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1 Introduction

The advent of Kripke semantics marked a decisive turning point for philosophical
logic: earlier axiomatic studies of modal concepts were replaced by a solid semantic
method that displayed the connections between modal axioms and conditions on the
accessibility relation between possible worlds. However, the success of the semantic
method was not followed by equally powerful syntactic theories of modal and con-
ditional concepts and reasoning: Concerning the former, the situation was depicted
by Melvin Fitting in his survey in the Handbook of Modal Logic [7] as: “No proof
procedure su�ces for every normal modal logic determined by a class of frames”;
In the chapter on tableau systems for conditional logics, Graham Priest stated that
“there are presently no known tableau systems of the kind used in this book for S”
(Lewis’ logic for counterfactuals) ([40], p. 93).

The insu�ciency of traditional Gentzen systems to meet the challenge of the de-
velopment of a proof theory for modal and non-classical logic has led to alternative
formalisms which, in one way or another, extend the syntax of sequent calculus.
There have been two main lines of development, one that enriches the structure of
sequents (display calculi, hypersequents, nested sequents, tree-hypersequents, deep
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inference), another that maintains their simple structure but adds labels, thus in-
ternalizing the possible worlds semantics within the proof system. In particular, for
the proof theory of conditional logics there have been several contributions in the
literature from both approaches [1, 44, 10, 12, 20, 30, 34, 35, 36].1.

In his work of 1997, Grisha Mints has been among the forerunners2 of the latter
approach to the sequent calculus proof theory of modal logic.3 In [23], he showed
how one can obtain sequent calculi for normal modal logics with any combination
of reflexivity, transitivity, and symmetry in their Kripke frames. Possible worlds
were represented as prefixes, in fact, finite sequences of natural numbers, with the
properties of the accessibility relations of a Kripke frame implicit in the management
of prefixes in the logical rules. By this approach, it was possible to give a proof
of cut elimination that can be considered as a formalization of Kripke’s original
completeness proof.

By making explicit the accessibility relation and by using variables, rather than
sequences for possible worlds, it is possible to capture a much wider range of modal
logics, in particular those characterised by geometric frame conditions, with prop-
erties such as seriality or directness of the accessibility relation; by using the con-
version of geometric implications into rules that extend sequent calculus in a way
that maintains the admissibility of structural rules [24], it has been possible to ob-
tain a uniform presentation of a large family of modal logics, including provability
logic, with modular proofs of their structural properties [25] and direct semantic
completeness proofs [26].

Later, this labelled sequent calculus approach to the proof theory of modal logic
has been extended to wider frame classes [27], and in further work it has been shown
how the method can capture any logic characterized by first-order frame conditions
in its relational semantics [5]; the reason is that arbitrary first-order theories can be
given an analytic treatment through the extension of G3-style sequent calculi with
geometric rules. Notably, in these calculi, all the rules are invertible and a strong
form of completeness holds, with a simultaneous construction of formal proofs, for
derivable sequents, or countermodels, for underivable ones, as shown in [28].

Despite their wide range of applications, the powerful methods of Kripke seman-
tics are not a universal tool in the analysis of philosophical logics: they impose the
straitjacket of normality, i.e., validity of the rule of necessitation, from „ A to infer
„ 2A, and of the K axiom, 2(A ∏ B) ∏ (2A ∏ 2B). The limitative character of
these imposed validities becomes clear in epistemic logic: with the epistemic reading

1See the conclusion of [34] for a discussion and comparison of these di�erent formalisms.
2See also the extensive studies of labelled systems for modal logics and non-classical logics in

A. Simpson’s PhD dissertation from 1994 [42] and L. Viganò’s monograph from 2000 [45].
3Labelled tableaux, on the other hand, were developed since the early 1970’s, cf. [6].
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of the modality, an agent knows A if A holds in all the epistemic states available
to her, and then the normality properties yield that (1) whatever has been proved is
known and that (2) an agent knows all the logical consequences of what she knows.
This leads to logical omniscience, clearly inadequate for cognitive agents with human
capabilities, and thus to the rejection of both requirements. The same limitation is
clear in the interpretation of the modality as a likelihood operator where one sees
that the normal modal logic validity 2A&2B ∏ 2(A&B) should be avoided.

Another limitation in systems based on a Kripke-style semantics is that the
propositional base is classical or intuitionistic logic. In both cases, one is forced
to an implication which has been shown since the analysis of C.I. Lewis to be an
inadequate form of conditional if a logical analysis is to be pursued in other venues
than mathematics: the classical propositional base of modal logic is insu�cient to
treat conditionals beyond material or strict implication, as shown by David Lewis’
path-breaking book Counterfactuals [22], and intuitionistic implication shares many
of the undesired properties of (classical) material implication.

The early literature on the semantics of conditional logic started with an attempt,
in the work of Stalnaker, to reduce the reading of the conditional to a standard pos-
sible worlds semantics through the notion of limit and selection functions [43]. This
approach has been criticized as inadequate in many cases: first, the aforementioned
limit might not exist (as shown by Lewis in [22]), second, it can be too di�cult to
achieve and so cannot be taken as a standard basis for a formalization (as in the
perfectly moral life of deontic systems), third, it could be impossible to define as in
situations with more than one ordering, or, more concretely, conflicting obligations.
The inadequacy of a normal modal base as a general framework for modal logic
has also been shown in the case of the modal formalization of deontic notions by a
series of paradoxes, such as the paradox of the gentle murder [8], that were used in
a revisionist way to motivate non-normal modal logics.

The more general neighbourhood semantics was introduced in the 1970’s to pro-
vide a uniform semantic framework for philosophical logics that cannot be accommo-
dated within the setting of normal modal logic. Instead of an accessibility relation on
a set of possible worlds, one has for every possible world a family of neighbourhoods,
i.e., a collection of some special subsets of the set of possible worlds.

As is usual when a new semantics is introduced, its relationship with the earlier
one is investigated. In this case, one can prove that there is a precise link between
neighbourhood and relational semantics, in the sense that there is a way to define
a neighbourhood frame from a given relational frame, and conversely, a relational
frame from a neighbourhood frame. Given a relational frame (W, R), one can define
a neighbourhood frame by taking as neighbourhoods of a world w the supersets
of the set of worlds accessible from w. Conversely, given a neighbourhood frame
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(W, I) one can define a relational frame by identfying the worlds accessible from w

as the intersection of all the neighbourhoods of w. Neighbourhood frames are more
general than relational frames, and in fact the correspondence is a bijection over a
certain class of neighbourhood frames called augmented ones, those that contains
the intersection of all their members and are closed under supersets (cf. [38] for
details). The correspondence between relational and neighbourhood frames can be
seen also as a way to transfer an intuitive explanation from one semantics to the
other: roughly, worlds in a neighbourhood of w replace worlds accessible from w, and
correspondingly the intuition on what it means to be an element of a neighbourhood
or of the intersection of all the neighbourhoods of a worlds will depend on the kind
of modality or conditional that is being modelled; the intuition thus varies from the
properties of indistinguishability of worlds as epistemic states to that of plausibility
of worlds as factual scenarios.

Among non-normal modal logics, classical modal logics are those obtained by
requiring that the modality respects logical equivalence, that is, closure under the
rule A∏µB

2A∏µ2B

. One can then obtain other systems below the normal modal logic
K by removing the normality axiom and the necessitation rule and adding the
axiom schemas M, C, N and their combinations. A lattice of eight di�erent logics is
obtained (cf. the diagram on p. 237 of [4]). On the logical side, it has been shown
by Gasquet and Herzig [9] and Kracht and Wolter [18] that non-normal modal logics
can be simulated through an appropriate translation by a normal modal logic with
three modalities. This translation has been used by Gilbert and Ma�ezioli [11] to
define modular labelled sequent calculi for the basic classical modal logics. Since
the frame conditions considered go beyond the geometric class, systems of rules (in
the sense of [27]) have been used.

Our goal is to set the grounds for a proof theory of non-normal modal systems
based on neighbourhood semantics, to achieve this directly, i.e., without the use of
translations, with local rules, and in a modular way, open to extensions in various
interweaving directions4.

The goal will be accomplished through the guidelines of inferentialism, that is,
by starting from the meaning explanation of logical constants and by converting it
into well-behaved rules of a calculus, as detailed in [29].

The paper is organized as follows: In Section 2, after having recalled the basic
definitions of neighbourhood semantics, we show how it naturally gives rise to the
four distinct modalities [ ], È ], [ Í, and È Í; the nesting of quantifiers in their seman-
tic explanation is factorized with the help of local forcing relations, i.e., relations

4Such flexibility is already witnessed by developments of the labelled proof theory based on
neighbourhood semantics for preferential conditional logic and conditional doxastic logic in [30, 13].
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between (formal) neighbourhoods and formulas. Correspondingly, we have sequent
calculus rules for such relations and for the modalities defined upon them. We then
show how the basic calculus so obtained can be used to find the rules that cor-
respond to additional properties of the neighbourhoods and the relations between
such properties and the normality conditions for the È ] modality. It is also shown
how the rules obtained validate È ](A&B) ∏ È ]A & È ]B, and how a modified forcing
condition for the modality gives a more general explanation. The link between the
two is given by the operation of supplementation in minimal models. In the deter-
mination of the rules of the systems we use a sort of ‘bootstrapping’ procedure, as
we use the basic rules of the calculus to find other rules. We also assume at this
early stage of the construction of the proof system that the structural properties are
available, even if such properties are necessarily proved further on, when all the rules
have been determined. In Section 3 we apply the methodology to classical modal
logics and generate labelled G3-style sequent calculi for them. The structural prop-
erties, height-preserving invertibility of all the rules, height-preserving admissibility
of weakening and contraction and admissibility of cut are proved in Section 4. In
Section 5, we give a direct proof of completeness for these systems with respect to
neighbourhood models as well as an indirect completeness proof via the axiomatic
systems. Finally, in the conclusion, our approach to the proof theory of non-normal
modal logic is related to other approaches in the literature.

2 The general framework

A neighbourhood frame is a pair F © (W, I), where W is a set of worlds (states) and
I is a neighbourhood function

I : W ≠æ P(P(W ))

that assigns a collection of sets of worlds to each world in W . A neighbourhood model
is then a pair M © (F , V), where F is a neighbourhood frame and V a propositional
valuation, i.e., a map V : Atm ≠æ P(W ) from atomic formulas to sets of possible
worlds.

Worlds in a neighbourhood are the substitute, in this more general semantics, of
accessible worlds. The inductive clauses for truth of a formula in a model are the
usual ones for the propositional clauses; for the modal operator we have

M, w � 2A © ext(A) is in I(w),

where ext(A) © {u œ W |M, u � A}.5

5We observe that ext(A) is also denoted by [A].
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Starting from the standard forcing relation between possible worlds and formulas,
we extend the standard labelled language to a multi-sorted labelled language, with
labels for worlds and neighbourhoods, and define two local, rather than pointwise,
forcing relations, �÷ and �’. These forcing relations are local because unlike the
usual forcing of a formula A at a world x, they are relations between elements a of a
system of neighbourhoods, that is, sets of subsets of possible worlds, and formulas.
The subset a thus ranges in a family of neighbourhoods I(x), which is supposed
to be given for every world x. The first relation corresponds to the existence, in
the neighbourhood, of a world that forces the formula, the second to the forcing
for every world in the neighbourhood; here A is a formula of the propositional
modal language (as we shall see below, we shall actually consider an extension of
the standard propositional language with four modalities naturally arising from the
semantics):

a �÷
A is true i� there is some world x in a such that x � A

a �’
A is true i� for any world x in a, x � A.

The standard forcing relation can be then obtained as a special case of both
existential and universal forcing through singleton sets (under the condition that
they belong to the family of neighbourhoods):

{x} �÷
A i� {x} �’

A i� x �A

Through the standard method of conversion of forcing clauses into sequent cal-
culus rules [25, 32], we obtain the following rules for the local forcing relations;
observe that the language of standard labelled systems is extended by the local
forcing relations and has, in place of relational atoms, atoms of the form x œ a,
a œ I(x):

x œ a, � ∆ �, x : A

� ∆ �, a �’
A

R �’
, x fresh

x œ a, x : A, a �’
A, � ∆ �

x œ a, a �’
A, � ∆ � L �’

x œ a, � ∆ �, x : A, a �÷
A

x œ a, � ∆ �, a �÷
A

R �÷ x œ a, x : A, � ∆ �
a �÷

A, � ∆ �
L �÷

, x fresh

Table 1: Rules for local forcing

The use of neighbourhood semantics in place of the relational semantics gives a
splitting of the standard alethic modalities into four modalities, [ ], È ], [ Í, È Í
[38], corresponding to the four di�erent combinations of quantifiers in the semantic
explanation:
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x�[ ]A i� for every neighbourhood a of x, a �’
A

x�È ]A i� there is some neighbourhood a of x such that a �’
A

x�[ ÍA i� for every neighbourhood a of x, a �÷
A

x�È ÍA i� there is some neighbourhood a of x such that a �÷
A

The semantic clauses are translated into the following rules:

a œ I(x), � ∆ �, a �’
A

� ∆ �, x : [ ]A R[ ], a fresh
a œ I(x), x : [ ]A, a �’

A, � ∆ �
a œ I(x), x : [ ]A, � ∆ � L[ ]

a œ I(x), � ∆ �, x : È ]A, a �’
A

a œ I(x), � ∆ �, x : È ]A RÈ ]
a œ I(x), a �’

A, � ∆ �
x : È ]A, � ∆ � LÈ ], a fresh

a œ I(x), � ∆ �, a �÷
A

� ∆ �, x : [ ÍA R[ Í, a fresh
a œ I(x), x : [ ÍA, a �÷

A, � ∆ �
a œ I(x), x : [ ÍA, � ∆ � L[ Í

a œ I(x), � ∆ �, x : È ÍA, a �÷
A

a œ I(x), � ∆ �, x : È ÍA RÈ Í
a œ I(x), a �÷

A, � ∆ �
x : È ÍA, � ∆ � LÈ Í, a fresh

Table 2: Rules for alethic modalities

Finally, in a G3-style labelled calculus there are two types of initial sequents, those
with labelled atomic formulas, from the basic propositional base, of the form x : P ,
� ∆ �, x : P and those with relational atoms. For labelled calculi based on possible
worlds semantics, the latter have the form xRy, � ∆ �, xRy. As observed in [25],
such sequents are not needed because none of the rules of the calculus has active
relational atoms on the right-hand side, so such initial sequents cannot have an active
role in derivations and can thus be dispensed with. Here we have a similar situation,
with the two potential types of relational initial sequents being x œ a, � ∆ �, x œ a

and a œ I(x), � ∆ �, a œ I(x): none of the rules introduced so far has active
formulas of the form x œ a or a œ I(x) in the right-hand side, so such initial sequents
are not needed. But there is a caveat, and, as we shall see, once the assumption of
monotonicity which is behind the determination of the above rules is relaxed, we’ll
have to include rules that have relational atoms of the form x œ a on the right-hand
side, and consequently, initial sequents for them.

The basic calculus for neighbourhood semantics, G3n, is obtained by adding the
above rules of local forcing together with the rules for alethic modalities together
with the needed relational initial sequents to the standard labelled G3c sequent
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calculus (the propositional part of the calculus G3K [25]). For ease of the reader,
we give such rules in the table below, with the added relational initial sequents; they
are in parentheses since they are needed in extensions but not for the basic system
with the rules presented so far.

Initial sequents:

x : P, � ∆ �, x : P (x œ a, � ∆ �, x œ a)

Propositional rules:

x : A, x : B, � ∆ �
x : A&B, � ∆ � L&

� ∆ �, x : A � ∆ �, x : B

� ∆ �, x : A&B

R&

x : A, � ∆ � x : B, � ∆ �
x : A ‚ B, � ∆ � L‚

� ∆ �, x : A, x : B

� ∆ �, x : A ‚ B

R‚

� ∆ �, x : A x : B, � ∆ �
x : A ∏ B, � ∆ � L∏

x : A, � ∆ �, x : B

� ∆ �, x : A ∏ B

R∏

x :‹, � ∆ � L‹

Table 3: The propositional part of system G3n

As an example of the use of the system obtained, we show how to obtain a for-
mal derivation of one of the sequents which gives the known dualities between the
compound alethic modalities, namely x : È ]A ∆ x : ¬[ Í¬A (here and elsewhere in
the paper negation is not primitive, but defined through implication); by root-first
application of the rules we find the following partial derivation:

a œ I(x), y œ A, a �’
A, y : A, x : [ Í¬A ∆ x : ‹, y : A x : ‹, . . . ∆ . . .

a œ I(x), y œ A, a �’
A, y : A, y : ¬A, x : [ Í¬A ∆ x : ‹

L ∏

a œ I(x), y œ A, a �’
A, y : ¬A, x : [ Í¬A ∆ x : ‹

L � ’

a œ I(x), a �’
A, a �÷ ¬A, x : [ Í¬A ∆ x : ‹

L � ÷

a œ I(x), a �’
A, x : [ Í¬A ∆ x : ‹

L[ Í

x : È ]A, x : [ Í¬A ∆ x : ‹ LÈ ]

x : È ]A ∆ x : ¬[ Í¬A

R ∏

Derivability of the left topsequent follows from Lemma 4.2 below. In a similar way
we obtain the other parts of the dualities between È ] and [ Í and between È Í and
[ ], namely we have:
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Proposition 2.1. The following sequents are derivable in G3n:

1. x : È ]A ∆ x : ¬[ Í¬A

2. x : ¬[ Í¬A ∆ x : È ]A

3. x : È ÍA ∆ x : ¬[ ]¬A

4. x : ¬[ ]¬A ∆ x : È ÍA

We proceed with finding the properties required of the family of neighbourhoods
I(x) to obtain a modality that satisfies the K axiom and necessitation6 through
application of the invertible rules of the calculus. Before doing so, we need a formal
definition of inclusion between neighbourhoods. Unsurprisingly, inclusion between
two neighbourhoods a, b is defined by

a ™ b © ’x(x œ a ∏ x œ b)

with the sequent calculus rules

x œ a, � ∆ �, x œ b

� ∆ �, a ™ b

R ™, x fresh x œ b, x œ a, a ™ b, � ∆ �
x œ a, a ™ b, � ∆ � L ™

Observe that to keep the notation simpler we use the same symbols (œ, ™) both at
the semantic and at the syntactic level.

Definition 2.2. A family of neighbourhoods I(x) is prebasic if for all a, b œ I(x),
there exists c œ I(x) such that c ™ a and c ™ b.

If the definition of a prebasic family of neighbourhoods is not fully unfolded to
the level of worlds but left at the level of inclusion between neighbourhoods, the
property of being prebasic can be translated into sequent calculus rules that follow
the geometric rule scheme:

a œ I(x), b œ I(x), c œ I(x), c ™ a, c ™ b, � ∆ �
a œ I(x), b œ I(x), � ∆ � Prebasic, c fresh

We have:

Lemma 2.3. Suppose that for all x the family of neighbourhoods I(x) is prebasic.
Then È ](A ∏ B) ∏ (È ]A ∏ È ]B) is valid with respect to the neighbourhood semantics.

6Among the four modalities introduced above, the modality now in question is È ].
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Proof. Validity is guaranteed by the following derivation in the labelled calculus

...y : A ∆ y : A... ...y : B ∆ ...y : B

...y : A, y : A ∏ B ∆ ...y : B

L ∏

y œ a, y œ b, y œ c, a œ I(x), b œ I(x), c œ I(x), c ™ a, c ™ b, a �’
A, b �’

A∏B ∆ x : È ]B, y : B

L�’ (twice)

y œ c, a œ I(x), b œ I(x), c œ I(x), c ™ a, c ™ b, a �’
A, b �’

A ∏ B ∆ x : È ]B, y : B

L™ (twice)

a œ I(x), b œ I(x), c œ I(x), c ™ a, c ™ b, a �’
A, b �’

A ∏ B ∆ x : È ]B, c �’
B

R �’

a œ I(x), b œ I(x), c œ I(x), c ™ a, c ™ b, a �’
A, b �’

A ∏ B ∆ x : È ]B
RÈ ]

a œ I(x), b œ I(x), a �’
A, b �’

A ∏ B ∆ x : È ]B
Prebasic

x : È ]A, x : È ](A ∏ B) ∆ x : È ]B
LÈ ] (twice)

x : È ](A ∏ B) ∆ x : È ]A ∏ È ]B R ∏

∆ x : È ](A ∏ B) ∏ (È ]A ∏ È ]B) R ∏

where the topsequents are derivable by Lemma 4.2. To conclude the proof one needs
to show that the calculus G3n is sound with respect to neighbourhood semantics.
This will be established as a general result in Theorem 5.3 below. QED

The condition of being prebasic is not only su�cient but also necessary to validate
the normality axiom, in fact if rule prebasic is not available proof search is limited
to the rules of G3n and we have:

Lemma 2.4. Proof search for the K-axiom in the calculus G3n fails and from the
failed proof search it is possible to construct a countermodel in the class of neigh-
bourhood frames.

Proof. We apply all the rules of G3n with conclusion that matches the sequent;
we start from the sequent a œ I(x), b œ I(x), a �’

A, b �’
A ∏ B ∆ x : È ]B of

the above proof search,7 and obtain, through two applications resp. of RÈ ], R �’

and L �÷, the sequent a œ I(x), b œ I(x), y œ a, z œ b, y : A, z : A ∏ B, a �’
A,

b �’
A ∏ B ∆ x : È ]B, y : B, z : B; next a step of L ∏ gives a right derivable

premiss (that contains both in the left-hand side and in the right-hand side the
labelled formula z : B) and a left premiss a œ I(x), b œ I(x), y œ a, z œ b, y : A,
a �’

A, b �’
A ∏ B ∆ x : È ]B, z : A, y : B, z : B. This is not derivable and a

countermodel is obtained by taking I(x) to consist of the neighbourhoods a and b

inhabited by (only) the worlds in the antecedent, i.e., a œ I(x), b œ I(x), y œ a, z œ b

with the forcing relations y � A, z 1 A, y 1 B, z 1 B. Clearly, a �’
A, b �’

A ∏ B,
but there is no neighbourhood of x that forces universally B. QED

Observe that the above doesn’t exclude the possibility that the normality axiom
would be derivable in other extensions of G3n since proof search in these calculi

7Since all the rules applied are invertible, this is not restrictive.
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would be di�erent, and the countermodel constructed here might not be in the class
of frames for the stronger logic.

Next, we look for the property of I(x) that characterizes validity of the rule of
necessitation, i.e., the rule

„ x : A

„ x : È ]A Nec

If we want to apply root-first the rules of G3n from the sequent ∆ x : È ]A, the
only way to start is to enable the application of rule RÈ ] by assuming the existence
of a œ I(x), i.e., to assume the availability of the geometric rule (with the condition
that a is a fresh neighbourhood label)

a œ I(x), � ∆ �
� ∆ � Nondeg

This justifies the following definition:

Definition 2.5. A family of neighbourhoods I(x) is nondegenerate if I(x) contains
at least a neighbourhood.

Lemma 2.6. The rule of necessitation is admissible in the calculus G3n extended
with rule Nondeg.

Proof. We have the following

∆ x : A

∆ y : A

hp-subst

a œ I(x), y œ a ∆ x : È ]A, y : A

LW, RW

a œ I(x), ∆ x : È ]A, a �’
A

R �’

a œ I(x), ∆ x : È ]A RÈ ]

∆ x : È ]A Nondeg

Here we have used the admissible rules of height-preserving substitution and weak-
ening (to be proved in Propositions 4.3, 4.4 below), hence the statement on admis-
sibility rather than derivability. QED

Relation with minimal models: Neighbourhood models are also called min-
imal models in the literature.8 Observe that the definition of forcing that we have
given for the modality È ] validates

È ](A&B) ∏ È ]A & È ]B
8See Chapter 7 of Chellas (1980), in particular 7.1, for the definition of minimal models.
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and therefore is not minimal in the sense that it automatically imposes some validi-
ties. This is avoided if the forcing is modified by requiring that the neighbourhood
a not only is included, but coincides with the extension ext(A) of A, i.e.,

x�+È ]A i� there is a in I(x) such that a �’
A and ext(A) ™ a

Then the rules for È ] justified by the semantics of minimal models are as follows:

a œ I(x), � ∆ �, x : È ]A, a �’
A a œ I(x), � ∆ �, x : È ]A, ext(A) ™ a

a œ I(x), � ∆ �, x : È ]A RÈ ]Õ

a œ I(x), a �’
A, ext(A) ™ a, � ∆ �

x : È ]A, � ∆ � LÈ ]Õ, a fresh

together with the rules for inclusion and the obvious rules for ext(A), namely9

y : A, � ∆ �
y œ ext(A), � ∆ �

� ∆ �, y : A

� ∆ �, y œ ext(A)

It is easy to show that with these rules the sequent ∆ x : È ](A&B) ∏ È ]A & È ]B is
not derivable, the reason being that from ext(A&B) ™ a we cannot infer ext(A) ™ a

and ext(B) ™ a .
There is however a precise link between the two forcing conditions. We first

recall a definition:10

Definition 2.7. The supplementation of a neighbourhood model M © (W, I,�) is
the neighbourhood model M+ © (W, I

+
,�) obtained by taking the superset closure

of I(x) for each x in W , i.e., a œ I(x)+ if and only if a ´ b for some b œ I(x).

We also recall the following:11

Proposition 2.8. For all formula A we have

M, x � È ]A if and only if M+
, x �+ È ]A

Proof. In one direction, if there is a in I(x) such that a �’
A, i.e., a ™ ext(A), then

ext(A) is in I(x)+ (and ext(A) = ext(A)). For the converse, if there is a in I(x)+

such that a = ext(A), then b ™ ext(A) for some b in I(x). QED
9The rules in terms of ext are intuitively semantically motivated. We shall give below an

alternative, more concise, version of the rules in which the inclusion ext(A) ™ a is replaced by a
binary predicate A C a with its own rules which do not require separate rules for inclusion.

10This is Definition 7.6 in Chellas (1980).
11This is essentially exercise 7.25 (b) in Chellas’s book.
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3 Classical and other non-normal modal logics

Classical modal logics12 are non-normal modal logics obtained as extensions of clas-
sical propositional logic (CL) that contain the schema

3A ∏µ ¬2¬A

and the rule of inference
A ∏µ B

2A ∏µ 2B

RE

System E is the smallest classical system thus obtained. Other classical modal
logics are obtained as extensions of E. Extensions containing the rule

A ∏ B

2A ∏ 2B

RM

are called monotonic logics and the smallest such system is denoted by M; extensions
containing the rule

A&B ∏ C

2A&2B ∏ 2C

RR

are called regular, and the smallest such system is denoted by C.
It is well know (and easily provable) that every normal system is regular, every

regular system is monotonic, and every monotonic system is classical.
It can be convenient to give a characterization of extensions E through axiom

schemas. Among such extension, of particular interest are those obtained by the
addition of any combination of the following:

(M) 2(A&B) ∏ 2A&2B

(C) 2A&2B ∏ 2(A&B)

(N) 2€

We recall from Chellas (1980, ch. 8):

Proposition 3.1. Let � be an extension of E. Then

1. � is monotonic i� it contains the axiom schema M.
12See ch. 8 of Chellas (1980) for a thorough treatment of classical, monotonic and regular modal

logics in an axiomatic setting.
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2. � is regular i� it contains the axiom schema C and is closed under RM.

3. � is regular i� it contains the axiom schemas C and M.

4. � is normal i� it is regular and contains the axiom schema N.

These logics are denoted with ES1 . . . S

n

or simply S1 . . . S

n

, where S1, . . . ,S

n

are the axiom/rule schemas added to system E. With this notation we have K =
RN = MCN = EMCN.

We recall that the forcing clause for the alethic modality in neighbourhood se-
mantics is as follows:

x � 2A © ÷a œ I(x)(a �’
A & ’y(y � A ∏ y œ a))

or equivalently
x � 2A © ÷a œ I(x)(a �’

A & ext(A) ™ a)

The semantic clause is not one of the form that can be directly translated into
geometric rules, but we proceed in a way similar to Skolem’s definitional extension
([41], see also Section 2 of [5]) and add a new predicate A C a for ’y(y � A ∏ y œ a)
together with its definition. The definition is in turn formulated in terms of rules to
be added to the calculus. When all the requirement to obtain a calculus with the
desired properties are taken care of, the rules are as follows:13

y œ a, A C a, y : A, � ∆ �
A C a, y : A, � ∆ � L C y : A, � ∆ �, y œ a

� ∆ �, A C a

R C, y fresh

a œ I(x), a �’
A, A C a, � ∆ �

x : 2A, � ∆ � L2, a fresh

a œ I(x), � ∆ �, x : 2A, a �’
A a œ I(x), � ∆ �, x : 2A, A C a

a œ I(x), � ∆ �, x : 2A

R2

Table 4: Modal rules of system E

13See [29] for details making explicit a procedure used to obtain such sequent rules starting from
the meaning explanation in terms of neighbourhood semantics.



Proof theory for non-normal modal logics ...

The complete G3-system for E is obtained by adding the above rules to the rules for
�’ of table 1 and the rules for the propositional part of G3n of table 3, including
the initial sequents of the form x œ a, � ∆ �, x œ a.14 We shall denote with G3E

the resulting system.
In the proofs that follow we use admissibility of the structural rules, that will be

proved in Section 4.

Lemma 3.2. The rule

x : A, � ∆ �, x : B

a �’
A, � ∆ �, a �’

B

(x /œ �, �)

is admissible in G3E.

Proof. By admissibility of weakening and steps of L �’ and R �’. QED
Neither rule RE nor a labelled version of the rule has to be added as a rule of G3E.
The situation is similar to what happens with G3K, the sequent calculus for basic
normal modal logic, where the rule of necessitation doesn’t have to be added as an
explicit rule because it is admissible, i.e., whenever it premiss is derivable, also its
conclusion is. With the proviso of completeness (proved in Section 5), this amounts
to proving that whenever ∆ x : A ∏µ B is derivable for an arbitrary label x then
also ∆ x : 2A ∏µ 2B is derivable for an arbitrary label x:

Lemma 3.3. Rule RE is admissible in G3E.
Proof. By the following derivation (where we use admissible cut and weakening

steps):

x : A ∆ x : B

a �’
A ∆ a �’

B

3.2

a œ I(x), a �’
A, A C a ∆ x : 2B, a �’

B

y : B ∆ y : A

y œ a, . . . ∆ . . . , y œ a

y : A, a œ I(x), a �’
A, A C a ∆ x : 2B, y œ a

L C

y : B, a œ I(x), a �’
A, A C a ∆ x : 2B, y œ a

cut

a œ I(x), a �’
A, A C a ∆ x : 2B, B C a

R C

a œ I(x), a �’
A, A C a ∆ x : 2B

R2

x : 2A ∆ x : 2B

L2

Observe that the topsequents in the derivations correspond to both assumptions of
rule RE and that it is also required that sequents of the form x œ a, � ∆ �, x œ a

are taken as initial. QED
Next we show how to use this basic calculus to find the extra rules that have to
be added to obtain a G3 proof system for each of the above classical modal logics.

14The reason for the addition will be clear in the proof of Lemma 3.3 below.
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Again, as we are “bootstrapping” to find the rules of the calculus, we assume that
the desired invertibility and structural properties (to be proved in Section 4 below)
are available.

We proceed by root-first proof search in the invertible sequent calculus G3E.
By abduction we find a su�cient rule for deriving the labelled form of each axiom.
Further on, we shall give all the formal definitions and prove that this heuristic
method really does yield a complete sequent system for the logic in question.

First, observe that by invertibility of the rules R ∏ and R& the derivability of
the sequent ∆ x : 2(A&B) ∏ 2A &2B is equivalent to the derivability of both
∆ x : 2(A&B) ∏ 2A and ∆ x : 2(A&B) ∏ 2B. Let us see how the former can be
obtained with the following derivation, where we use derivability of initial sequents
with arbitrary formulas, a result proved in the next section; the latter sequent is
derivable mutatis mutandis:

Lemma 4.2
a œ I(x), y œ a, y : A, y : B, a �’

A&B, . . . ∆ x : 2A, y : A

a œ I(x), y œ a, y : A&B, a �’
A&B, . . . ∆ x : 2A, y : A

L �’

a œ I(x), y œ a, a �’
A&B, . . . ∆ x : 2A, y : A

R �’

a œ I(x), a �’
A&B, . . . ∆ x : 2A, a �’

A

R

....
a œ I(x), a �’

A&B, A&B C a ∆ x : 2A, A C a

a œ I(x), a �’
A&B, A&B C a ∆ x : 2A

R2

x : 2(A&B) ∆ x : 2A

L2

with the dotted part as follows:
Lemma 4.2

b �’
A, . . . ∆ . . . , b �’

A

Lemma 4.2
A C b, . . . ∆ . . . , A C b

b œ I(x), b �’
A, A C b, a �’

A&B, a œ I(x), a �’
A&B, A&B C a ∆ x : 2A, A C a

R2

a œ I(x), a �’
A&B, A&B C a ∆ x : 2A, A C a

R

The extra rule applied (R ) amounts to requiring that ext(A&B) œ I(x) implies
ext(A) œ I(x). Since ext(A&B) ™ ext(A) holds by definition, this follows from the
property of monotonicity of I(x):

a œ I(x) & a ™ b ∏ b œ I(x) Mon

As a rule, the property is expressed as

a œ I(x), a ™ b, b œ I(x), � ∆ �
a œ I(x), a ™ b, � ∆ � M

Lemma 3.4. In the presence of monotonicity (Mon), the following forcing condi-
tions give the same class of valid formulas:

1. x �1 2A © ÷a œ I(x)(a �’
A & ’y(y � A ∏ y œ a))
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2. x �2 2A © ÷a œ I(x).a �’
A

Proof. Let V (1) (resp. V (2)) be the class of valid formulas according to 1
(resp. 2). We show that V (1) = V (2). We show by induction on formulas that
A is in V (1) if and only if A is in V (2). The only non-trivial case is the one for
boxed formulas, so suppose that |=1 2A, that is, for all models (W, I, V) and for
all x we have ÷a œ I(x)(a �’

A & A C a). It is then clear by first-order logic that
÷a œ I(x).a �’

A. Therefore |=2 2A.
Conversely, if |=2 2A, then for an arbitrary x we have ÷a œ I(x).a �’

A. Let b

be ext(A). By monotonicity, we have that b œ I(x) and b clearly satisfies A C b, so
x �1 2A. Since x was arbitrary, |=1 2A. QED
It follows that in the case of logical systems closed under monotonicity the rules for
the necessity operator can be simplified to the following form:

a œ I(x), a �’
A, � ∆ �

x : 2A, � ∆ � L2Õ
, a fresh

a œ I(x), � ∆ �, x : 2A, a �’
A

a œ I(x), � ∆ �, x : 2A

R2Õ

Table 5: Modal rules of system G3M

Remark 3.5. Whenever monotonicity is present, we shall consider the above, sim-
plified rules for 2 rather than the original ones with the addition of rule M ; this is
not just a choice to streamline the sequent calculus, but it follows also from the fact
that rule M together with the right rule for inclusion gives a problematic case in the
cut elimination procedure.

Next, we proceed to the determination of the rule for system C. We have the
following derivation:

. . . , a fl b �’
A&B, . . . ∆ x : 2(A&B), a fl b �’

A&B . . . , A&B C a fl b, . . . ∆ x : 2(A&B), A&B C a fl b

a fl b œ I(x), a œ I(x), b œ I(x), a fl b �’
A&B, a �’

A, b �’
B, A&B C a fl b, A C a, B C b ∆ x : 2(A&B)

R2

a fl b œ I(x), a œ I(x), b œ I(x), a fl b �’
A&B, a �’

A, b �’
B, A C a, B C b ∆ x : 2(A&B)

Adm2

a fl b œ I(x), a œ I(x), b œ I(x), a �’
A, b �’

B, A C a, B C b ∆ x : 2(A&B)
Adm1

a œ I(x), b œ I(x), a �’
A, b �’

B, A C a, B C b ∆ x : 2(A&B)
Rule

a œ I(x), a �’
A, A C a, x : 2B ∆ x : 2(A&B)

L2

x : 2A, x : 2B ∆ x : 2(A&B) L2

x : 2A&2B ∆ x : 2(A&B) L&

Here we have used two steps whose admissibility follows from admissibility of cut
and contraction (to be proved below) and the derivability in G3E of the sequents
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1. a �’
A, b �’

B ∆ a fl b �’
A&B

2. A C a, B C b ∆ A&B C a fl b

in a system extended with the following rules for formal intersection:
x œ a, x œ b, x œ a fl b, � ∆ �

x œ a fl b, � ∆ � Lfl
� ∆ �, x œ a fl b, x œ a � ∆ �, x œ a fl b, x œ b

� ∆ �, x œ a fl b

Rfl

So the extra condition that should be required on the neighbourhoods is just

a œ I(x) & b œ I(x) æ a fl b œ I(x)

that is, closure of I(x) under intersection. It corresponds to the rule
a fl b œ I(x), a œ I(x), b œ I(x), � ∆ �

a œ I(x), b œ I(x), � ∆ � C

Observe that if I(x) is closed under supersets, then the above condition can be
equivalently replaced by the weaker

a œ I(x) & b œ I(x) æ ÷c œ I(x).c ™ a & c ™ b

which can be translated into the geometric rule Prebasic seen already in Section 2:
c œ I(x), a œ I(x), b œ I(x), c ™ a, c ™ b, � ∆ �

a œ I(x), b œ I(x), � ∆ � C

Õ

where c is a fresh neighbourhood label.
Finally, we determine the rule needed to prove the validity of 2€. As a prelim-

inary remark, we observe that in the calculus G3K which shares the propositional
base with G3E, the constant € (for true) is not primitive but defined as ‹∏‹ (or
A ∏ A for any formula A). The rule to be added for a labelled calculus with € as a
primitive is the dual of the rule L‹, that is, the zero-premiss rule15

� ∆ �, x : € R€

We have the search tree16

a œ I(x), a �’ €, € C a ∆ x : 2€, a �’ € a œ I(x), a �’ €, € C a ∆ x : 2€, € C a

a œ I(x), a �’ €, € C a ∆ x : 2€
R2

∆ x : 2€ rule

15Observe that the rule is actually derivable with € defined as ‹∏‹.
16Since the topsequents are derivable, the proof search is a derivation once the step indicated by

rule is taken to be a rule of the system; here, as elsewhere, proof search in the basic calculus is used
to determine which additional rules have to be included in the system to make certain sequents
derivable.
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The extra rule correponds to the following property of neighbourhoods

(1.) ÷a œ I(x).a �’ € & € C a

which is clearly equivalent to

(1.

Õ) ÷a œ I(x).€ C a

and corresponds to the rule

a œ I(x), € C a, � ∆ �
� ∆ � N

with a fresh. In the presence of monotonicity rule Nondeg (Definition 2.4) su�ces,
because we have

a œ I(x) ∆ x : 2€, a �’ €
a œ I(x) ∆ x : 2€ R2Õ

∆ x : 2€ Nondeg

with topsequent clearly derivable.

3.1 Adding 3

The possibility modality is defined in classical modal logic, as in normal modal logic,
as the dual of necessity (cf. [4])

3A © ¬2¬A

and therefore it is not usually considered as a modality with its own rules. It is
however convenient, for the same reasons why it is convenient to have classical logic
with all the connectives, not just two (or even one) of them, to have primitive rules
for possibility. The rules are found by imposing the above duality and using the
rules of 2 and the duality between �’ and �÷. In practice, to find the left and right
rules for 3 we start with the sequents x : 3A, � ∆ � and � ∆ �, x : 3A, replace
them with x : ¬2¬A, � ∆ � and � ∆ �, x : ¬2¬A, respectively, and apply the
rules for ¬ and 2. It becomes clear that the former sequent needs also a œ I(x) in
the antecedent, else R2 cannot be applied. The decomposition then gives a �’ ¬A

in the succedent (resp. antecedent) which is replaced by the equivalent a �÷
A in

the antecedent (resp. succedent). The formula ¬A C a instead cannot be moved to
the other side with negation removed because the scope of the negation is A, not
A C a. In the end, the rules for the possibility modality are as follows:

a œ I(x), x : 3A, a �÷
A, � ∆ � a œ I(x), x : 3A, � ∆ �, ¬A C a

a œ I(x), x : 3A, � ∆ � L3



Sara Negri

a œ I(x), ¬A C a, � ∆ �, a �÷
A

� ∆ �, x : 3A

R3

In R3, a is a fresh neighbourhood label.
To see the rules at work, we can use them to verify the duality between the two

alethic modalities, where both topsequents are derivable17:

a œ I(x), x : 3A, y œ a, y : A, y : ¬A, a �’ ¬A, ¬A C a ∆ x : ‹

a œ I(x), x : 3A, y œ a, y : A, a �’ ¬A, ¬A C a ∆ x : ‹
L �’

a œ I(x), x : 3A, a �÷
A, a �’ ¬A, ¬A C a ∆ x : ‹

L �÷
a œ I(x), x : 3A, a �’ ¬A, ¬A C a ∆ x : ‹, ¬A C a

a œ I(x), x : 3A, a �’ ¬A, ¬A C a ∆ x : ‹
L3

x : 3A, x : 2¬A ∆ x : ‹ L2

x : 3A ∆ x : ¬2¬A

R¬

∆ x : 3A ∏ ¬2¬A

R ∏

The derivation of the other direction of the duality, namely ∆ x : ¬2¬A ∏ 3A, is
found in a similar way using the rules for negation, the alethic modalities and the
local forcing relations.

If monotonicity is absorbed into the modal rules, also the rules for 3 get modified
(and simplified). The monotonic version of the rules for 3 is as follows:

a œ I(x), x : 3A, a �÷
A, � ∆ �

a œ I(x), x : 3A, � ∆ � L3Õ

a œ I(x), � ∆ �, a �÷
A

� ∆ �, x : 3A

R3Õ

We remark here that all the results below continue to hold when 3 is added as an
explicit modality, rather than a defined one, in the calculus.

4 Structural properties

In this section we shall give detailed proofs of the structural properties for the sys-
tems based on neighbourhood semantics that we have considered. Rather than giving
specific proofs for specific systems, we shall indicate how the structural properties
can be established by following a generalization of the guidelines presented in [25]
and [32], section 11.4. There are some important non-trivial extra considerations
caused by the layering of rules for the modalities defined in terms of neighbourhood
semantics, which gives a quantifier alternation more complex than in the Kripke-style
semantics. Likewise, some preliminary results are needed, namely height-preserving

17This is a consequence of Lemma 4.2 proved in the following section.
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admissibility of substitution (in short, hp-substitution) and height-preserving in-
vertibility (in short, hp-invertibility) of the rules. We recall that the height of a
derivation is its height as a tree, i.e., the length of its longest branch, and that „

n

denotes derivability with derivation height bounded by n in a given system.
In the following we shall denote with G3n

ú any extension of the basic system
G3n with rules for the modalities [ ], È ], [ Í, and È Í, 218 and with extra (mathe-
matical) rules. This extension is intended to follow the standard closure condition
for extensions of contraction-free labelled sequent calculi (cf. [25]) to guarantee
admissibility of contraction in the resulting system.

As observed above, in the light of Remark 3.5, we can obtain system G3nM by
modifying the rules L2, R2 to the form L2Õ and R2Õ; for extensions, we can take
in place of C and N the rules C

Õ and Nondeg.
In many proofs we shall use an induction on formula weight. In order to find

a definition of weight that makes the induction work we have to take into account
several constraints that emerge from the proofs of the structural results; the choice
for this particular definition will thus become clear from the proofs to follow.

Observe that the definition extends the usual definition of weight from (pure)
formulas to labelled formulas and local forcing relations, namely, to all formulas of
the form x : A, a �’

A, a �÷
A, A C a, as well as the relational formulas x œ a,

a œ I(x), a ™ b.

Definition 4.1. The label of formulas of the form x : A is x. The label of formulas
of the form a �’

A, a �÷
A, A C a is a. The label of a formula F will be denoted by

l(F). The pure part of a labelled formula F is the part without the label and without
the forcing relation, either local (�÷, �’) or worldwise (:) and will be denoted by
p(F).

The weight of a labelled formula F is given by the pair (w(p(F)), w(l(F))) where

• For all worlds labels x and all neighbourhood labels a, w(x) = 0 and w(a) =
1 + n(fl), where n(fl) is the number of formal intersections in a.

• – w(P ) = w(‹) = 1,
– w(A¶B) = w(A)+w(B)+1 for ¶ conjunction, disjunction, or implication,
– w(2A) = w([ ]A) = w(È ]A) = w([ ÍA) = w(È ÍA) = w(A) + 1

For formulas of the form a œ I(x), x œ a, we stipulate w(a œ I(x)) = w(x œ a) =
(0, w(a)) and for formulas of the form a ™ b, w(a ™ b) = (w(a), w(b)). Weights of
labelled formulas are ordered lexicographically.

18We assume that for each modality, the extension has to contain both the right and left rule.
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From the definition of weight it is clear that the weight gets decreased if we move
from a formula labelled by a neighbourhood label to the same formula labelled by
a world label, or if we move (regardless the label) to a formula with a pure part of
strictly smaller weight.

Lemma 4.2. Sequents of the following form are derivable in G3n

ú for arbitrary
formulas A and B in the propositional modal language of G3n

ú:

1. a ™ b, � ∆ �, a ™ b

2. A C a, � ∆ �, A C a

3. a �’
A, � ∆ �, a �’

A

4. a �÷
A, � ∆ �, a �÷

A

5. x : A, � ∆ �, x : A

Proof. 1. By the following derivation

x œ b, x œ a, a ™ b, � ∆ �, x œ b

x œ a, a ™ b, � ∆ �, x œ b

L ™

a ™ b, � ∆ �, a ™ b

R ™

where the topsequent is initial.
2. By the following derivation

x œ a, x : A, A C a, � ∆ �, x œ a

x : A, A C a, � ∆ �, x œ a

L C
A C a, � ∆ �, A C a

R C

where the topsequent is initial.
3–5 are proved by simultaneous induction on formula weight.
3. We have the following inference

x : A, x œ a, a �’
A, � ∆ �, x : A

x œ a, a �’
A, � ∆ �, x : A

L �’

a �’
A, � ∆ �, a �’

A

R �’

The topsequent is derivable by induction hypothesis because w(x : A) < w(a �’
A).

4. Similar, with L �÷ and R �÷ in place of R �’ and L �’, respectively, using
w(x : A) < w(a �÷

A).
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5. We distinguish subcases according to the structure of A. If it is atomic or
‹, the sequent is initial or conclusion of L‹. If the outermost connective of A

is a conjunction or a disjunction, or an implication, the sequent is derivable by
application of the respective rules and the induction hypothesis. If it is a modality,
we have the following further subcases:

5.1. A © [ ]B. We have the following inference

a �’
B, a œ I(x), x : [ ]B, � ∆ �, a �’

B

a œ I(x), x : [ ]B, � ∆ �, a �’
B

L[ ]

x : [ ]B, � ∆ �, x : [ ]B R[ ]

where the topsequent is derivable by induction hypothesis because w(a �’
B) <

w(x : [ ]B).
5.2. A © È ]B. Similar with the rules LÈ ], RÈ ], and the inductive hypothesis on

a �’
B, using w(a �’

B) < w(x : È ]B).
5.3. A © [ ÍB. Similar with the rules R[ Í, L[ Í, and the inductive hypothesis on

a �÷
B, using w(a �÷

B) < w(x : [ ÍB).
5.4 A © È ÍB. Similar with the rules LÈ Í, RÈ Í, and the inductive hypothesis on

a �’
B.

5.5 A © 2B. We have the following inference

a œ I(x), a �’
B, B C a, � ∆ �, x : 2B, a �’

B a œ I(x), a �’
B, B C a, � ∆ �, x : 2B, B C a

a œ I(x), a �’
B, B C a, � ∆ �, x : 2B

R2

x : 2B, � ∆ �, x : 2B

L2

where the left topsequent is derivable by induction hypothesis because w(a �’
B) <

w(x : 2B) and the right one by clause 2 above.
For extensions of G3nM we have the following inference:

a œ I(x), a �’
B, � ∆ �, x : 2B, a �’

B

a œ I(x), a �’
B, � ∆ �, x : 2B

R2Õ

x : 2B, � ∆ �, x : 2B

L2Õ

and we can treat this as a sub-case of the above. QED

In our system, in addition to world labels, we have neighbourhood labels. The
latter are subject to similar conditions, such as the conditions of being fresh in
certain rules, as the world labels. Consequently, we shall need properties of hp-
substitution in our analysis. Before stating and proving the property, we observe that
the definition of substitution of labels given in [25] can be extended in an obvious way
– that need not to be pedantically detailed here – to all the formulas of our language
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and to neighbourhood labels. We’ll have, for example, x : È ÍA(y/x) © y : È ÍA,
a �÷

A(b/a) © b �÷
A, and A C a(b/a) © A C b. Next, we prove that the calculus

enjoys the property of hp-substitution both of world and neighbourhood labels:19

Proposition 4.3. 1. If „
n

� ∆ �, then „
n

�(y/x) ∆ �(y/x);

2. If „
n

� ∆ �, then „
n

�(b/a) ∆ �(b/a).

Proof. Both statements are proved by induction on the height of the derivation.
If it is 0, then � ∆ � is an initial sequent or a conclusion of L‹. The same then

holds for �(y/x) ∆ �(y/x) and for �(b/a) ∆ �(b/a).
If the derivation has height n > 0, we consider the last rule applied. If � ∆ �

has been derived by a rule without variable conditions, we apply the induction
hypothesis and then the rule. Rules with variable conditions require that we avoid
a clash of the substituted variable with the fresh variable in the premiss. This is
the case for the logical rules R �’, L �÷, R[ ], LÈ ], R[ Í, LÈ Í, L2, L2Õ and for
the neighbourhood rules R ™, Prebasic/C

Õ, Nondeg. So, if � ∆ � has been derived
by any of these rules, we apply the inductive hypothesis twice to the premiss, first
to replace the fresh variable with another fresh variable di�erent, if necessary, from
the one we want to substitute, then to make the substitution, and then apply the
rule. QED

The rules of weakening for the language of a labelled system with internalized
neighbourhood semantics such as G3n

ú have the following form, where „ is either a
“relational” atom of the form a œ I(x)20 or x œ a or a labelled formula of the form
x : A, a �’

A, a �÷
A or a formula of the form A C a:

� ∆ �
„, � ∆ � L-W kn

� ∆ �
� ∆ �, „

R-W kn

Proposition 4.4. The rules of left and right weakening are hp-admissible in G3n

ú.

Proof. Straightforward induction, with a similar proviso as in the above proof for
rules with variable conditions. QED

Next, we prove hp-invertibility of the rules of G3n

ú, i.e., for every rule of the form
�Õ∆�Õ

�∆� , if „
n

� ∆ � then „
n

�Õ ∆ �Õ, and for every rule of the form �Õ∆�Õ �ÕÕ∆�ÕÕ

�∆�
if „

n

� ∆ � then „
n

�Õ ∆ �Õ and „
n

�ÕÕ ∆ �ÕÕ. Items 7Õ and 8Õ are the invertibility
19We remind that of the two possible notations for substitution we use the one in which A(y/x)

indicates the result of substituting y for x in A.
20Indeed, such formulas are not needed for right weakenening because they are never active on

the right.
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for the non-monotonic rules for È ], RÈ ]Õ and LÈ ]Õ, and 15Õ for the monotonic version
of L2:

Lemma 4.5. The following hold in G3n

ú:

1. If „
n

� ∆ �, a �’
A then „

n

x œ a, � ∆ �, x : A.

2. If „
n

x œ a, a �’
A, � ∆ � then „

n

x œ a, x : A, a �’
A, � ∆ �.

3. If „
n

x œ a, � ∆ �, a �÷
A then „

n

x œ a, � ∆ �, x : A, a �÷
A.

4. If „
n

a �÷
A, � ∆ � then „

n

x œ a, x : A, � ∆ �.

5. If „
n

� ∆ �, x : [ ]A then „
n

a œ I(x), � ∆ �, a �’
A.

6. If „
n

a œ I(x), x : [ ]A, � ∆ � then „
n

a œ I(x), x : [ ]A, a �’
A, � ∆ �.

7. If „
n

a œ I(x), � ∆ �, x : È ]A then „
n

a œ I(x), � ∆ �, x : È ]A, a �’
A.

7Õ. If „
n

a œ I(x), � ∆ �, x : È ]A then „
n

a œ I(x), � ∆ �, x : È ]A, a �’
A and

„
n

a œ I(x), � ∆ �, x : È ]A, A C a.

8. If „
n

x : È ]A, � ∆ � then „
n

a œ I(x), a �’
A, � ∆ �.

8Õ. If „
n

x : È ]A, � ∆ � then a œ I(x), a �’
A, A C a, � ∆ �.

9. If „
n

� ∆ �, x : [ ÍA then „
n

a œ I(x), � ∆ �, a �÷
A.

10. If „
n

a œ I(x), x : [ ÍA, � ∆ � then „
n

a œ I(x), x : [ ÍA, a �÷
A, � ∆ �.

11. If „
n

a œ I(x), � ∆ �, x : È ÍA then „
n

a œ I(x), � ∆ �, x : È ÍA, a �÷
A.

12. If „
n

x : È ÍA, � ∆ � then „
n

a œ I(x), a �÷
A, � ∆ �.

13. If „
n

A C a, y : A, � ∆ � then „
n

y œ a, A C a, y : A, � ∆ �.

14. If „
n

� ∆ �, A C a then „
n

y : A, � ∆ �, y œ a.

15. If „
n

x : 2A, � ∆ � then „
n

a œ I(x), a �’
A, A C a, � ∆ �.

15Õ. If „
n

x : 2A, � ∆ � then „
n

a œ I(x), a �’
A, � ∆ �.

16. If „
n

a œ I(x), � ∆ �, x : 2A then „
n

a œ I(x), � ∆ �, x : 2A, a �’
A and

„
n

a œ I(x), � ∆ �, x : 2A, A C a.

17. If „
n

� ∆ �, a ™ b then „
n

x œ a, � ∆ �, x œ b.
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18. If „
n

x œ a, a ™ b, � ∆ � then „
n

x œ a, a ™ b, x œ b, � ∆ �.

Proof. Observe first that all the cases (2, 3, 6, 7, 7Õ, 10, 11, 13, 16, 18) that are
instances of hp-admissibility of weakening follow from Proposition 4.4 above. For
the rest, the proof is by induction on n and we show in detail, by way of example
item 5., the other cases being shown in a similar way.

Base case: Suppose that � ∆ �, x : [ ]A is an initial sequent or conclusion of
L‹. Then, in the former case, x : [ ]A not being atomic or of the form x œ a,
a œ I(x), � ∆ �, a �’

A is an initial sequent, in the latter it is a conclusion of L‹.
Inductive step: Assume hp-invertibility up to n, and let „

n+1 � ∆ �, x : [ ]A. If
x : [ ]A is principal, then the premiss a œ I(x), � ∆ �, a �’

A (possibly obtained
through hp-substitution) has a derivation of height n. If x : [ ]A is not principal
in the last rule, we distinguish the case in which the last rule is not a rule with
eigenvariable from the case in which it is. In the former case, the last rule has
one or two premisses of the form �Õ ∆ �Õ

, x : [ ]A of derivation height Æ n. By
induction hypothesis we have a œ I(x), �Õ ∆ �Õ

, a �’
A for each premiss, with

derivation height at most n. Thus, „
n+1 a œ I(x), � ∆ �, a �’

A. In the latter
case, we proceed as in the previous case if the last rule has the eigenvariable for world
labels, the critical case being (here) the one with the eigenvariable for neighbourhood
labels. So, if the last rule is, say, LÈ ], then � = È ]B, �Õ and we have a premiss
that we can assume to be of the form b œ I(x), b �’

B, �Õ ∆ �, x : [ ]A with
b di�erent from a (this can be assumed without loss of generality because of hp-
substitution). By inductive hypothesis we obtain a derivation of height n of a œ
I(x), b œ I(x), b �’

B, �Õ ∆ �, a �’
A and by a step of LÈ ] we conclude derivability

of a œ I(x), � ∆ �, a �’
A with height n + 1. Cases 8, 8Õ, 9, 12, 15, 15Õ, are proved

with a similar analysis. There is a final group of cases (items 1, 4, 14, 17), those of
rules with an eigenvariable condition for world labels. The treatment is similar to
the case detailed above, with a similar distinction of cases as for the last rule applied
in the derivation. A special proviso is needed for the case in which the last rule is not
the rule with the principal formula in question and it is a rule with eigenvariable of
the same type, namely a world label. The claim is obtained by inductive hypothesis
after use, if needed, of hp-substitution on the premisses of such rules to avoid a clash
of variables so that the last rule can be applied after the inductive step to restore
the original contexts. QED

Lemma 4.6. All the propositional rules of G3n

ú are hp-invertible.

Proof. Similar to the proof for G3c (Theorem 3.1.1 in [31]). QED

Therefore, as a general result, we have:
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Corollary 4.7. All the rules of G3n

ú are hp-invertible.

Proof. By Lemmas 4.5, 4.6, and 4.4 (the latter gives hp-invertibility of the neigh-
bourhood rules). QED

The rules of contraction for the language of a labelled system with internalized
neighbourhood semantics such as G3n

ú have the following form, where „ is either
a “relational” atom of the form a œ I(x) or x œ a or a labelled formula of the form
x : A, a �’

A, a �÷
A or a formula of the form A C a:

„, „, � ∆ �
„, � ∆ � L-Ctr

� ∆ �, „, „

� ∆ �, „

R-Ctr

Theorem 4.8. The rules of left and right contraction are hp-admissible in G3n

ú.

Proof. By simultaneous induction on the height of derivation for left and right con-
traction.

If n = 0 the premiss is either an initial sequent or a conclusion of a zero-premiss
rule. In each case, the contracted sequent is also an initial sequent or a conclusion
of the same zero-premiss rule.

If n > 0, consider the last rule used to derive the premiss of contraction. There
are two cases, depending on whether the contraction formula is principal or not in
the rule.21

1. If the contraction formula is not principal in it, both occurrences are found in
the premisses of the rule and they have a smaller derivation height. By the induction
hypothesis, they can be contracted and the conclusion is obtained by applying the
rule to the contracted premisses.

2. If the contraction formula is principal in it, we distinguish two sub-cases:
2.1. The last rule is one in which the principal formulas appear also in the

premiss (such as L �’, R �÷, L[ ], RÈ ], L[ Í, RÈ Í, L C, R2, R2Õ, L ™, and
the neighbourhood rules). In all these cases we apply the induction hypothesis to
the premiss(es) and then the rule. For example, if the last rule used to derive the
premiss of contraction is R2 we have:

a œ I(x), � ∆ �, x : 2A, x : 2A, a �’
A a œ I(x), � ∆ �, x : 2A, x : 2A, A C a

a œ I(x), � ∆ �, x : 2A, x : 2A

R2

21We recall that the principal formula of a logical rule is the formula containing the constant
named by the rule in question, which in this case can be a connective, a modality, or a local
forcing relation (�÷, �’), or the inclusion operator; the other formulas in the rule are active or side
formulas. Side formulas are the formulas in the contexts and the other formulas, which are neither
side not principal formulas are active formulas. In the case of labelled systems there can be active
formulas in the conclusion of the rules. For example, the formula a œ I(x) in the conclusion of R2

is regarded as an active formula.
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By induction hypothesis applied to the premiss we obtain a one step shorter deriva-
tion of a œ I(x), � ∆ �, x : 2A, a �’

A and a œ I(x), � ∆ �, x : 2A, A C a and
thus by a step of R2 we obtain a œ I(x), � ∆ �, x : 2A with the same derivation
height of the given premiss of contraction.

For the neighbourhood rules we follow the standard procedure as for added extra-
logical rules and observe that in case the contraction formulas are both principal in
the rule (as in the case of rule C) we apply the closure condition

2.2. The last rule is one in which the principal formula does not appear in the
premiss(es) (such as the rules for &, ‚, ∏, R �’, L �÷, R[ ], LÈ ], R[ Í, LÈ Í, L2,
R ™). In all such cases, we apply hp-invertibility to the premiss(es) of the rule so
that we have a duplication of formulas at a smaller derivation height, then apply
the induction hypothesis (as many times as needed) then apply the rule in question.
For example, if the last rule is L2, we have:

a œ I(x), a �’
A, A C a, x : 2A, � ∆ �

x : 2A, x : 2A, � ∆ � L2, a fresh

Using hp-invertibility of L2 we obtain from the premiss a derivation of height n ≠ 1
of

a œ I(x), a œ I(x), a �’
A, a �’

A, A C a, A C a, � ∆ �

By the induction hypothesis we get a derivation of the same height of the sequent
a œ I(x), a �’

A, A C a, � ∆ � and application of L2 gives a derivation of height
n of x : 2A, � ∆ �. QED

Cut is a rule of the form

� ∆ �, „ „, �Õ ∆ �Õ

�, �Õ ∆ �, �Õ Cut

where „ is any formula of the language of the labelled calculus G3n

ú. We have:

Theorem 4.9. Cut is admissible in G3n

ú.

Proof. By double induction, with primary induction on the weight of the cut formula
and subinduction on the cut height, i.e., the sum of the heights of derivations of the
premisses of cut. The cases in which the premisses of cut are either initial sequents
or obtained through the rules for &, ‚, or ∏ follow the treatment of Theorem 3.2.3
of [31]. Among such cases, we just consider a significant one here, the case in which
the initial sequent is x œ a, � ∆ �, x œ a and the other premiss is conclusion of a
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rule for inclusion in which x œ a is an active formula. The cut, with �Õ = a ™ b, �ÕÕ,
is as follows

x œ a, � ∆ �, x œ a

x œ a, x œ b, a ™ b, �ÕÕ ∆ �Õ

x œ a, �Õ ∆ �Õ L ™

x œ a, �, �Õ ∆ �, �Õ Cut

and it is converted into a cut of reduced height as follows

x œ a, � ∆ �, x œ a x œ a, x œ b, a ™ b, �ÕÕ ∆ �Õ

x œ a, x œ b, a ™ b, �, �ÕÕ ∆ �, �Õ Cut

x œ a, �, �Õ ∆ �, �Õ L ™

For the cases in which the cut formula is a side formula in at least one rule used
to derive the premisses of cut, the cut reduction is dealt with in the usual way
by permutation of cut, with possibly an application of hp-substitution to avoid a
clash with the fresh variable in rules with variable condition. In all such cases the
cut height is reduced. We give one example to give concreteness to this qualitative
analysis:

� ∆ �, b �’
B

a œ I(x), a �’
A, A C a, b �’

B, �Õ ∆ �Õ

x : 2A, b �’
B, �Õ ∆ �Õ L2

x : 2A, �, �Õ ∆ �, �Õ Cut

the neighbourhood label in the premiss of L2 is fresh, but nothing prevents it from
appearing in the left premiss of cut; therefore, prior to the permutation of cut, we
need to replace it with a neighbourhood label which is fresh not just with respect
to the conclusion of L2 but also with respect to the left premiss of cut. Let the
new fresh variable be c. The transformed derivation, with cut reduced to a cut of
smaller height, is as follows:

� ∆ �, b �’
B c œ I(x), c �’

A, A C c, b �’
B, �Õ ∆ �Õ

c œ I(x), c �’
A, A C a, �, �Õ ∆ �, �Õ Cut

x : 2A, �, �Õ ∆ �, �Õ L2

Next we consider in full detail the cases with cut formula principal in both
premisses of cut and of the form a �’

A, a �÷
A, x : [ ]A, x : È ]A, x : [ ÍA, x : È ÍA

or A C a, x : 2A.
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1. The cut formula is a �’
A, principal in both premisses of cut. We have a

derivation of the form
D

x œ a, � ∆ �, x : A

� ∆ �, a �’
A

R �’ y : A, y œ a, a �’
A, �Õ ∆ �Õ

y œ a, a �’
A, �Õ ∆ �Õ L �’

y œ a, �, �Õ ∆ �, �Õ Cut

This is converted into the following derivation:

D(y/x)
y œ a, � ∆ �, y : A

� ∆ �, a �’
A y : A, y œ a, a �’

A, �Õ ∆ �Õ

y œ a, y : A, �, �Õ ∆ �, �Õ Cut1

y œ a, y œ a, �, �, �Õ ∆ �, �, �Õ Cut2

y œ a, �, �Õ ∆ �, �Õ Ctrú

Here D(y/x) denotes the result of application of hp-substitution to D, using the fact
that x is a fresh variable; compared to the original cut, Cut1 is a cut of reduced
height, Cut2 is one of reduced weight of cut formula, because w(y : A) < w(a �’

A),
and Ctrú denote repreated applications of (hp-)admissible contraction steps.

2. The cut formula is a �÷
A, principal in both premisses of cut. The cut is

reduced in a way similar to the one in the case above and the inequality to be used
on formula weight is w(y : A) < w(a �÷

A).
3. The cut formula is x : [ ]A, principal in both premisses of cut.
We have a derivation of the form

D
a œ I(x), � ∆ �, a �’

A

� ∆ �, x : [ ]A R[ ]
b �’

A, b œ I(x), x : [ ]A, �Õ ∆ �Õ

b œ I(x), x : [ ]A, �Õ ∆ �Õ L[ ]

b œ I(x), �, �Õ ∆ �, �Õ Cut

The transformed derivation is obtained as follows:

D(b/a)
b œ I(x), � ∆ �, b �’

A

� ∆ �, x : [ ]A b �’
A, b œ I(x), x : [ ]A, �Õ ∆ �Õ

b �’
A, b œ I(x), �, �Õ ∆ �, �Õ Cut

b œ I(x), b œ I(x), �, �, �Õ ∆ �, �, �Õ Cut

b œ I(x), �, �Õ ∆ �, �Õ Ctrú

where the upper cut is of reduced height and the lower one of reduced weight because
w(b �’

A) < w(x : [ ]A).
The cases with cut formula of the form x : È ]A, x : [ ÍA, and x : È ÍA are all

treated in a similar way, using, respectively, the following inequalities that hold for
the weight of the cut formulas, namely, w(b �’

A) < w(x : È ]A), w(b �÷
A) < w(x :

[ ÍA), and w(b �÷
A) < w(x : È ÍA).
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We observe that it is essential here that the rules are in harmony in the sense
that for each modality each pair of rules has either �’ or �÷ in the premisses.

4. The cut formula is A C a, principal in both premisses of cut. We have:

D
x : A, � ∆ �, x œ a

� ∆ �, A C a

R C
y : A, y œ a, A C a, �Õ ∆ �Õ

y œ a, A C a, �Õ ∆ �Õ L C

y : A, �, �Õ ∆ �, �Õ Cut

The cut is converted as follows:

D(y/x)
y : A, � ∆ �, y œ a

� ∆ �, A C a y : A, y œ a, A C a, �Õ ∆ �Õ

y : A, y œ a, �, �Õ ∆ �, �Õ Cut

y : A, y : A, �, �, �Õ ∆ �, �, �Õ Cut

y : A, �, �Õ ∆ �, �Õ Ctrú

where the upper cut is of reduced cut height and the lower one of reduced weight of
cut formula because w(y œ a) < w(A C a).

5. The cut formula is x : 2A, principal in both premisses of cut. We have a cut
of the form

b œ I(x), � ∆ �, x : 2A, b �’
A b œ I(x), � ∆ �, x : 2A, A C b

b œ I(x), � ∆ �, x : 2A

R2

D
a œ I(x), a �’

A, A C a, �Õ ∆ �Õ

x : 2A, �Õ ∆ �Õ L2

b œ I(x), �, �Õ ∆ �, �Õ Cut

This is transformed into derivation with four smaller cuts as follows. First we have
b œ I(x), � ∆ �, x : 2A, b �’

A x : 2A, �Õ ∆ �Õ

b œ I(x), �, �Õ ∆ �, �Õ
, b �’

A

Cut

D(b/a)
b œ I(x), b �’

A, A C b, �Õ ∆ �Õ

(b œ I(x))2
, A C b, �, (�Õ)2 ∆ �, (�Õ)2 Cut

with two reduced cuts, the upper one with the original cut formula but smaller
derivation height, and the lower one with a cut formula of reduced weight because
w(b �’

A) < w(x : 2A).
We then continue with two more cuts as follows:

b œ I(x), � ∆ �, x : 2A, A C b x : 2A, �Õ ∆ �Õ

b œ I(x), �, �Õ ∆ �, �Õ
, A C b

Cut (b œ I(x))2
, A C b, �, (�Õ)2 ∆ �, (�Õ)2

(b œ I(x))3
, (�)2

, (�Õ)3 ∆ (�)2
, (�Õ)3 Cut

b œ I(x), �, �Õ ∆ �, �Õ Ctr

ú

where the upper cut is on the original cut formula, but of reduced height, and the
lower one of reduced weight because w(A C b) < w(x : 2A).



Sara Negri

If instead the monotonic rules R2Õ, L2Õ have been used, the conversion is simpler:
We have a cut of the form

b œ I(x), � ∆ �, x : 2A, b �’
A

b œ I(x), � ∆ �, x : 2A

R2Õ

D
a œ I(x), a �’

A, �Õ ∆ �Õ

x : 2A, �Õ ∆ �Õ L2Õ

b œ I(x), �, �Õ ∆ �, �Õ Cut

This is converted into a derivation with two cuts, the upper one of reduced height
and the lower one or reduced weight, followed by contractions, so that the inductive
hypothesis applies. The details are easy and left to the reader.

For extensions of the basic system, we need to consider also the cases of cut with
cut formula of the form a ™ b or x œ a fl b principal in both premisses of cut. In the
first case, we have a derivation of the form

x œ a, � ∆ �, x œ b

� ∆ �, a ™ b

R ™
y œ a, y œ b, a ™ b, �Õ ∆ �Õ

y œ a, a ™ b, �Õ ∆ �Õ L ™

y œ a, �, �Õ ∆ �, �Õ Cut

This is converted into a derivation with two cuts, the first of reduced height, the
second of reduced weight, as follows:

y œ a, � ∆ �, y œ b

� ∆ �, a ™ b y œ a, y œ b, a ™ b, �Õ ∆ �Õ

y œ a, y œ b, �, �Õ ∆ �, �Õ Cut1

y œ a

2
, �2

, �Õ ∆ �2
, �Õ Cut2

y œ a, �, �Õ ∆ �, �Õ Ctr

ú

Here the left premiss of the second cut is obtained by a hp-substitution on the
premiss of R ™.

In the second case, we have a derivation of the form

� ∆ �, x œ a fl b, x œ a � ∆ �, x œ a fl b, x œ b

� ∆ �, x œ a fl b

Rfl
x œ a, x œ b, x œ a fl b, �Õ ∆ �Õ

x œ a fl b, �Õ ∆ �Õ Lfl

�, �Õ ∆ �, �Õ Cut

This is converted into a derivation with five cuts, Cut1, Cut2 and Cut4 of reduced
height, and the remaining two of reduced weight of cut furmula:

� ∆ �, x œ a fl b, x œ b x œ a fl b, �Õ ∆ �Õ

�, �Õ ∆ �, �Õ
, x œ b

Cut4

....
x œ b, �2

, �Õ2 ∆ �2
, �Õ2

�3
, �Õ3 ∆ �3

, �Õ3 Cut5

�, �Õ ∆ �, �Õ Ctr

ú
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where the dotted part is continued as follows:
�∆�, xœa fl b, xœa xœa fl b, �Õ ∆�Õ

�, �Õ ∆ �, �Õ
, x œ a

Cut1
�∆�, xœa fl b xœa, x œ b, xœa fl b, �Õ ∆�Õ

xœa, xœb, �, �Õ ∆ �, �Õ Cut2

x œ b, �2
, �Õ2 ∆ �2

, �Õ2 Cut3

QED

5 Soundness and completeness

Next, we give a proof of soundness and a direct proof of completeness of our calculus
with respect to neighbourhood semantics. Specifically, we show that all the rules
are sound, and show that proof search in the calculus either produces a proof, or
provides us with a saturated branch which is used to define a countermodel. The
countermodel will be defined directly, that is, using the syntactic elements (labels)
and the forcing conditions in the saturated branch, without any need for additional
constructions.

Soundness

We recall a definition from Chellas ([4], p. 215):

Definition 5.1. Let F © (W, I) be a neighbourhood frame.

• F is supplemented if for all subsets –, — of W and for all x œ W , if – œ I(x)
and – ™ —, we have — œ I(x).

• F is closed under intersection if for all x œ W for all –, — in I(x), we
have – fl — œ I(x).

• F is contains the unit if for all x œ W , W is in I(x).

Definition 5.2. Given a set S of world labels x and a set NL of neighbourhood
labels a, and a neighbourhood model M = (W, I, V), an SN -realisation (fl, ‡) is a
pair of functions mapping each x œ S into fl(x) œ W and mapping each a œ NL

into ‡(a) œ I(w) for some w œ W . As SN -realisation (fl, ‡) has to respect formal
intersection of the language, i.e., ‡(a fl b) = ‡(a) fl ‡(b)22. We introduce the notion
“M satisfies a formula F under an SN -realisation (fl, ‡)” and denote it by M |=

fl,‡

22Observe that the symbol on the left denotes formal intersection, the one on the right set-
theoretic intersection.
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F , where we assume that the labels in F occur in S, NL. The definition extends the
usual clauses for the propositional connectives by cases on the form of F :23

• M |=
fl,‡

x œ a if fl(x) œ ‡(a)

• M |=
fl,‡

a œ I(x) if ‡(a) œ I(fl(x))

• M |=
fl,‡

a ™ b if ‡(a) ™ ‡(b)

• M |=
fl,‡

x : A if fl(x) � A

• M |=
fl,‡

a �÷
A if there exists w in ‡(a) such that w � A

• M |=
fl,‡

a �’
A if for all w in ‡(a), w � A

• M |=
fl,‡

A C a if [A] ™ ‡(a)

• M |=
fl,‡

x : 2A if for some a, ‡(a) œ I(fl(x)) and ‡(a) = [A]

Given a sequent � ∆ �, let S, NL be the sets of world and neighbourhood labels
occurring in � fi �, and let (fl, ‡) be an SN -realisation; we define M |=

fl,‡

� ∆ �
to hold if whenever M |=

fl,‡

F for all formulas F œ � then M |=
fl,‡

G for some
formula G œ �. We further define M-validity by

M |= � ∆ � i� M |=
fl,‡

� ∆ � for every SN -realisation (fl, ‡)

We finally say that a sequent � ∆ � is valid in a neighbourhood frame F if M |=
� ∆ � for every neighbourhood model M based on F .

Below, we shall use the notation M |=
fl,‡

� for M |=
fl,‡

F for all F œ �. We shall
denote with G3nM

ú, G3nC

ú, G3nN

ú the extensions of G3n which are monotonic,
contain rule C, and rule N , respectively. Since extensions are obtained in a modular
way, further extensions with rules that correspond to the frame properties ú are
indicated by the asterisk.

Theorem 5.3. If � ∆ � is derivable in G3n

ú (respectively G3nM

ú, G3nC

ú,
G3nN

ú), then it is valid in the class of neighbourhood frames (respectively neigh-
bourhood frames which are supplemented, closed under intersection, containing the
unit) with the ú properties.

23Observe that hereafter we use the more compact notation [A], in place of ext(A), for the
extension of A.
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Proof. By induction on the height n of the derivation of � ∆ � in G3nE

ú (resp.
G3nM

ú, G3nC

ú, G3nN

ú).
For n = 0, observe that initial sequents have the same labelled formula in the

antecedent and in the succedent so the claim is obvious. Similarly if the antecedent
contains x : ‹ because we assume that for no w œ W , w � ‹.

For the inductive step, consider the last rule in the derivation of � ∆ �. If it is
a propositional rule, the claim is immediate by the definition of the forcing clauses
for the propositional connectives.

If the last rule is R �’, assume by induction hypothesis that M |= x œ a, � ∆
�, x : A. Let (fl, ‡) be an arbitrary SN -realisation for the conclusion and assume
that M |=

fl,‡

�. Since x is fresh, it can be extended to fl

Õ, an S-realization for
the premiss with fl

Õ(x) œ ‡(a). Then (using the assumption that x /œ �) we have
M |=

fl

Õ
,‡

x œ a, �. By the hypothesis M |= x œ a, � ∆ �, x : A, we have that either
(1) M |=

fl

Õ
,‡

G for some G in � or (2) M |=
fl

Õ
,‡

x : A. In the former case we are
done, so let us assume that M |=

fl

Õ
,‡

G for no G in �. Since x /œ �, this will be the
case uniformly, independently of the choice of fl

Õ(x), so we’ll have M |=
fl

Õ
,‡

x : A for
all fl

Õ(x) œ ‡(a), and therefore M |=
fl,‡

a �’
A.

If the last rule is L �’, the claim holds because if M |=
fl,‡

x œ a and M |=
fl,‡

a �’
A, then M |=

fl,‡

x : A by simply unfolding the definitions.
If the last rule is R �÷, consider an arbitrary SN -realisation (fl, ‡) and assume

that (1) M |=
fl,‡

x œ a, �. Then, by induction hypothesis, either (2) M |=
fl,‡

G

for some G œ �, or (3) M |=
fl,‡

x : A, or (4) M |=
fl,‡

a �÷
A. If (2) or (4) hold,

then the claim follows. If (3) holds, we have fl(x) � A. Observe that (1) gives in
particular fl(x) œ ‡(a), so there is w œ ‡(a) such that w � A. It follows that the
conclusion of the rule is M-valid for the SN -realization (fl, ‡).

If the last rule is L �÷, assume that M |=
fl,‡

a �÷
A, � for an arbitrary SN -

realisation for the conclusion (fl, ‡). Then there is w œ ‡(a) such that w � A.
Since x is fresh, we can extend fl to and S-realization for the premiss by choosing
fl

Õ(x) = w. Then we have M |=
fl

Õ
,‡

x œ a, x : A by definition, and M |=
fl

Õ
,‡

� because
x /œ �. By induction hypothesis, the premiss of the rule is M-valid, and therefore
there is G in � such that M |=

fl

Õ
,‡

G. Since x /œ �, this is the same as M |=
fl,‡

G.
If the last rule is R C, with premiss y : A, � ∆ �, y œ a, let (fl, ‡) be an arbitrary

SN -realisation for the conclusion and assume that M |=
fl,‡

�. The claim is that
for some formula B in �, M |=

fl,‡

B or M |=
fl,‡

A C a. Since y is fresh, we
can extend fl to a S-realization for the premiss fl

Õ by choosing fl

Õ(y) œ [A]. Since
M |= y : A, � ∆ �, y œ a, we have that there exists B œ � such that M |=

fl

Õ
,‡

B or
M |=

fl

Õ
,‡

y œ a. In the first case, since y does not occur in B, we have also M |=
fl,‡

B.
In the second case, since fl

Õ(y) was arbitrary in [A], we have M |=
fl,‡

A C a.
If the last rule is L C, assume that the premiss y œ a, A C a, y : A, � ∆ � is
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valid, and let (fl, ‡) be an arbitrary SN -realisation with M |=
fl,‡

A C a, y : A, �.
Then we have fl(y) œ [A] and [A] ™ ‡(a), so that fl(y) œ ‡(a), thus M |=

fl,‡

y œ
a, A C a, y : A, �. By the assumption, there is B in � such that M |=

fl,‡

B and
thus the claim follows.

If the last rule is L2, assume the premiss valid and let (fl, ‡) be an arbitrary
SN -realisation with M |=

fl,‡

x : 2A, �. This means in particular that fl(x) œ [A],
i.e., there is – in I(fl(x)) with – = [A]. Since a is fresh, we can extend ‡ to ‡

Õ by
having ‡

Õ(a) = –. We have M |=
fl,‡

Õ
a œ I(x), A C a, a �’

A by the definitions and
also M |=

fl,‡

Õ � because a /œ � and by hypothesis M |=
fl,‡

�. Again by hypothesis,
there is B in � with M |=

fl,‡

Õ
B and thus by freshness of a (not in B) we have

M |=
fl,‡

B.
If the last rule is R2, assume the premisses valid and assume for an arbitrary

SN -realisation (fl, ‡) that M |=
fl,‡

a œ I(x), �. From the validity of the premisses
we have that one of the following alternatives holds: 1: M |=

fl,‡

B for some B in �.
2. M |=

fl,‡

x : A. 3. M |=
fl,‡

a �’
A, A C a. Observe that the latter gives, together

with M |=
fl,‡

a œ I(x) that M |=
fl,‡

x : 2A so in each of the three cases we have
proved the claim.

Next, we consider the rules for inclusion. If the last rule is R ™, consider an
SN -realisation such that M |=

fl,‡

�. Since x is fresh, we can extend fl to fl

Õ by
choosing fl

Õ(x) œ ‡(a). Since the premiss in M-valid, by inductive hypothesis we
have that M |=

fl

Õ
,‡

G for some G œ � or M |=
fl

Õ
,‡

x œ b. Since x is not in �, the
former gives M |=

fl,‡

G for some G œ �, whereas the latter gives, by the choice in
the range of fl

Õ(x), M |=
fl,‡

a ™ b.
The case with L ™ as the last rule is immediate.
The preservation of validity in the case of rules [ ], È ], [ Í, and È Í follows the

same pattern of that for the 2 rules. To conclude, it is immediate that rules M , C,
N (and the monotonic variants C

Õ, Nondeg) are valid in frames frames which are
supplemented, closed under intersection, containing the unit (and supplemented for
the latter two with the monotonic variants) respectively. QED

Definition 5.4. We say that a branch in a proof search from the endsequent up to
a sequent � ∆ � is saturated with respect to a rule R if condition (R) below holds,
where we indicate with ¿ � (¿ �) the union of the antecedents (succedents) in the
branch from the end-sequent up to � ∆ �:

(Init0) There is no x œ a in �
u

�.

(Init) There is no x : P in �
u

�.

(L‹) There is no x :‹ in �.
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(L&) If x : A&B is in ¿�, then x : A and x : B are in ¿�.

(R&) If x : A&B is in ¿�, then either x : A or x : B is in ¿�.

(L‚) If x : A ‚ B is in ¿�, then either x : A or x : B is in ¿�.

(R‚) If x : A ‚ B is in ¿�, then x : A and x : B are in ¿�.

(L∏) If x : A ∏ B is in ¿�, then either x : A is in ¿� or x : B is in ¿�.

(R∏) If x : A ∏ B is in ¿�, then x : A is in ¿� and x : B is in ¿�

(R �’) If a �’
A is in ¿�, then for some x there is x œ a in � and x : A in ¿�

(L �’) If x œ a and a �’
A and are in �, then x : A is in ¿�.

(R �÷) If x œ a is in � and a �÷
A is in �, then x : A is in ¿�.

(L �÷) If a �÷
A is in ¿�, then for some x there is x œ a in � and x : A is in ¿�

(L C) If A C a and y : A are in ¿�, then y œ a is in �.

(R C) If A C a is in ¿�, then for some y, y : A is in ¿� and y œ a is in �.

(L2) If x : 2A is in ¿�, then for some a, a œ I(x), a �’
A, A C a are in ¿�.

(L2Õ) If x : 2A is in ¿�, then for some a, a œ I(x), a �’
A are in ¿�.

(R2) If a œ I(x) is in � and x : 2A is in ¿ �, then either a �’
A or A C a is in

¿�.

(R2Õ) If a œ I(x) is in � and x : 2A is in ¿�, then a �’
A is in ¿�.

(L ™) If x œ a and a ™ b are in ¿�, then x œ b is in �.

(R ™) If a ™ b is in ¿�, then for some x there is x œ a in � and x œ b in �.

(Lfl) If x œ a fl b is in �, then x œ a and x œ b are in �.

(Rfl) If x œ a fl b is in �, then either x œ a or x œ b are in �.

(M) If a œ I(x), a ™ b are in �, then b œ I(x) is in �.

(C) If a œ I(x), b œ I(x) are in �, then a fl b is in �.

(C Õ) If a œ I(x), b œ I(x) are in �, then for some c, c œ I(x), c ™ a, c ™ b are in
�.



Sara Negri

(N) For some a, a œ I(x), € C a are in �.

(Nondeg) For some a, a œ I(x) is in �.

A branch is saturated relative to a systems S of rules if it is saturated with respect
each rule of S.

The definition of saturation with respect to the rules for the modalities [ ], È ],
[ Í, and È Í has been left out as it involves eight more clauses and it should be by
now clear from the meaning of saturation with respect a rule and the pattern of
the other cases. The definition of saturated branch is extended to infinite branches
B © {�

i

∆ �
i

}
iØ0 by replacing, in the definition above, � (or ¿�) by �, the union

of the �
i

, and � (or ¿ �) by �, the union of the �
i

. The first and second clause
(Init0, Init) are modified to requiring that for all i, there is no x œ a in �

i

fl �
i

and
for all i, there is no x : P in �

i

fl �
i

.
Given a sequent � ∆ � we apply root-first all the available rules. Observe

that by invertibility of the rules, there is no prescribed order in which they need to
be applied. We want to avoid the possibility that the search produces an infinite
branch which is not saturated, something that would result, e.g., from applying the
same rule infinitely many times in consecutive steps. This is achieved as usual in
such proofs through a counter: if there are m rules, apply at step 1 rule R1 to all
formulas that match its conclusion, at step 2 rule R2, and in general for all n Ø 0
apply at step n ◊ m + j rule R

j

. In this way we’ll obtain a proof-search tree that
can be a derivation, or a non-derivation; the latter can either be a finite search tree
that contains finite saturated branches, or an infinite search that, by König’s lemma
contains an infinite, saturated branch. We shall now prove that a saturated branch
(either finite or infinite) for a sequent � ∆ � gives a countermodel.

Lemma 5.5. Let B © {�
i

∆ �
i

} be a saturated branch in a proof-search tree for
� ∆ �. Then there exists a countermodel M to � ∆ �, which makes all the
formulas in � true, and all the formulas in � false.

Proof. Consider a saturated branch and define the countermodel M © (W, I, V) as
follows:

1. The set W of worlds consists of all the world labels in �;

2. For each neighbourhood label a in �, we associate –

a

, the set that consists of
all the y in W such that y œ a is in �;

3. For each x in W , the set of neighbourhoods of x consists of all the –

a

such
that a œ I(x) is �;
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4. The valuation is defined by x œ V(P ) if x : P is in �.

We then define a realization (fl, ‡) by fl(x) © x and ‡(a) © –

a

. Next we prove
the following:

1. If A is in �, then M |=
fl,‡

A.

2. If A is in �, then M |=/
fl,‡

A.

The two claims are proved simultaneously by cases/induction on the weight of
A (cf. Definition 4.1).

(a) If A is a formula of the form a œ I(x), x œ a, a ™ b, claim 1. holds by
definition of M; if A is x œ a fl b, by saturation we have that x œ a and x œ b are
in �. These are lighter formulas, so the inductive hypothesis applies and we have
fl(x) œ ‡(a) and fl(x) œ ‡(b), so fl(x) œ ‡(a) fl ‡(b). The conclusion fl(x) œ ‡(a fl b)
follows from the fact that ‡ respects intersection. Claim 2. is empty for a œ I(x)
because such formulas never occur on the right-hand side of sequents. If x œ a is
in �, then x œ a is not in � and thus fl(x) /œ –

a

, so M |=/
fl,‡

x œ a. If a ™ b is
in �, then for some x, x œ a is in � and x œ b is in �, so by inductive hypothesis
M |=

fl,‡

x œ a and M |=/
fl,‡

x œ b, and therefore M |=/
fl,‡

a ™ b.
(b) If A is a labelled atomic formula x : P , the claims hold by definition of V and

by the saturation clause Init no inconsistency arises. If A is ‹, it holds by definition
of the forcing relation that it is never forced, and therefore 2. holds, whereas 1.
holds by the saturation clause for L ‹. If A is a conjunction, or a disjunction, or an
implication, the claim holds by the corresponding saturation clauses and inductive
hypothesis on smaller formulas.

(c) If a �÷
A is in �, by the saturation clause (L �÷), for some x there is x œ a

in � and x : A is in �. Then M |=
fl,‡

x œ a by (a) and by induction hypothesis
M |=

fl,‡

x : A, therefore M |=
fl,‡

a �÷
A. If a �÷

A is in �, consider an arbitrary
world x in –

a

. Then by definition of M we have x œ a in � and thus by the
saturation clause (R �÷) we also have x : A is in �. By induction hypothesis we
have M |=/

fl,‡

x : A and therefore M |=/
fl,‡

a �÷
A. The proof for formulas of the

form a �’
A is similar.

(d) If A C a is in �, let y be an arbitrary label such that M |=
fl,‡

y : A. Then
by definition of M we have y : A in � and then by saturation y œ a is in � thus by
inductive hypothesis and by definition of M we obtain M |=

fl,‡

A C a.
If A C a is in �, by the corresponding saturation clause we have that for some

y, y : A is in � and y : a is in � , so by induction hypothesis we have that there is y

such that M |=
fl,‡

y : A and M |=/
fl,‡

y œ a. Overall, this means that M |=/
fl,‡

A C a.
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(e) If x : 2A is in �, then for some a, a œ I(x), a �’
A, A C a are in �. By

induction hypothesis we obtain M |=
fl,‡

a �’
A and M |=

fl,‡

A C a, and therefore
M |=

fl,‡

x : 2A.
If x : 2A is in �, let –

a

be a neighbourhood in I(x) in the model. By the
saturation clause, we have that either a �’

A or A C a is in �. By induction
hypothesis we obtain M |=/

fl,‡

a �’
A or M |=/

fl,‡

A C a, and therefore M |=/
fl,‡

x :
2A.

In order to prove completeness for extensions of E we need to prove that the
countermodel M is in the intended class. For M (1), we shall consider the version of
the 2 rules with monotonicity built-in and modify the model to impose monotonicity;
for C (2) and N (3) instead we shall extend in a consistent way the saturated branch.

(1) Let M be defined as M above, but taking for I(x) supersets of the –

a

. In this
way M is supplemented. We need to verify that if x : 2A is in � then M |=

fl,‡

2A:
by the saturation clause for L2 we have that for some a such that a œ I(x) is in �,
a �’

A is in �. By inductive hypothesis, M |=
fl,‡

a �’
A and therefore, since M is

supplemented, M |=
fl,‡

2A. If x : 2A is in �, let –

a

be a neighbourhood of x in
the model. This means that a œ I(x) is in �. By the R2 saturation clause, a �’

A

is in �, so by inductive hypothesis M |=/
fl,‡

a �’
A, and therefore it is not the case

that for all w in –

a

, w � A. Since –

a

was an arbitrary neighbourhood of x, we have
M |=/

fl,‡

2A.
(2) The saturated branch is extended as follows: whenever � contains x œ a and

x œ b, we add x œ a fl b to � (observe that this move doesn’t collapse the saturated
branch into an initial sequent since if x œ a fl b was in �, then by saturation
either x œ a or x œ b would be in �, against the assumption that we started with a
saturated branch). We call the branch thus obtained a C-extended saturated branch.
Next we prove that the model M built on the C-extended saturated branch is closed
under intersection. Let –

a

and –

b

be in I(x). This means that a œ I(x) and b œ I(x)
are in �. We show that –

a

fl–

b

= –

aflb

and therefore conclude that –

a

fl–

b

is also in
I(x). Clearly, if y œ –

aflb

, i.e., y œ a fl b in �, then by saturation y œ a and y œ b are
in �, therefore y œ –

a

fl–

b

. The converse inclusion is guaranteed by the C-extension
of the saturated branch. Observe that the equality just proved also shows that the
added formulas x œ a fl b are true in the model.

(3) The saturated branch is extended as follows: for every label y in the branch,
we add the formula y : € to �. The branch thus obtained is an N-extended saturated
branch. By the saturation condition for N we have that for some a œ I(x), € C a is
in �. By the N-extension and the saturation with respect to LC, we have that –

a

coincides with W , and therefore W is a neighbourhood of x, so the model contains
the unit. QED
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We are ready to prove the completeness of the calculus.

Theorem 5.6. If A is valid then there is a derivation of ∆ x : A, for any label x.

Proof. For every A we either find a derivation or a saturated branch. By the above
lemma a saturated branch gives a countermodel to A. It follows that if A is valid it
has to be derivable. QED

The above completeness proof gives a method to construct countermodels for
unprovable sequents. It is also possible to give a simple completeness proof as a
direct consequence of the structural properties of the calculus and the derivability
of the characteristic axiom of each of the non-normal systems considered:

Theorem 5.7. Let A be a formula in the language of the modal propositional logic,
and let E

ú be any extension of E with axioms M , C, N (and combinations thereof)
and G3n

ú the corresponding labelled sequent calculus. Then if E

ú„ A, we have
G3n

ú „ ∆ x : A where x is an arbitrary world label.

Proof. By induction on the derivation in the axiomatic system. Observe that the
result holds for classical propositional axioms and has been proved for each specific
modal axiom in Section 3, so it is enough to prove the inductive step for the only rule
of the axiomatic system, i.e., that if E

ú„ A is obtained by modus ponens, then G3n

ú

„ ∆ x : A. Consider derivable premisses B and B ∏ A. By inductive hypothesis
we have G3n

ú „ ∆ x : B and G3n

ú „ ∆ x : B ∏ A. The latter gives by (hp-)
invertibility of R ∏, G3n

ú „ x : B ∆ x : A. An admissible step of cut gives the
desired conclusion. QED

Computational issues about the calculi are not in the scope of the present paper,
and we shall deal with termination and complexity of our calculi in further work.
However, following the line of our [30] and [13], we can outline the recipe to obtain a
terminating proof search in the calculi here presented. First of all, it is useful to make
the distinction between static and dynamic rules. The former do not introduce new
labels in moving from conclusions to premisses, whereas the latter do.24 The main
di�culty in obtaining termination is that a proof branch may potentially introduce
infinitely many world and neighbourhood labels by unconstrained application of
the dynamic rules. The termination of proof search requires to adopt a suitable
strategy of rule application which on the one hand preserves the completeness and
on the other ensures that in any proof branch only a finite number of labels will be
introduced. The strategy will be specific to each calculus, but it contains at least
the following constraints:

24For example, in G3n the rule L2 is dynamic and R2 static.
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1. Do not apply a rule R to a sequent � ∆ � if ¿ � and/or ¿ � satisfy the
saturation condition associated to R.

2. Apply static rules before dynamic rules.

The strategy may specify further constraints on the order of applications of rules
(e.g. rule R1 must always be applied before rule R2) or on the temporal order in
which the labels must be treated (e.g. apply all rules to a label x before applying
any rule to y if x is “older” than y, that is, introduced earlier in the branch).

There is also an additional di�culty for systems where intersection of neigh-
bourhood labels is allowed, as neighbourhood labels become complex terms so that
infinitely many terms can be generated from a finite number of labels. To handle
this case we shall need to identify term labels which are equivalent modulo commu-
tativity and associativity of intersection.

We shall carry on a detailed analysis of all computation issues along the above
lines in further work.

6 Concluding remarks

We have presented a systematic development of labelled sequent calculi for logical
systems based on neighbourhood semantics, with focus on classical modal systems.
Other approaches to the proof theory of classical modal logics besides the ones men-
tioned in the introduction include the nested sequent calculi of [21].25 Additionally,
in [16] standard sequent systems (most of them cut free) are provided for extensions
of the monotonic system M by all combinations of the modal axioms D, T, 4, B, and
5. Similar results are obtained for congruent modal logics (another name for exten-
sions of E) in [17]. Standard sequents are also considered in [19] via an approach
based on a treatment of “sequents as sets” that makes contraction implicit, rather
than admissible as in the G3-calculi. When such approach to sequent calculus proof
theory is followed, all the rules become context-dependent and the proof of cut elim-
ination presents some di�culties that one does not have with the usual approach
to sequents as lists or multisets (cf. [33]). Standard, contraction-free sequent calculi
for non-normal systems of deontic logic are presented in [37]. A di�erent approach
to the proof-theoretic study of non-normal modal logics, with focus on conditional
logics, is pursued in [39]: here a criterion is developed for guaranteeing absorption
of the structural rules into a system of sequent rules. The conditions the system has
to satisfy are closure conditions and typically generate a large number of rules.

25We remark that nested sequent calculi have been developed also in other venues in non-classical
logics (e.g. for modal logic [3] and bi-intuitionistic logic [14]); complexity has been studied in [2].
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Labelled calculi for monotonic and regular modal logics have already been consid-
ered in [15]. As in our work the labelling originates from neighbourhood semantics,
but there are important di�erences: first, the proof system is a tableau with signed
formulas, rather than a sequent style proof system. Second, the calculus has labels
with a path structures and no relations, whereas in our approach we have two sorts
of labels and the explicit relation of formal membership. Correspondingly, in one
systems there are rules that operate on the structured labels through an unification
algorithm, whereas in our system there are rules for the neighbourhood semantics
counterpart of the accessibility relation of Kripke semantics.

Labelled systems, on the whole, have several advantages over other formalisms
for modal logic. First, the systems originate from a uniform methodology which has
reached a wide range of applications; the transparent semantic motivation behind
the rules makes them intuitive and allows a direct completeness proof. As we have
seen, we can use a ground basic system to find, through proof search by invertible
rules, which additional rules are needed to obtain complete systems for extensions;
this can be useful especially in the absence of known correspondence results.

This extension of the labelled approach inherits the flexibility and far reach of
neighbourhood semantics. Here we have focused on the most basic classical systems
but it is possible extend the approach to systems with further requirements on the
neighbourhood frames, as those listed in section 7.4 of [4]. A property such as
a œ I(x) æ x œ a is straightforward to handle and corresponds to an added rule of
the form xœa,aœI(x),�∆�

aœI(x),�∆� . Other properties, such as a œ I(x) æ a

c

/œ I(x) can also
be treated by the method of conversion into rules, but one also needs rules for the
formal complement of a neighbourhood.

Rather than dwelling on abstract generality, we stress that alongside with the
completion of this ground work, labelled calculi based on neighbourhood semantics
have been developed for other logics that cannot be studied simpliciter through
possible world semantics, such as preferential conditional logic [30] and conditional
doxastic logic [13]. Classical modal logics are decidable. The finite model property
and finitary proof search can be established in parallel for labelled calculi; we expect
that no special di�culties should arise in the case of classical logics, but a detailed
proof, along the lines sketched at the end of Section 5, is left to further work.
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