitionistic multi-succedent calculus in which all rules
are invertible. The calculus is obtained through the internalization of Kripke se-
mantics for intuitionistic logic: the rules for the logical constants are obtained
by unfolding the inductive definition of truth at a world and the properties of
the accessibility relation are added as rules, following the method of “axioms
as rules” to encode axioms into a sequent calculus while preserving the struc-
tural properties of the basic logical calculus [18, 13]. The structural properties
guarantee a root-first determinism, with the consequence that there is no need
of backtracking in proof search. Notably for our purpose, all the rules of the
calculus preserve countermodels because of invertibility, and thus any terminal
node in a failed proof search gives a Kripke countermodel.

The methodology of generation of complete analytic countermodel-producing
calculi covers in addition the following (families of) logics and extensions:

Intermediate logics and their modal companions: These are obtained as
extensions of G3I and of the labelled calculus for basic modal logic G3K by
the addition of geometric frame rules. Because of the uniformity of generation
of these calculi, proofs of faithfulness of the modal translation between the re-
spective logical systems are achieved in a modular and simple way [3].

Provability logics: The condition of Noetherian frames, though not first order,
is internalized through suitable formulations of the right rule for the modality.
By choosing harmonious rules (as in [14]), a syntactic completeness proof for
Gödel-Löb provability logic was obtained. Through a variant of the calculus
obtained by giving up harmony, we achieve instead a semantic completeness
proof which gives at the same time also decidability and the finite model property
[17]. Completeness for Grzegorczyk provability logic Grz is obtained in a similar
semantic way and prepares the ground for a syntactic embedding of Int into Grz
and thus for an indirect decision procedure for intuitionistic logic [4].
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Knowability logic: This logic has been in the focus of recent literature on the
investigation of paradoxes that arise from the principles of the verificationist
theory of truth [21]. By the methods of proof analysis, it has been possible to
pinpoint how the ground logic is responsible for the paradoxical consequences
of these principles. A study focused on the well known Church-Fitch paradox
brought forward a new challenge to the method of conversion of axioms into rules.
The knowability principle, which states that whatever is true can be known, is
rendered in a standard multimodal alethic/epistemic language by the axiom
A ⊃ ♦KA. This axiom corresponds, in turn, to the frame property

∀x∃y(xRy & ∀z(yRKz ⊃ x 6 z))

Here R, RK, and 6 are the alethic, epistemic, and intuitionistic accessibility
relations, respectively. This frame property goes beyond the scheme of geometric
implication and therefore the conversion into rules cannot be carried through
with the usual rule scheme for geometric implications. In this specific case, we
succeeded with a combination of two rules linked together by a side condition
on the eigenvariable. The resulting calculus has all the structural properties of
the ground logical system and leads to definite answers to the questions raised
by the Church-Fitch paradox by means of a complete control over the structure
of derivations for knowability logic [12].

Extensions beyond geometric theories: The generalization and systemati-
zation of the method of system of rules allows the treatment of axiomatic theories
and of logics characterized by frame properties expressible through generalized
geometric implications that admit arbitrary quantifier alternations and a more
complex propositional structure than that of geometric implications [16]. The
class of generalized geometric implications is defined as follows: We start from a
geometric axiom (i.e. a conjunct in the canonical form of a geometric implication
[22], where the Pi range over a finite set of atomic formulas and all the Mj are
conjunctions of atomic formulas and the variables yj are not free in the Pi)

GA0 ≡ ∀x(&Pi ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn)

We take GA0 as the base case in the inductive definition of a generalized geo-
metric axiom. We then define

GA1 ≡ ∀x( & Pi ⊃ ∃y1 & GA0 ∨ . . . ∨ ∃ym & GA0)

Next we define by induction

GAn+1 ≡ ∀x( & Pi ⊃ ∃y1 & GAk1 ∨ . . . ∨ ∃ym & GAkm)

Here & GAi denotes a conjunction of GAi-axioms and k1, . . . , km 6 n.
Through an operative conversion to normal form, generalized geometric im-

plications can also be characterized in terms of Glivenko classes as those first-
order formulas that do not contain implications or universal quantifiers in their
negative parts.

The equivalence, established in [13], between the axiomatic systems based on
geometric axioms and contraction- and cut-free sequent systems with geometric
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rules, is extended by a suitable definition of systems of rules for generalized ge-
ometric axioms. Here the word “system” is used in the same sense as in linear
algebra where there are systems of equations with variables in common, and
each equation is meaningful and can be solved only if considered together with
the other equations of the system. In the same way, the systems of rules consid-
ered in this context consist of rules connected to each other by some variables
and subject in addition to the condition of appearing in a certain order in a
derivation.

The precise form of system of rules, the structural properties for the resulting
extensions of sequent calculus (admissibility of cut, weakening, and contraction),
a generalization of Barr’s theorem, examples from axiomatic theories and appli-
cations to the proof theory of non-classical logics through a proof of completeness
of the proof systems obtained, are all detailed in [16].

We shall conclude with some open problems and further directions.
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