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1 Introduction

The early decades of the modern study of modal logic were marked by the
advent of possible worlds semantics. Earlier axiomatic studies of modal
concepts were replaced by a solid and uniform semantic method that dis-
played the connections between modal axioms and conditions on the ac-
cessibility relation between possible worlds. The success of the semantic
method, however, was not directly followed by equally powerful syntactic
theories of modal and conditional concepts and reasoning and the literature
until the 1990’s shows a striking contrast between the generality of the se-
mantic method and the scattered, goal-directed developments of the proof-
theoretic method. Traditional Gentzen systems failed in the establishing of
basic properties such as normalization/cut-elimination and analyticity even
for basic modal systems. Awareness of this gap was often expressed by
defaitist statements among practitioners in the field.

The insufficiency of traditional Gentzen systems to meet the challenge
of the development of a proof theory for modal and non-classical logic has
led to the development of alternative formalisms which, in one way or other,
extend the syntax of sequent calculus. In the proliferation of calculi beyond
Gentzen systems, there have been two main lines of development, one that
enriches the structure of sequents (display calculi, hypersequents, nested
sequents, tree-hypersequents, deep inference), another that maintains their
simple structure but adds labels and relations in the form of variables and
atomic formulas.
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Through the conversion of what are known as geometric implications
into rules that extend sequent calculus in a way that maintains the admissi-
bility of structural rules, it has been possible to obtain a uniform presentation
of a large family of modal logics, all those characterised by first-order frame
conditions, and provability logics such as GL and Grz1. Parallel to the for-
mal developments and contributions to widening the scope of such calculi,
methodological reflections have been directed to the questions on how well
they respond to the central issues of inferentialism (as analyzed in Negri and
von Plato 2015, Read 2015), a discussion that goes under the wide umbrella
of the extension of proof-theoretic semantics to non-classical logics.

Despite a wide range of applications, the powerful methods of pos-
sible worlds semantics are not a universal tool in the analysis of philo-
sophical logics: they impose the straitjacket of normality, i.e. validity of
the rule of necessitation, from ` A to infer ` 2A, and of the K axiom,
2(A ⊃ B) ⊃ (2A ⊃ 2B). The limitative character of these imposed va-
lidities becomes clear in many of the logics that one encounters in the ever-
expanding domains of applications of modal logic (in mathematics, philoso-
phy, computer science, linguistics, cognitive science, social science). For in-
stance, with the epistemic reading of the modality as a knowledge operator,
an agent knows A if A holds in all the epistemic states available to her, and
then the properties have the consequence that (1) whatever has been proved
is known and (2) an agent knows all the logical consequences of what she
knows. This leads to logical omniscience, clearly inadequate for cognitive
agents with human capabilities, and thus to the rejection of both require-
ments. The same limitation is clear in the interpretation of the modality as
a likelihood operator where one sees that the normal modal-logical validity
of 2A&2B ⊃ 2(A&B) should be avoided (Pacuit 2007).

Another limitation in systems based on a typical Kripke-style seman-
tics is that the propositional base is classical or intuitionistic logic. In both
cases one is forced to material implication, shown since the analysis of C.I.
Lewis to be an inadequate form of conditional if logical analysis is to be
pursued in other venues than mathematics: the classical propositional base
of modal logic is insufficient to treat conditionals beyond material or strict
implication, as shown in David Lewis’ Counterfactuals (1973).

Among non-normal modal logics, classical modal logics are those ob-
tained by requiring that the modality respects logical equivalence, that is
closure under the rule A⊃⊂B

2A⊃⊂2B . One can then obtain other systems below

1Cf. Negri 2005, 2015; Dyckhoff and Negri 2015, 2016.
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the normal modal logic K by removing the normality axiom and the neces-
sitation rule and adding other axioms; combinations of the axiom schemes
M,C,N give a lattice of eight different logics (cf. the diagram on p. 237
of Chellas 1980). It is known that non-normal modal logics can be simu-
lated through an appropriate translation by a normal modal logic with three
modalities (cf. Gasquet and Herzig 1996, Kracht and Wolter 1999), so that
their proof theory can be approached indirectly through the translation: in
the system proposed by Gilbert and Maffezioli (2015), the translation from
non-normal to normal modal logics is used to define labelled sequent cal-
culi with non-local systems of rules (in the sense of Negri 2016) for basic
systems of classical modal logics.

Rather than reducing non-normal modal logics to normal ones, we shall
develop proof systems for them in a way that parallels the generation of la-
belled calculi for systems based on possible world semantics. To this end,
we shall use the more general neighbourhood semantics which was intro-
duced in the 1970’s to provide a uniform semantic framework for philo-
sophical logics that cannot be accommodated within the normal modal logic
setting. Instead of an accessibility relation on a set of possible worlds one
has for every possible world w a family of sets of possible worlds called
neighbourhoods of w. The correspondence between relational frames and
certain specific types of neighbourhood frames shows that neighbourhood
semantics is a generalisation of the earlier possible world semantics. Fur-
ther, it gives a way to transfer the intuition from one semantics to the other:
roughly, worlds in a neighbourhood of w replace worlds accessible from w.

Our goal is to set the grounds for a proof theory of non-normal modal
systems based on neighbourhood semantics, to achieve this directly, i.e.
without the use of translations, with local rules, and in a way that makes
possible extensions in various directions.

The goal will be accomplished by following the guidelines of inferential-
ism, that is, by starting from the meaning explanations of logical constants
and converting them into well-behaved rules of a calculus through a five-
stage procedure. In the systems obtained, all the logical rules are invertible
and all structural rules admissible. On the one hand, these properties makes
the proof of metatheorems such as completeness a straightforward task; on
the other, thay make the calculi obtained suitable for proof search.

We concentrate here on the procedure of generation of calculi based on
neighbourhood semantics and only mention the properties that these calculi
enjoy. Detailed statements and proofs of the structural properties of such
calculi as well as a more comprehensive bibliography will be given in Negri
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(2017). The development of calculi for conditional logics based on neigh-
bourhood semantics and their application to the decision problem for such
logics is presented in Negri and Olivetti (2015) and Girlando et al. (2016).

2 Neighbourhood Semantics

A neighbourhood frame is a pair F ≡ (W, I), where W is a set of worlds
(states) and I is a neighbourhood function

I : W −→ P(P(W ))

that assigns a collection of sets of worlds to each world in W . A neighbour-
hood model is then a pairM≡ (F ,V), where F is a neighbourhood frame
and V a propositional valuation, i.e. a map V : Atm −→ P(W ).

Worlds in a neighbourhood are the substitute, in this more general se-
mantics, of accessible worlds. The inductive clauses for truth of a formula
in a model are the usual ones for the propositional clauses; for the modal
operator we have

M, w  2A ≡ ext(A)is in I(w),

where ext(A) ≡ {u ∈W |M, u  A}.
Given a relational frame (W,R), one can define a neighbourhood frame

by taking as neighbourhoods of a world x the supersets of worlds accessible
from x

IR(x) ≡ {a | R(x) ⊆ a}

Conversely, given a neighbourhood frame (W, I) one can define a relational
frame by

xRIy ≡ y ∈
⋂

I(x)

A neighbourhood frame is augmented if for all x,
⋂
I(x) ∈ I(x) and is

supplemented, i.e. closed under supersets. Relational frames correspond
to augmented neighbourhood frames, in the sense that given a relational
frame, there is an augmented neighbourhood frame that validates the same
formulas, and viceversa. 2

2Details of the correspondence are found in Chellas (1980, p. 221). For an extensive survey
on neighbourhood semantics see Pacuit (2007).
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3 Five steps to good sequent calculi

In this section we shall present in detail the way to the determination of the
rules of a G3-style sequent calculus that internalizes neighbourhood seman-
tics. Much of the rationale is common to the determination of the rules of
a G3-style sequent calculus based on possible worlds semantics, but there
are new important elements that need to be taken into consideration when
moving from possible worlds to the more general neighbourhood semantics.

The stages in the determination of the rules can be summarized as fol-
lows; each item will be further detailed together with the illustration of the
procedure:

1. Turn the semantic explanation of logical constants into introduction
rules of natural deduction.

2. Through inversion principles, find the corresponding elimination rules.

3. Translate the natural deduction system thus obtained into a sequent
calculus. The resulting calculus is a sequent calculus with indepen-
dent contexts.

4. Refine the calculus into a G3-style sequent calculus.

We observe that the above explanation is not really specific to the de-
termination of labelled sequent calculi, but rather parametric and with an
end-result that depends on the semantic explanation one starts with. With
the BHK explanation of logical constants, the recipe gives the standard G3
sequent calculi, and in fact this is the route followed in ch. 1 of Negri and
von Plato (2001). With possible worlds semantics, the meaning also de-
pends on certain properties of an accessibility relation between worlds, so
one has an additional step:

5. To obtain specific systems (e.g. intermediate logics) we add the rules
for the accessibility relation following the method of “axioms as rules”
(Negri and von Plato 1998, Negri 2003) for universal and geometric
frame conditions.

The procedure for obtaining labelled calculi through this 5-stage expla-
nation is carried through both for intuitionistic logic and basic modal logics
in Negri and von Plato (2015); the resulting calculi are those which have
been investigated, respectively, in Dyckhoff and Negri (2012) and in Negri
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(2005). We remark that one does not need to stop at geometric frame con-
ditions, but one can expand the spectrum of frame conditions that can be
dealt with: generalised geometric implications can be treated by the method
of systems of rules as developed in Negri (2016) without extending the lan-
guage but at the expense of locality. With the method of geometrization of
first-order logic (Dyckhoff and Negri 2015) and more specifically by the
addition of new primitives together with a semidefinitional conservative ex-
tension, one obtains a splitting of the rules for frame conditions into possibly
several geometric rules; the resulting sequent calculi allow to capture logics
with arbitrary first-order conditions on their Kripke frames.

Next, we detail the method and the new step needed for neighbourhood
semantics.

1. Convert semantic explanations into introduction rules.
We start with the truth condition for the necessity modality in terms of
neighbourhood semantics

x  2A ≡ for some a in I(x).a = ext(A)

i.e.

x  2A ≡ ∃a ∈ I(x).(∀x(x ∈ a→ x  A) &∀x(x  A→ x ∈ a))

This cannot be converted into a local rule in a way similar to the condition
in terms of relational semantics because of the nesting of quantifiers. To
proceed we need a further step:

0. Add new primitives (definitional extension) and their rules.
The new primitives are the relation of “local” forcing, a forcing relation be-
tween neighbourhoods and formulas (here local is opposed to the pointwise
forcing of possible worlds) and of “cover” between a formula and a neigh-
bourhood, to express the mutual inclusions between the neighbourhood a
and the extension of formula A.

a ∀ A ≡ ∀x(x ∈ a→ x  A) A C a ≡ ∀x(x  A→ x ∈ a)

Steps 0 and 1 give the following introduction rules:

[x ∈ a]....
x : A

a ∀ A
∀ I, x fresh

[x : A]....
x ∈ a
A C a

C I, x fresh

6



Non-normal modal logics: a challenge to proof theory

a ∈ I(x) a ∀ A A C a

x : 2A
2I

2. Obtain elimination rules through the inversion principle. The rule
is determined in two stages: first, the elimination rule should be in accor-
dance with the inversion principle; this states that whatever follows from the
grounds for deriving a proposition must follows from that proposition (cf.
Negri and von Plato 2001, p. 6). Application of this principle to x : 2A
is unproblematic and gives the rule 2E below. For a ∀ A and A C a
some further comments are in order. The grounds for deriving the propo-
sition a ∀ A are given by a derivation of x : A from x ∈ a where x
is arbitrary. Similarly for A C a. In this case we thus have that a direct
application of the inversion principle would take to higher-level elimination
rules, where assumptions in derivations are given by other derivations. It is
possible to avoid the recourse to higher-level rules by proceeding as for the
elimination rule for implication in the system of natural deduction with gen-
eral elimination rules and obtain the following elimination rules for a ∀ A
and A C a:3

a ∀ A x ∈ a

[x : A]....
D

D ∀ E
A C a x : A

[x ∈ a]....
D

D
C E

x : 2A

[a ∈ I(x), a ∀ A,A C a]....
D

D
2E

3. Translate ND rules to sequent calculus rules. This is a part of the
general procedure for transforming a system of natural deduction into one
of sequent calculus. First, the deducibility relation is internalized with an
explicit notation for it, the sequent arrow in place of vertical dots; then the
rules are made local by having the open assumptions listed in the left hand

3The procedure that replaces a higher level rule that discharges derivations with an ordinary
general elimination rule that discharges formulas has been called flattening and the limitation
of its scope investigated by Olkhovikov and Schroeder-Heister (2014).
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side of sequents at each step of a derivation. The introduction rules become
right rules and the elimination rules left rules. The format of rules that one
obtains by this translation is that of a sequent calculus with independent
contexts (cf. von Plato 2001):

∀ I ;

x ∈ a,Γ⇒ x : A

Γ⇒ a ∀ A
R ∀, x fresh

∀ E ;

Γ⇒ x ∈ a Γ′, x : A⇒ D

a ∀ A,Γ,Γ′ ⇒ D
L ∀

C I ;

x : A,Γ⇒ x ∈ a

Γ⇒ A C a
R C, x fresh

C E ;

Γ⇒ x : A Γ′, x ∈ a⇒ D

A C a,Γ,Γ′ ⇒ D
L C

2I ;

Γ⇒ a ∈ I(x) Γ′ ⇒ a ∀ A Γ′′ ⇒ A C a

Γ,Γ′,Γ′′ ⇒ x : 2A
R2

2E ;

a ∈ I(x), a ∀ A,A C a,Γ⇒ D

x : 2A,Γ⇒ D
L2

4. Adapt the sequent calculus rules obtained in 3 to the G3 style. First,
all rules are brought to the shared context form, that is, in two-premiss rules
the same multisets of formulas appear in the contexts of both premisses.
Second, the calculus has to be multisuccedent, so there are arbitrary mul-
tisets as contexts in the succedents of sequents. Third, rules that are not
already invertible are made so by the repetition of the principal formulas in
the premisses. Some optimization to reduce the number of premisses is also
possible: rule R2 is rewritten as an equivalent two-premiss rule by having
the formula a ∈ I(x) in the antecedent of the conclusion so that one of the
premisses becomes superfluous.

x ∈ a,Γ ⇒ ∆, x : A

Γ ⇒ ∆, a ∀ A
R ∀, x fresh

x ∈ a, x : A, a ∀ A,Γ ⇒ ∆

x ∈ a, a ∀ A,Γ ⇒ ∆
L ∀

y ∈ a,A C a, y : A,Γ ⇒ ∆

A C a, y : A,Γ ⇒ ∆
L C

y : A,Γ ⇒ ∆, y ∈ a

Γ ⇒ ∆, A C a
R C, y fresh
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a ∈ I(x), a ∀ A,A C a,Γ ⇒ ∆

x : 2A,Γ ⇒ ∆
L2, a fresh

a ∈ I(x),Γ ⇒ ∆, x : 2A, a ∀ A a ∈ I(x),Γ ⇒ ∆, x : 2A,A C a

a ∈ I(x),Γ ⇒ ∆, x : 2A
R2

Finally, as in standard G3 calculi, initial sequents have only labelled
atomic formulas (of the form x : P ) and neighbourhood atoms (a priori,
of the form x ∈ a or a ∈ I(x)) as principal. We observe that formulas of
the form a ∈ I(x) are never active in the right-hand side of the rules we
have listed above, and therefore the corresponding initial sequents can be
dispensed with. So the only initial sequents actually needed in the calculus
are

x : P,Γ⇒ ∆, x : P x ∈ a,Γ⇒ ∆, x ∈ a

By the procedure described and the addition of the propositional part of
the labelled calculus G3K (cf. Negri 2005) a G3 sequent calculus for the
basic system E is obtained.

5. Extensions of system E (known as systems of classical modal logics)
are obtained by adding axioms such as the following:

(M) 2(A&B) ⊃ 2A&2B

(C) 2A&2B ⊃ 2(A&B)

(N) 2>

To obtain complete sequent calculi for the classical systems defined by each
of the above axioms, we incorporate in the basic calculus G3E the rules
originated the neighbourhood-semantic conditions that correspond to the
axioms. Such rules are found through known correspondences in neigh-
bourhood semantics and conversion into rules, or directly by a method of
abduction from proof search in the basic calculus.

This process may involve the need for new primitives. The neighbour-
hood condition that corresponds to the first axiom states that supersets of
a neighbourhood of x are themselves neighbourhoods of x; the condition
that corresponds to the second axiom is closure under intersection: the in-
tersection of two neighbourhoods of x is a neighbourhood of x. The third
conditions requires that the set of all possible worlds (called the unit) is it-
self a neighbourhood of x. The table below summarizes for each system
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the modal axiom, the neighbourhood condition, and the corresponding rule.
To complete the process, one needs rules for the new primitives of formal
inclusion, intersection, and unit.

Axiom NS property Rule

(M) 2(A&B) ⊃ 2A&2B a ∈ I(x) & a ⊆ b

a ∈ I(x), a ⊆ b, b ∈ I(x),Γ⇒ ∆

a ∈ I(x), a ⊆ b,Γ⇒ ∆
→ b ∈ I(x)

(C) 2A&2B ⊃ 2(A&B) a ∈ I(x) & b ∈ I(x)

a∈I(x), b ∈ I(x), a ∩ b∈I(x),Γ⇒∆

a ∈ I(x), b ∈ I(x),Γ⇒∆
→ a ∩ b ∈ I(x)

(N) 2> W ∈ I(x)

W ∈ I(x),Γ⇒∆

Γ⇒ ∆

Table 1: From modal axioms to NS rules

Formal inclusion between two neighbourhoods a, b is defined by4

a ⊆ b ≡ ∀x(x ∈ a ⊃ x ∈ b)

and has the sequent calculus rules

x ∈ a,Γ⇒ ∆, x ∈ b

Γ⇒ ∆, a ⊆ b
R ⊆, x fresh

x ∈ b, x ∈ a, a ⊆ b,Γ⇒ ∆

x ∈ a, a ⊆ b,Γ⇒ ∆
L ⊆

Formal intersection has the rules
x ∈ a, x ∈ b, x ∈ a ∩ b,Γ⇒ ∆

x ∈ a ∩ b,Γ⇒ ∆
L∩

Γ⇒ ∆, x ∈ a ∩ b, x ∈ a Γ⇒ ∆, x ∈ a ∩ b, x ∈ b

Γ⇒ ∆, x ∈ a ∩ b
R∩

Finally, the rule that defines the unit is simply

x ∈W,Γ⇒ ∆

Γ⇒ ∆
W

4Observe that to keep the notation simpler we use the same symbols (∈,⊆,W ) both at the
semantic and syntactic levels.
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4 Streamlining

The method we have outlined in its main points produces complete calculi
for the logical systems under examination, but can still be improved. In
some cases, instead of adding extra neighbourhood properties, it is con-
venient to modify the forcing conditions in such a way that they become
in-built. A similar move worked for the condition of Noetherianity for the
provability logics GL and Grz (Negri 2005, Negri 2014, Dyckhoff and Ne-
gri 2016). Unlike in that case, where the move was forced by the fact that
Noetherianity is not expressible as a rule because it is not a first-order frame
condition, here the move is optional, but it has a double advantage: avoid
the addition of some neighbourhood rules and simplify the modal rules.

In the presence of monotonicity, the following forcing conditions give the
same class of valid formulas (see Negri 2017 for a proof):

1. x 1 2A ≡ ∃a ∈ I(x)(a ∀ A&∀y(y  A→ y ∈ a))

2. x 2 2A ≡ ∃a ∈ I(x).a ∀ A

In logical systems closed under monotonicity, the rules for the necessity
operator can thus be simplified into the following form with no added rule
for monotonicity required:

a ∈ I(x), a ∀ A,Γ⇒ ∆

x : 2A,Γ⇒ ∆
L2′, a fresh

a ∈ I(x),Γ⇒ ∆, x : 2A, a ∀ A

a ∈ I(x),Γ⇒ ∆, x : 2A
R2′

5 Other modalities

It is often useful to have primitive rules also for modalities which can be
defined though duality, such as the possibility modality. For this purpose, in
addition to the universal forcing ∀ it is useful to consider another relation
of local forcing, the existential one

a ∃ A is true iff there is some world x in a such that x  A

The corresponding rules are

x ∈ a,Γ ⇒ ∆, x : A, a ∃ A

x ∈ a,Γ ⇒ ∆, a ∃ A
R ∃

x ∈ a, x : A,Γ ⇒ ∆

a ∃ A,Γ ⇒ ∆
L ∃, x fresh
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The rules that one obtains by unfolding the definition of forcing for the dual
of necessity and by applying the process described above are

a ∈ I(x), x : 3A, a ∃ A,Γ⇒ ∆ a ∈ I(x), x : 3A,Γ⇒ ∆,¬A C a

a ∈ I(x), x : 3A,Γ⇒ ∆
L3

a ∈ I(x),¬A C a,Γ⇒ ∆, a ∃ A
Γ⇒ ∆, x : 3A

R3, a fresh

In the presence of monotonicity, the simplified rules are as follows:

a ∈ I(x), x : 3A, a ∃ A,Γ⇒ ∆

a ∈ I(x), x : 3A,Γ⇒ ∆
L3′

a ∈ I(x),Γ⇒ ∆, a ∃ A
Γ⇒ ∆, x : 3A

R3′

The use of neighbourhood semantics in place of the relational semantics
gives a splitting of the standard alethic modalities into four modalities, [ ],
〈 ], [ 〉, 〈 〉, that correspond to the four different combinations of quantifiers
in the semantic explanation:

x[ ]A iff for every neighbourhood a of x, a ∀ A

x〈 ]A iff there is some neighbourhood a of x such that a ∀ A

x[ 〉A iff for every neighbourhood a of x, a ∃ A

x〈 〉A iff there is some neighbourhood a of x such that a ∃ A

It is then an easy exercise to convert the above semantic explanation into
rules

Rules for NS-alethic modalities:

a ∈ I(x),Γ ⇒ ∆, a ∀ A

Γ ⇒ ∆, x : [ ]A
R[ ], a fresh

a ∈ I(x), x : [ ]A, a ∀ A,Γ ⇒ ∆

a ∈ I(x), x : [ ]A,Γ ⇒ ∆
L[ ]

a ∈ I(x),Γ ⇒ ∆, x : 〈 ]A, a ∀ A

a ∈ I(x),Γ ⇒ ∆, x : 〈 ]A
R〈 ]

a ∈ I(x), a ∀ A,Γ ⇒ ∆

x : 〈 ]A,Γ ⇒ ∆
L〈 ], a fresh

a ∈ I(x),Γ ⇒ ∆, a ∃ A

Γ ⇒ ∆, x : [ 〉A
R[ 〉, a fresh

a ∈ I(x), x : [ 〉A, a ∃ A,Γ ⇒ ∆

a ∈ I(x), x : [ 〉A,Γ ⇒ ∆
L[ 〉
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a ∈ I(x),Γ ⇒ ∆, x : 〈 〉A, a ∃ A

a ∈ I(x),Γ ⇒ ∆, x : 〈 〉A
R〈 〉

a ∈ I(x), a ∃ A,Γ ⇒ ∆

x : 〈 〉A,Γ ⇒ ∆
L〈 〉, a fresh

As a further example we consider the ought modality of deontic logic,
perhaps the best known example of a logic for which the standard normal
modal logic setting is inadequate.

We recall that the standard axiomatization of deontic logic is obtained
by adding the axiom ¬O⊥ to the axiomatisation of K and that the normal
modal base leads to well known deontic paradoxes (e.g. the gentle murder
of Forrester 1984).

Non-normal systems of deontic logic have been proposed as a way out from
paradoxes (see Orlandelli 2014). They are obtained as extensions of classi-
cal modal logics. System ED, MD, RD, and KD are obtained, respectively,
as extensions of systems E, M, N, and C with the deontic axiom ¬ O⊥. The
latter axiom corresponds to the rule

y ∈ a, a ∈ I(x),Γ⇒ ∆

a ∈ I(x),Γ⇒ ∆
D, y fresh

G3MD has the modal rules:

a ∈ I(x), a ∀ A,Γ⇒ ∆

x : OA,Γ⇒ ∆
LO, a fresh

a ∈ I(x),Γ⇒ ∆, x : OA, a ∀ A

a ∈ I(x),Γ⇒ ∆, x : OA RO

Other systems of deontic logic are obtained by adding the rules that
correspond to each neighbourhood property, as in Table 1. For the non-
monotonic system, the rule for the deontic modality follows the general form
of the rule for the alethic modality of system E.

6 Properties of NS-sequent calculi

The structural properties are established in a uniform way for any set of
modalities and neighbourhood properties; the guidelines set for relational
semantics require some additions and modifications. First, besides world
labels, one has neighbourhood labels which are treated in the same way as
world labels with respect to substitutions. Secondly, a suitable definition of
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formula weight is needed to reflect the nesting of the local forcing relations
in the meaning explanation and the subsequent layering of the modal rules.

The following results are then established (see Negri 2017 for details):

1. Substitution is height-preserving admissible:

(a) If `n Γ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x);

(b) If `n Γ⇒ ∆, then `n Γ(b/a)⇒ ∆(b/a).

2. All the rules are height-preserving invertible.

3. The rules of left and right weakening are contraction are height-preserving
admissible.

4. Cut is admissible.

5. The calculus is shown complete indirectly through equivalence to the
axiomatic systems and known completeness results.

6. Direct completeness proof: All the rules are sound with respect to
neighbourhood models and for every sequent, either there is a deriva-
tion or a countermodel in the intended class of neighbourhood models.
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