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Abstract

Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic
is presented, together with an easy cut-admissibility proof; both extend to cover, in a
uniform fashion, all intermediate logics characterised by frames satisfying conditions ex-
pressible by one or more geometric implications. Each of these logics is embedded by the
Gödel-McKinsey-Tarski translation into an extension of S4. Faithfulness of the embedding
is proved in a simple and general way by constructive proof-theoretic methods, without
appeal to semantics other than in the explanation of the rules.
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1 Introduction

Following Gentzen’s pioneering work in the 1930s on sequent calculus, for classical and intu-
itionistic logic, important advances were made by Ketonen and Kanger. Ketonen [21] proposed
calculi organised for root-first rather than for leaf-first proof construction, i.e. for the analysis of
problems rather than for the synthesis of solutions; these are now better known as Kleene’s cal-
culi G3. Kanger [20] proposed for the classical modal logic S5 (but the method is immediately
applicable to other logics) the use of “spotted” formulae, to incorporate (in effect) the seman-
tics; these were developed with names like ‘semantic tableaux’, ‘labelled formulae’ and ‘prefixed
formulae’ by various authors, notably Fitch [13], Fitting [14], Kripke [23, 24] and Maslov [26].
Even more recently, such ideas have been studied more widely [15, 43] as ‘labelled deductive
systems’. We shall follow common usage by generally using ‘label’ despite Kanger’s prior use
of ‘spot’; in particular cases we will also use ‘world’.

The non-classical, label-free, sequent calculi (such as G3ip in [35]) developed from the
Gentzen-Ketonen-Kleene approach generally have the feature that some of the inference rules
are non-invertible; Gödel-Dummett propositional logic is an interesting exception [9, 10]. In
contrast, Kanger-style calculi incorporate semantic information into labels while retaining a
classical basis for the inference rules themselves; despite the labelling, this basis ensures that
all the inference rules are invertible, as emphasised by Maslov in the title of [26]. Subsequent
developments have focused on efficient representations [14] (e.g. lists of indices) of the labels
and on algorithms [44] for matching such representations; a useful survey is given by [17].

However, the underlying logical structure of the calculi can best be seen by ignoring such
representations. Progress in this direction was made in [34, 35, 38], which showed that, in many
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cases, mathematical axioms can be added as inference rules to cut-free G3-style calculi while
maintaining the admissibility of Cut. This is feasible for axioms that are either Π1-formulae
(i.e. universal closures of quantifier-free formulae) or, more generally [29], axioms of geometric
theories (i.e. geometric implications).

Further, as developed in [30], one may use a combination of labelled formulae and of
(quantifier-free) formulae expressing Kripke-style accessibility relations between labels (treated
as worlds). In this fashion one may develop [30] Kanger-style cut-free calculi for a wide range
of modal logics—essentially those where the axioms for the accessibility relation are geomet-
ric implications: this includes logics such as S5 but not, in general, those where second-order
notions (such as transitive closure) are used. In [30], however, it is shown how the provability
logic GL of Gödel and Löb can be treated, despite the impossibility of expressing the finiteness
condition on the accessibility relation in first-order terms.

The purpose of the present paper is to present the corresponding treatment of intermediate
(also known as “super-intuitionistic”) propositional logics; whereas in the modal case it is the
inference rules for the modal operators that have non-trivial manipulation of labels, in the
present case it is, unsurprisingly, the rules for implication that use such manipulations.

The advantage of this treatment is that, without the complexities involved with efficient
representations of the labels and with matching algorithms, we obtain in a uniform way, for
a wide range of intermediate logics, both elegant proof systems and results about those proof
systems. As a consequence, mutual relationships between the corresponding logics can be
established in a direct way. In particular, we give a straightforward proof of the faithfulness of
the Gödel representations of these intermediate logics as modal logics between S4 and S5, and
will give (in a sequel [11]) a similar treatment using Grzegorczyk logic Grz in place of S4.

This faithfulness proof is much simpler than the standard proof-theoretic approach (e.g. [42,
Sec 9.2]). Generality and uniformity are achieved by the use of labels, which might make it
appear to be a model-theoretic method in disguise. However, unlike in a model-theoretic proof,
the argument is purely syntactic and constructive, with no appeal to the non-constructive
features of classical logic.
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2 Preliminaries

As noted above, in [34, 35, 29] a general method was presented for extending sequent calculi
with rules for axiomatic theories while preserving all the structural properties of the logical
calculus. We recall the general ideas of the method and the main results.

For extensions of classical predicate logic the starting point is the contraction- and cut-free
sequent calculus G3c (cf. [35, 42] for the rules). We recall (see Chapters 3 and 4 of [35] for
detailed proofs) that all the rules of G3c are invertible and all the structural rules are admissible.
Weakening and contraction are in addition height-preserving- (abbreviated hp-) admissible, that
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is, whenever their premisses are derivable, so also is their conclusion, with at most the same
derivation height (the height of a derivation is its height as a tree, that is, the length of its
longest branch). Moreover, the calculus enjoys hp-admissibility of substitution. Invertibility of
the rules of G3c is also height-preserving, that is, the rules are hp-invertible.

These remarkable structural properties of G3c are maintained in extensions of the logical
calculus with suitably formulated rules that represent axioms for specific theories. Universal
axioms are first transformed, through the rules of G3c, into conjunctive normal form, that is,
conjunctions of formulas of the form P1& . . .&Pm ⊃ Q1 ∨ . . . ∨Qn, where the consequent is ⊥
if n = 0 and all Pi, Qj are atomic. The universal closure of any such formula is called a regular
formula. We abbreviate the multiset P1, . . . , Pm as P . Each conjunct is then converted into a
schematic rule, called the regular rule scheme, of the form

Q1, P ,Γ ⇒ ∆ . . . Qn, P ,Γ ⇒ ∆
P ,Γ ⇒ ∆

Reg
.

By this method, all universal theories can be formulated as contraction- and cut-free systems
of sequent calculi.

In [29], the method is extended to cover also geometric theories, that is, theories axiomatized
by geometric implications. We recall that a geometric formula is a formula not containing ⊃ ,
¬ , or ∀ and a geometric implication is a sentence of the form

∀z(A⊃B)

where A and B are geometric formulas. Geometric implications can be reduced to a normal
form consisting of conjunctions of formulas, called geometric axioms, of the form

∀z((P1& . . .&Pm) ⊃ ∃x(M1 ∨ . . . ∨Mn))

where each Mj is a conjunction of atomic formulas, Qj1 , . . . , Qjkj
and z and x are sequences of

bound variables. For simplicity, we assume (as in [30]) that the sequence x of bound variables has
length 1 and we distribute the existential quantifier over the disjuncts, as in ∃x1M1∨ . . .∃xnMn.

Without loss of generality, no xi is free in any Pj . Note that regular formulas are geomet-
ric implications, with neither conjunctions nor existential quantifications to the right of the
implication. The geometric rule scheme for geometric axioms takes the form

Q1(y1/x1), P ,Γ ⇒ ∆ . . . Qn(yn/xn), P ,Γ ⇒ ∆

P ,Γ ⇒ ∆
GRS

where Qj and P indicate the multisets of atomic formulas Qj1 , . . . Qjkj
and P1, . . . , Pm, respec-

tively, and the eigenvariables y1, . . . , yn of the premisses are not free in the conclusion. We use
the notation A(y/x) to indicate A after the substitution of the variable y for the variable x.
The variables yi are, following tradition, called eigenvariables to emphasise their freshness.

In order to maintain admissibility of contraction in the extensions with regular or geomet-
ric rules, the formulas P1, . . . , Pm in the antecedent of the conclusion of the scheme have (as
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indicated) to be repeated in the antecedent of each of the premisses. In addition, whenever an
instantiation of free parameters in atoms produces a duplication (two identical atoms) in the
conclusion of a rule instance, say P1, . . . , P, P, . . . , Pm,Γ ⇒ ∆, there is of course a corresponding
duplication in each premiss. The closure condition imposes the requirement that the rule with
the duplication P, P contracted into a single P is added to the system of rules. For each axiom
system, there is only a bounded number of possible cases of contracted rules to be added, very
often none at all, so the condition is unproblematic.

For example, with the binary predicate symbol R used as an infix operator, from the geo-
metric implication

∀xy(xRy⊃((∃z(zRx)) ∨ (∃w(yRw))))

one obtains the rule scheme (in which z and w are eigenvariables, and so are fresh):

zRx, xRy,Γ ⇒ ∆ xRy, yRw, Γ ⇒ ∆
xRy,Γ ⇒ ∆

.

The main result for such extensions is the following (Theorems 4 and 5 from [29]):

Theorem 2.1. The structural rules of Weakening, Contraction and Cut are admissible in all
extensions of G3c with the geometric rule-scheme and satisfying the closure condition. In fact,
Weakening and Contraction are hp-admissible.

3 Modal logic

The above method of extension of sequent calculi can be applied not only outside logic for
obtaining a proof-theoretical treatment of specific theories such as lattice theory [36, 37], arith-
metic and geometry [35] but also inside logic. In [30] rules expressing properties of binary
relations are added to a basic labelled sequent calculus for the normal modal logic K in such a
way that complete systems for all the modal logics characterized by geometric frame conditions
are obtained. The basic labelled sequent calculus is obtained by prefixing with labels the formu-
las in the rules of the sequent calculus G3cp for classical propositional logic. As initial sequents
we take those of the form x :P,Γ ⇒ ∆, x :P ; here, as elsewhere in this paper, P is atomic. In
each rule, the active and principal formulas are prefixed by the same label. This corresponds
to the classical explanation of truth in Kripke semantics, flat on all the propositional logical
constants. For instance, the rules for conjunction are

x :A, x :B,Γ ⇒ ∆
x :A&B,Γ ⇒ ∆ L&

Γ ⇒ ∆, x :A Γ ⇒ ∆, x :B
Γ ⇒ ∆, x :A&B

R&

and those for implication are

Γ ⇒ ∆, x :A x :B,Γ ⇒ ∆
x :A⊃B,Γ ⇒ ∆ L⊃

x :A,Γ ⇒ ∆, x :B
Γ ⇒ ∆, x :A⊃B

R⊃

The rules for the modal operator � are obtained similarly from its semantical explanation in
terms of possible worlds

x :�A iff for all y, xRy implies y :A
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that gives the rules

y :A, x :�A, xRy, Γ ⇒ ∆
x :�A, xRy, Γ ⇒ ∆ L�

xRy,Γ ⇒ ∆, y :A
Γ ⇒ ∆, x :�A

R�

with y an eigenvariable in R� (so y is fresh, i.e. is not free in the conclusion).
The resulting sequent calculus, called G3K, gives a complete system for the basic normal

modal logic K. Thus, a formula A is valid in K if and only if, for some (or, indeed, any)
label x, the sequent ⇒ x : A is derivable. This logic is characterized by arbitrary frames;
correspondingly, there are no rules for the accessibility relation. The sequent calculi for the
modal logics T, K4, KB, S4, B, S5 are obtained by adding to G3K the rules expressing
their frame conditions, i.e. the properties of the accessibility relation that characterize their
frames. For instance, a sequent calculus for the modal logic S4 is obtained by adding the rules
for reflexivity and transitivity of the accessibility relation

xRx, Γ ⇒ ∆
Γ ⇒ ∆

Refl
xRz, xRy, yRz, Γ ⇒ ∆

xRy, yRz, Γ ⇒ ∆
Trans

We recall from [30] the following properties of any extension G3K* of G3K with geometric
rules for the frame condition:

Theorem 3.1. 1. All sequents of the form x :A,Γ ⇒ ∆, x :A are derivable, for arbitrary A,
in G3K*.

2. All sequents of the form
⇒ x :�(A⊃B) ⊃ (�A⊃�B)

are derivable in G3K*.

3. The substitution rule
Γ ⇒ ∆

Γ(y/x) ⇒ ∆(y/x)
(y/x)

is hp-admissible in G3K*.

4. The rules of Weakening

Γ ⇒ ∆
x :A,Γ ⇒ ∆LW Γ ⇒ ∆

Γ ⇒ ∆, x :ARW Γ ⇒ ∆
xRy,Γ ⇒ ∆LWR

are hp-admissible in G3K*.

5. The Necessitation rule
⇒ x :A

⇒ x :�A
Nec

is admissible in G3K*.

6. The modal axioms characterised by each frame condition are derivable in G3K*.
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7. All the primitive rules of G3K* are hp-invertible.

8. The rules of Contraction

x :A, x :A,Γ ⇒ ∆
x :A,Γ ⇒ ∆

L-Ctr
xRy, xRy,Γ ⇒ ∆

xRy,Γ ⇒ ∆
L-CtrR

Γ ⇒ ∆, x :A, x :A
Γ ⇒ ∆, x :A

R-Ctr

are hp-admissible in G3K*.

9. The Cut rule
Γ ⇒ ∆, x :A x :A,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

is admissible in G3K*.

4 Intuitionistic logic

We present here a G3-style labelled calculus G3I with internalized Kripke semantics for intu-
itionistic propositional logic (Table 1). Following the general method of Section 3 above, we
will later extend the calculus to cover all the intermediate propositional logics characterized by
frame properties expressible by means of geometric implications. Admissibility of the structural
rules will be proved (in Section 5 below) in a uniform way for all such extensions of the calculus
G3I.

The forcing relation x 
 A of Kripke models is again part of the formal syntax; we represent
it as above by x :A. The accessibility relation for intuitionistic logic is a partial order, represented
as usual by 6 . In the calculus, sequents are expressions of the form Γ ⇒ ∆ where Γ and ∆ are
multisets of expressions x :A, with x ranging in an infinite set W (the elements of which we call
variables or labels rather than “worlds”) and with A any formula in the language of intuitionistic
propositional logic. Γ may also contain expressions x6 y, hereinafter called (relational) atoms.
Negation is, as usual, a defined notion and not considered here. Recall from Section 3 that P
is restricted to range over atomic formulae.
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Initial sequents:

x6 y, x :P,Γ ⇒ ∆, y :P

Logical rules:

x :A, x :B,Γ ⇒ ∆
x :A&B,Γ ⇒ ∆ L&

Γ ⇒ ∆, x :A Γ ⇒ ∆, x :B
Γ ⇒ ∆, x :A&B

R&

x :A,Γ ⇒ ∆ x :B,Γ ⇒ ∆
x :A ∨B,Γ ⇒ ∆ L∨

Γ ⇒ ∆, x :A, x :B
Γ ⇒ ∆, x :A ∨B

R∨

x6 y, x :A⊃B,Γ ⇒ ∆, y :A x6 y, x :A⊃B, y :B,Γ ⇒ ∆
x6 y, x :A⊃B,Γ ⇒ ∆ L⊃

x :⊥,Γ ⇒ ∆ L⊥
x6 y, y :A,Γ ⇒ ∆, y :B

Γ ⇒ ∆, x :A⊃B
R⊃

Order rules:

x6x,Γ ⇒ ∆
Γ ⇒ ∆

Refl
x6 z, x 6 y, y 6 z, Γ ⇒ ∆

x6 y, y 6 z, Γ ⇒ ∆ Trans

Rule R⊃ has the condition that y is not in the conclusion.

Table 1. The system G3I

The system G3I formalizes into sequent rules the inductive definition of truth in a Kripke
model. As in modal logic, the intention is that a formula A is valid if and only if for some (or
any) label x the sequent ⇒ x :A is derivable. Standard properties such as monotonicity of the
forcing relation can be obtained by means of formal derivations in the calculus:

Lemma 4.1. All sequents of the following form are derivable in G3I:

1. x 6 y, x :A,Γ ⇒ ∆, y :A

2. x :A,Γ ⇒ ∆, x :A

Proof. By mutual induction on the structure of A. The implication from 1. to 2. at each step
of the induction is routine by Refl. For atoms P and ⊥, the proof of 1. is trivial. For A ≡ B⊃C
we have the following derivation

....
. . . , x :B⊃C, z :B,Γ ⇒ ∆, z :C, z :B

....
. . . , x :B⊃C, z :C, z :B,Γ ⇒ ∆, z :C

x6 y, y 6 z, x 6 z, x :B⊃C, z :B,Γ ⇒ ∆, z :C L⊃

x6 y, y 6 z, x :B⊃C, z :B,Γ ⇒ ∆, z :C Trans

x6 y, x :B⊃C, Γ ⇒ ∆, y :B⊃C
R⊃

of 1., where the premisses of L⊃ are derivable by the inductive hypothesis for 2. The cases where
A is a conjunction or disjunction are handled by the inductive hypothesis for 1. QED
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In the next section we will see that the usual structural rules are admissible not only in this
calculus but also in the extensions with rules for geometric implications. Completeness of each
such extension of the calculus will follow.

5 Main results

The system G3I can be extended with rules expressing additional properties of the partial
order 6 exactly as in Section 3 above. We denote by G3I* any extension of G3I with rules
following the geometric rule scheme, such as the calculus for Gödel-Dummett logic with its
“strongly connected” frame condition translated as the rule

x6 y, x6 z, y 6 z,Γ ⇒ ∆ x6 y, x6 z, z 6 y, Γ ⇒ ∆
x6 y, x6 z,Γ ⇒ ∆

.

Other examples can be seen in Section 6.
In this section we shall prove that all the structural rules—Weakening, Contraction and

Cut—are admissible not only in the calculus G3I but also in each of its extensions G3I* with
rules following the geometric rule scheme.

Lemma 5.1. All sequents of the form x 6 y, x :A,Γ ⇒ ∆, y :A are derivable in G3I*.

Proof. Sequents of the form x6 y, x : A,Γ ⇒ ∆, y : A are already derivable in the subsystem
G3I. QED

Next, we need an auxiliary lemma concerning admissibility of substitution in G3I*. A similar
lemma was needed in [30], owing to the presence of labels in the syntax. We define substitution
in the obvious way as follows:

(x6 y)(z/w) ≡ x6 y if w 6= x and w 6= y

(x6 y)(z/x) ≡ z 6 y if x 6= y

(x6 y)(z/y) ≡ x6 z if x 6= y

(x 6 x)(z/x) ≡ z 6 z

(x :A)(z/y) ≡ x :A if x 6= y

(x :A)(z/x) ≡ z :A

and extend the definition to multisets componentwise. We then have:

Lemma 5.2. The substitution rule

Γ ⇒ ∆
Γ(y/x) ⇒ ∆(y/x)

(y/x)

is hp-admissible in G3I*.
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Proof. By induction on the height n of the derivation of Γ ⇒ ∆.
If n = 0, and (y/x) is not a vacuous substitution, the sequent can either be an initial

sequent of the form x6 y, x : P,Γ′ ⇒ ∆′, y : P or be of the form ⊥,Γ′ ⇒ ∆. In each case
Γ(y/x) ⇒ ∆(y/x) is either an initial sequent of the same form or a conclusion of L⊥.

Suppose n > 0, and consider the last rule applied in the derivation. If it is a rule for & or
∨, apply the inductive hypothesis to the premiss(es) of the rule, and then the rule. Proceed
similarly if the last rule is L⊃. If the last rule is R⊃ and x is an eigenvariable of the rule then
the substitution is vacuous. Else, if y is not an eigenvariable, we apply the inductive hypothesis
to the derivation of the premiss, and then R⊃.

If y is the eigenvariable, we first apply the inductive hypothesis in order to replace the
eigenvariable y with a fresh variable w. By the variable condition the substitution does not
affect the context, and we proceed as in the previous case.

For extensions of G3I with geometric rules, some care is needed in order to avoid a clash
with the eigenvariables of the geometric rule scheme. The details are similar to those in [29].
QED

Proposition 5.3. The rules of Weakening

Γ ⇒ ∆
x :A,Γ ⇒ ∆ LW

Γ ⇒ ∆
Γ ⇒ ∆, x :A RW

Γ ⇒ ∆
x 6 y, Γ ⇒ ∆

LW6

are hp-admissible in G3I*.

Proof. Straightforward induction on the height of the derivation of the premiss for the rules
for & or ∨ or for L⊃. In case the last step is R⊃, the substitution lemma is applied to the
premisses of the rule in order to have a fresh eigenvariable not clashing with those in x : A or
x6 y. The conclusion is then obtained by applying the inductive hypothesis and the rule. An
identical procedure is applied if the last step is a geometric rule and x :A or x6 y contain some
of its eigenvariables. QED

In order to prove hp-admissibility of Contraction we need to show hp-invertibility of the
rules of the sequent calculi G3I*:

Proposition 5.4. All the rules of G3I* are hp-invertible.

Proof. The proof of hp-invertibility for the rules for & or ∨ is done exactly as for G3c (Theorem
3.1.1 in [35]. Rule L⊃ and all instances of GRS (including Refl and Trans) are hp-invertible
by Proposition 5.3.

For R⊃ we use induction on the height n of the derivation of Γ ⇒ ∆, x :A⊃B. If n = 0, it
is an initial sequent or a conclusion of L⊥, but then x6 y, y :A,Γ ⇒ ∆, y :B is also an initial
sequent or a conclusion of L⊥ (observe that it is essential here that the initial sequents are
restricted to atomic formulas).

If n > 0 and Γ ⇒ ∆, x :A⊃B is concluded by any rule R other than R⊃, we apply the
inductive hypothesis to the premiss(es) Γ′ ⇒ ∆′, x :A⊃B (and perhaps also Γ′′ ⇒ ∆′′, x :A⊃B)
and obtain derivation(s) of height at most n− 1 of the sequent x6 y, y :A, Γ′ ⇒ ∆′, y :B (and
perhaps also of x6 y, y :A,Γ′′ ⇒ ∆′′, y :B). By applying rule R we obtain a derivation of height
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at most n of the sequent x6 y, y : A, Γ ⇒ ∆, y : B. If Γ ⇒ ∆, x :A⊃B is a conclusion of R⊃
with principal formula in ∆, we proceed in a similar way.

If instead the principal formula is A⊃B, the premiss of the last step gives the conclusion,
using hp-admissibility of substitution if necessary. QED

We are now in a position to prove the most important structural property of our calculi besides
cut-admissibility, namely hp-admissibility of the rules of contraction:

Theorem 5.5. The rules of Contraction

x :A, x :A,Γ ⇒ ∆
x :A,Γ ⇒ ∆ L-Ctr

Γ ⇒ ∆, x :A, x :A
Γ ⇒ ∆, x :A R-Ctr

x 6 y, x 6 y, Γ ⇒ ∆
x 6 y, Γ ⇒ ∆

L-Ctr6

are hp-admissible in G3I*.

Proof. By simultaneous induction on the derivation height.
If n = 0 the premiss is either an initial sequent or a conclusion of L⊥. In each case the

contracted sequent is also an initial sequent or a conclusion of L⊥.
If n > 0, consider the last step, by some rule R, used to derive the premiss of the con-

traction step. If the contraction formula is not principal in it, both occurrences are found in
the premiss(es) of the step, which have smaller derivation height. By the induction hypothesis,
they can be contracted and the conclusion is obtained by applying rule R to the contracted
premiss(es).

If the contraction formula is principal in it, we distinguish three cases: Either R is a rule in
which the principal formulas appear also in the premiss (such as L⊃ or the rules for 6 ), or it
is a rule where the premisses consist of proper subformulas of the conclusion (such as the rules
for & and ∨), or it is a rule, in fact R⊃, where the premisses consist of atoms x6 y and proper
subformulas of the conclusion. In the first case contraction is applied, by induction hypothesis,
to the premiss(es) of the rule. In case both contraction formulas are principal in a rule for 6 ,
the conclusion holds by the closure condition. This applies also to Trans by the presence of
rule Ref. In the second case, contraction is reduced to contraction to smaller formulas as in the
standard proof for G3c.

In the third case, both a subformula of the contraction formula and an atom x6 y are found
in the premiss, for instance

x6 y, y :A,Γ ⇒ ∆, y :B, x :A⊃B

Γ ⇒ ∆, x :A⊃B, x :A⊃B
R⊃

By hp-invertibility of R⊃ applied to the premiss, we obtain a derivation of height at most n−1
of

x6 y, x6 y, y :A, y :A, Γ ⇒ ∆, y :B, y :B
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that yields, by induction hypothesis for all forms of contraction, a derivation of height at most
n− 1 of

x6 y, y :A,Γ ⇒ ∆, y :B

and the conclusion Γ ⇒ ∆, x :A⊃B follows in one more step by R⊃. QED

We will let Ctr∗ denote repeated applications of Contraction. For n > 1, the notation An

denotes n copies of the formula A and ∆n denotes n copies of the multiset ∆.

Theorem 5.6 (Admissibility of Cut). The Cut rule

Γ ⇒ ∆, x :A x :A,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′ Cut

is admissible in G3I*.

Proof. The proof has the same structure as the proof of admissibility of Cut for sequent calculus
extended with the left rule-scheme (Theorem 6.2.3 in [35]) and for extensions with internalized
Kripke semantics for modal logic [30]. In case the geometric rule-scheme is considered, the proof
follows the pattern of [29]. We observe that in all the cases of permutation of cuts that may
give a clash with the variable conditions in the implication rules (and in the rules for 6 in case
of geometric extensions), an appropriate substitution (Lemma 5.2) prior to the permutation is
used.

The proof is thus by induction on the length of the cut formula, with a subinduction on the
sum of the heights of the derivations of the premisses of Cut. We consider in detail only the
case of a cut with the cut formula principal in implication rules in both premisses.

If the cut formula is x :A⊃B, we transform the derivation
....

x6 z, z :A,Γ ⇒ ∆, z :B
Γ ⇒ ∆, x :A⊃B

....
x6 y, x :A⊃B,Γ′ ⇒ ∆′, y :A

....
x6 y, x :A⊃B, y :B,Γ′ ⇒ ∆′

x6 y, x :A⊃B,Γ′ ⇒ ∆′

x6 y, Γ,Γ′ ⇒ ∆,∆′ Cut

into

....
(x6 y)2,Γ2,Γ′ ⇒ ∆2,∆′, y :B

....
x6 y, y :B,Γ,Γ′ ⇒ ∆,∆′

(x 6 y)3,Γ3,Γ′2 ⇒ ∆3,∆′2 Cut

x6 y, Γ,Γ′ ⇒ ∆,∆′ Ctr*

with the premisses derived by
....

Γ ⇒ ∆, x :A⊃B

....
x6 y, x :A⊃B,Γ′ ⇒ ∆′, y :A

x6 y, Γ,Γ′ ⇒ ∆,∆′, y :A
Cut

....
x6 z, z :A, Γ ⇒ ∆, z :B
x6 y, y :A,Γ ⇒ ∆, y :B

(y/z)

(x6 y)2,Γ2,Γ′ ⇒ ∆2,∆′, y :B
Cut
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and by
....

Γ ⇒ ∆, x :A⊃B

....
x6 y, x :A⊃B, y :B,Γ′ ⇒ ∆′

x6 y, y :B,Γ,Γ′ ⇒ ∆,∆′ Cut

The two upper cuts, on x :A⊃B, are of smaller derivation height; the other two are on the
smaller cut formulae y :A and y :B. QED

Corollary 5.7 (Admissibility of Modus Ponens). The rule

⇒ x :A⊃B ⇒ x :A
⇒ x :B MP

is admissible in G3I*.

Proof. Routine use of invertibility of R⊃ and cut admissibility. QED

Completeness of the calculus with respect to the relational semantics can as usual be proved
indirectly using admissibility of Modus Ponens and derivability of the appropriate axioms. This
method establishes equivalence with a given a complete Hilbert system but clearly works only
when a suitable complete axiomatization is known. Alternatively, we can show completeness by
showing that for any given sequent there is either a derivation or a counter-model in the given
frame class. This method of establishing completeness, detailed for labelled sequent calculi in
[32], parallels the method already adopted by Kripke for his modal tableau systems [24]. In
the first case, a prior proof of Cut-admissibility is essential; in the second case, it is reassuring
rather than essential.

6 Intermediate logics

We obtain at once labelled calculi of the form G3I* with admissible structural rules for a range
of intermediate propositional logics, including the seven interpolable ones [5, 25]: the point is
simply that all these logics have, as frame conditions, geometric implications. For further details
on such logics, see [5, 18].

1. Int Intuitionistic Logic: As already built in above, the accessibility relation 6 is reflex-
ive and transitive (but we don’t exploit the fact that these properties are expressed by
geometric implications).

2. Jan Jankov Logic or De Morgan Logic [19]: This logic (also known [5] as KC, and as the
“logic of weak excluded middle”) is axiomatised both by ¬A ∨ ¬¬A and by ¬(A&B)⊃
(¬A ∨ ¬B). The relation 6 is directed or convergent, i.e.

∀xyz((x6 y & x6 z) ⊃ ∃w(y 6 w & z 6 w)).

Note in particular that this frame condition is a geometric implication but not a universal
formula. Since all our frames are reflexive, we ignore the distinction between directedness

12



and strong directedness; see [5] for a fuller discussion. The instance of the rule scheme
generated by this frame condition is, with w an eigenvariable and so fresh,

x6 y, x6 z, y 6w, z 6w,Γ ⇒ ∆
x6 y, x6 z, Γ ⇒ ∆ Jan

3. GD Gödel-Dummett Logic:

This logic (also known as LC, for “linear chains”) has either of the following—(A ⊃
B) ∨ (B⊃A) and ((A⊃B)⊃C)⊃(((B⊃A)⊃C)⊃C)—as a characteristic axiom schema;
see [9] for a discussion of other calculi. The accessibility relation is strongly connected, i.e.

∀xyz((x6 y & x6 z) ⊃ (y 6 z ∨ z 6 y)).

The instance of the rule scheme generated by this frame condition is

x6 y, x6 z, y 6 z, Γ ⇒ ∆ x6 y, x6 z, z 6 y, Γ ⇒ ∆
x6 y, x6 z, Γ ⇒ ∆ GD

4. Bd2: The accessibility relation has Bounded depth at most 2, i.e.,

∀xyz((x6 y 6 z) ⊃ (y 6 x ∨ z 6 y)).

This logic is axiomatised by, for example, A ∨ (A⊃ (B ∨ ¬B)). The instance of the rule
scheme generated by this frame condition is

y 6x, x6 y 6 z,Γ ⇒ ∆ x6 y 6 z, z 6 y, Γ ⇒ ∆
x6 y 6 z,Γ ⇒ ∆ Bd2

5. GS: The Greatest Semi-constructive logic [12], also known in [2] as GSc and as Bd2F2.
The accessibility relation has depth at most 2 and at most 2 final elements, i.e. satisfies
both the condition (above) for Bd2 and (a simplification of a special case in Exercise 2.11
of [5]):

∀xyz∃v((x 6 v & y 6 v) ∨ (y 6 v & z 6 v) ∨ (x 6 v & z 6 v)).

which easily enforces (under the hypothesis of reflexivity, transitivity, antisymmetry and
the condition for Bd2) exactly the condition that, for any three elements, there is some
element accessible from some two of them. (If the three elements are not all distinct, this is
a triviality; so we can replace ‘elements’ by ‘distinct elements’.) This logic is axiomatised
by, for example, (A⊃B) ∨ (B ⊃A) ∨ ((A⊃ ¬B)& (¬B ⊃A)) and A ∨ (A⊃ (B ∨ ¬B))
together. The corresponding instantiation of the rule scheme for the first condition is
given above; that for the second condition is, with v an eigenvariable (and so neither in Γ
nor in ∆ and distinct from all of x, y and z):

x6 v, y 6 v,Γ ⇒ ∆ y 6 v, z 6 v,Γ ⇒ ∆ x6 v, z 6 v,Γ ⇒ ∆
Γ ⇒ ∆ F2
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6. Sm: Smetanich logic, also known [5] as LC2 or HT, the “logic of here and there”, or
as Gödel’s 3-valued logic. It is axiomatised by the GD axiom plus the Bd2 axiom, or,
equivalently (from [5], Exercise 2.15), by (¬B⊃A)⊃(((A⊃B)⊃A)⊃A). The accessibility
relation is strongly connected and has depth at most 2, i.e. the conditions

∀xyz((x6 y & y 6 z)⊃(y 6 z ∨ z 6 y))
∀xyz((x6 y 6 z)⊃(y 6 x ∨ z 6 y)).

for GD and Bd2 hold. Their expression as rules is already done above.

7. Cl Classical logic: The accessibility relation is symmetric, i.e.

∀xy(x6 y ⊃ y 6 x).

This logic is axiomatised, of course, by A ∨ ¬A or by ¬¬A ⊃ A. The corresponding
instantiation of the rule scheme is useless; it is

x6 y, y 6x,Γ ⇒ ∆
x6 y, Γ ⇒ ∆ Cl

Several variants of these logics (see [5, p. 55]) are non-interpolable but still have geometric
frame conditions, e.g. Bdn for n > 2 (“Bounded depth n”) and btwn for n > 2 (approximately,
“bounded top-width” n). For n = 3, for example, the latter’s characteristic frame condition is
the geometric implication

∀xx0x1x2x3(
3∧

i=1

Rxxi ⊃ ∃y(
∨
i6=j

Rxiy & Rxjy)).

KP, Kreisel-Putnam logic, axiomatised over Int by the schema

(¬A⊃(B ∨ C))⊃((¬A⊃B) ∨ (¬A⊃C)),

is a (non-interpolable) intermediate logic with a characteristic frame condition that is not a
geometric implication. This condition (see [5, p. 55]) is, with the symbol R for the accessibility
relation of [5] replaced by 6 and some negative antecedent formulae converted to positive
succedent formulae,

∀xyz((x6 y & x6 z) ⊃ (y 6 z ∨ z 6 y ∨ ∃u(x6u & u 6 y & u 6 z & F (u, y, z)))

where F (u, y, z) abbreviates ∀v(u 6 v⊃∃w(v 6w & (y 6w∨z 6w))); the complexity of F (u, y, z)
upsets the geometricity, and no obvious single alternative formula suggests itself as being both
equivalent and also a geometric implication. However, let us add the ternary relation symbol
F and the axiom

∀uvyz(u 6 v & F (u, y, z) ⊃ (∃w(v 6w & y 6w) ∨ ∃w(v 6w & z 6w))).

This is a geometric implication, so can be converted to a schematic rule. The proof-theoretic
analysis above extends to several relations and to ternary relations without difficulty. An
easy argument shows that the one-way implication in this axiom is sufficient to express the
equivalence implicit in the idea that F (u, y, z) is an abbreviation. Detailed analysis of the scope
of such situations is left for our future joint work.
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7 Gödel translation of Int to S4

Gödel [16] defined a translation (·)∗ from the language of intuitionistic propositional logic to the
language of classical modal logic and proved by induction on derivations that his translation
was sound, that is, `Int A → `S4 A∗, and conjectured faithfulness of the embedding, i.e. the
converse. This was proved by McKinsey and Tarski [27], who gave a semantic proof of the
implication 0Int A∗ → 0S4 A. Dummett and Lemmon ([8] proved, using the same semantic
method, that `Int+Ax A if and only if `S4+Ax∗ A∗ where A is any propositional formula and
Ax is a collection of axioms.

We consider the following variant (cf [42]) of the Gödel translation from [16]:

P� := �P

⊥� := ⊥
(A⊃B)� := �(A�⊃B�)
(A&B)� := A�&B�

(A ∨B)� := A� ∨B�

The translation Γ� of a multiset Γ ≡ A1, . . . , An is defined componentwise by

(A1, . . . , An)� := A�
1 , . . . , A�

n

The same translations are applied to labelled formulae and to multisets thereof. The translation
on relational atoms is the identity. The following result shows that this translation faithfully
represents intermediate logics (provided the frame conditions are expressible using geometric
implications) in terms of modal logics between S4 and S5, as studied in [8]. Given an extension
G3I* of G3I with rules for ≤, we denote by G3S4* the corresponding extension of G3S4.
For convenience we use ≤ for the relation in the calculus for S4, despite the latter not being a
partial order; this allows the translation on relational atoms to be the identity.

Lemma 7.1. If Γ, ∆ are multisets of labelled formulas (with relational atoms also possibly in
Γ) and Γ′, ∆′ are multisets of labelled atomic formulas, and G3S4* ` Γ�,Γ′ ⇒ ∆�,∆′, then
G3I* ` Γ,Γ′ ⇒ ∆,∆′.

Proof. By induction on the derivation of Γ�,Γ′ ⇒ ∆�,∆′. If it is an initial sequent, then some
atom x : P is in Γ′ and in ∆′; the conclusion then follows in G3I* by Refl from the initial
sequent x 6 x,Γ,Γ′ ⇒ ∆,∆′. If it is a conclusion of L⊥, so also is Γ,Γ′ ⇒ ∆,∆′. If it is
derived by a rule for & or for ∨, the inductive hypothesis applies to the premisses and then the
corresponding rule in G3I* gives the conclusion.

If it is derived by a modal rule, the principal formula, being a translated formula, can only
be of the form �P or of the form �(A�⊃B�). There are thus four cases:

1. With �P principal on the left, the step

x 6 y, y :P, x :�P,Γ′′�,Γ′ ⇒ ∆�,∆′

x 6 y, x :�P,Γ′′�,Γ′ ⇒ ∆�,∆′ L�
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is translated to the admissible G3I* step

x 6 y, y :P, x :P,Γ′′,Γ′ ⇒ ∆,∆′

x 6 y, x :P,Γ′′,Γ′ ⇒ ∆,∆′

2. With �P principal on the right, the step (with y fresh)

x 6 y, Γ�,Γ′ ⇒ ∆′′�,∆′, y :P
Γ�,Γ′ ⇒ ∆′′�,∆′, x :�P

R�

is translated (using admissibility of substitution) to the G3I* steps

x 6 y, Γ,Γ′ ⇒ ∆′′,∆′, y :P
x 6 x,Γ,Γ′ ⇒ ∆′′,∆′, x :P

(x/y)

Γ,Γ′ ⇒ ∆′′,∆′, x :P
Refl

3. With �(A�⊃B�) principal on the left, the step

x 6 y, x :�(A�⊃B�), y :A�⊃B�,Γ′′�,Γ′ ⇒ ∆�,∆′

x 6 y, x :�(A�⊃B�),Γ′′�,Γ′ ⇒ ∆�,∆′ L�

gives, by hp-invertibility of L⊃ in G3S4*, derivations in G3S4* of the sequents

x 6 y, x :�(A�⊃B�),Γ′′�,Γ′ ⇒ ∆�,∆′, y :A�

and
x 6 y, x :�(A�⊃B�), y :B�,Γ′′�,Γ′ ⇒ ∆�,∆′

to which the inductive hypothesis applies. This gives us derivations in G3I* of the
sequents

x 6 y, x :A⊃B,Γ′′,Γ′ ⇒ ∆,∆′, y :A x 6 y, x :A⊃B, y :B,Γ′′,Γ′ ⇒ ∆,∆′

from which the desired conclusion

x 6 y, x :A⊃B,Γ′′,Γ′ ⇒ ∆,∆′

follows by a step of L⊃ in G3I*.

4. If �(A�⊃B�) is principal on the right, the step is

x 6 y, Γ�,Γ′ ⇒ ∆′′�,∆′, y :A�⊃B�

Γ�,Γ′ ⇒ ∆′′�,∆′, x :�(A�⊃B�)
R�

from which, by hp-invertibility of R⊃ in G3S4*, we have a derivation in G3S4* of

x 6 y, y :A�,Γ�,Γ′ ⇒ ∆′′�,∆′, y :B�

to which the inductive hypothesis applies. An R⊃ step in G3I* gives us the desired
conclusion. QED
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Theorem 7.2. For any labelled sequent Γ ⇒ ∆, the following are equivalent:

1. G3I* ` Γ ⇒ ∆

2. G3S4* ` Γ� ⇒ ∆�.

Proof. From (1) to (2) is routine, by induction on the structure of the derivation. For example,
an axiom x6 y, Γ, x :P ⇒ y :P,∆ translates to the G3S4* derivation

. . . , Γ�, x :�P , z :P ⇒ z :P,∆� Ax

x6 y, y 6 z, x6 z,Γ�, x :�P ⇒ z :P,∆� L�

x6 y, y 6 z, Γ�, x :�P ⇒ z :P,∆� Trans

x6 y, Γ�, x :�P ⇒ y :�P ,∆� R�
.

Similarly, an R⊃-instance (with fresh y)

x6 y, Γ, y :A ⇒ y :B,∆
Γ ⇒ x :A⊃B,∆ R⊃

translates to the steps
x6 y, Γ�, y :A� ⇒ y :B�,∆�

x6 y, Γ� ⇒ y :A�⊃B�,∆� R⊃

Γ� ⇒ x :�(A�⊃B�),∆� R�

and an L⊃-instance is dealt with likewise. Conjunction, disjunction and absurdity are routine,
as are the rules arising as instances of the geometric rule scheme.

The converse is a special case of Lemma 7.1. QED

Observe that the translation does not affect the steps involving the rules for the accessibility
relation; therefore the faithfulness of the embedding is maintained for each of the intermedi-
ate logics considered in Section 6 and even for those not considered here, provided the frame
conditions are geometric implications.

Observe also that the admissibility of Contraction and Cut in G3I* may be obtained from
this result (and their admissibility for extensions of S4), since no use is made thereof in the
proof of the Theorem.

Compared with a standard proof [42] for unlabelled calculi, the above is both simple and
general. The core of the above proof, that is, the erasure of all �, is reminiscent of an analogous
reduction in the model-theoretic proof of faithfulness of the embedding of Int into S4. For
that purpose, it is shown how a countermodel for an unprovable sequent in Int is turned into
a countermodel for the translation of that sequent in S4; in particular, “it can be treated as a
modal frame isomorphic to its skeleton” (see theorem 3.83 in [5]).

One may conclude, therefore, in an easy uniform fashion, the faithfulness of the embedding
of each intermediate logic given in Section 6 as characterised by frames satisfying geometric
implications into its (smallest) modal companion. Well-known modal companions are S4 for
Int, S4.2 for Jan, S4.3 for GD, S5 for Cl.
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8 Analyticity

The rules given by the above approach are not, in general, analytic, in the strong sense that
each expression in a premiss is a subexpression of a rule in the conclusion: for example, in the
rule for GD, with atoms y 6 z and z 6 y in one or other premiss, there is in the conclusion no
expression of which these are subexpressions. More seriously, the rule Refl does not require the
variable x in the new atom x6x to appear in the conclusion; several of the geometric rules
illustrated above also have similar defects.

We say that a rule instance is analytic if and only if every variable occurring in any premiss
is either an eigenvariable or occurs in the conclusion, and that a derivation is analytic if and only
if all rule instances therein are analytic. Its conclusion is then said to be analytically derivable.

Lemma 8.1. The class of analytic derivations is closed under substitution of a variable x for
another variable, provided that x occurs in the derivation’s conclusion.

Proof. Routine. Such substitution doesn’t upset the freshness of eigenvariables, since these are
renamed if necessary. QED

Proposition 8.2. Every sequent derivable in G3I∗ is analytically derivable.

Proof. We proceed by induction on the structure of the derivation. The base case is trivial:
every initial sequent is analytically derivable, since there are no premisses. Inductively, suppose
that a non-analytic step has premisses derived analytically. For each variable in any premiss
that is not in the conclusion (and is not an eigenvariable), we substitute for it (in the derivations
of all the premisses) any variable that is in the conclusion. Since, in any derivation, all variables
in a rule’s conclusion are in all its premisses, such a variable is already in the conclusion of each
premiss, so Lemma 8.1 applies. The conclusion is unchanged: the resulting rule instance is now
analytic, and the derivations of the premisses are still, by Lemma 8.1, analytic. So the entire
derivation is now analytic. QED

We now have the subterm property: see [38] for details thereof. Together with the sub-
formula property of the rules so far as logical formulae (rather than relational atoms) is con-
cerned, this ensures that the calculus (restricted to analytic derivations) is finitely generating
in the sense defined by [4]: a rule is finitely generating iff, “given its conclusion, there is only a
finite set of premises to choose from”. (This applies as stated to one-premiss rules; an obvious
modification extends it to multi-premiss rules.) The systems G4ip for Int described in [42] and
that for GD from [9] are good examples of cut-free calculi where all the rules have this property,
but some do not have the sub-formula property: despite the absence thereof, root-first proof
search is effective. First-order logic provides a contrast: although, by convention, any formula
A(t) is a sub-formula of ∀x.A(x), and thus the calculus G3c has the sub-formula property, the
logic is undecidable.

We have therefore shown that our rules can, if required in the context of root-first proof
search, be restricted to being analytic, and thus finitely generating.
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9 Related Work

A summary of a preliminary version of this paper appeared in Section 4 of the survey [31]. An
extension to the first-order case presents no essential difficulties; the corresponding treatment
of first-order modal logics will appear in [38]. One application of the same approach is to
bi-intuitionistic logic by Pinto and Uustalu [40]. The paper [39] exploits the proof-theoretic
method of [30] for modal logic in the context of conditional logics. A recent survey of the area
is given in [33].

A proof-theoretical treatment of geometric implications first appeared in Alex Simpson’s
PhD thesis [41], in the context of natural deduction systems for intuitionistic modal logics. A
detailed historical discussion and references to other literature on geometric theories can be
found in the notes to Chapters 5 and 8 of [38].

Hypersequent calculi have been suggested as a powerful alternative; however, the calculi
are often unsuitable for root-first proof search, with substantial non-determinism. There is
interesting work in this area by Ciabattoni and others [6, 7]; this gives a method for translating
axioms (such as the linearity axiom (A ⊃ B) ∨ (B ⊃ A) of Gödel-Dummett logic GD) into
structural rules to be added to a single-succedent calculus, the Full Lambek calculus FL; axioms
are organised in a substructural hierarchy of complexities, with the higher complexity axioms
requiring systems of higher complexity, such as hypersequents, nested sequents, higher-order
sequents and beyond. (Restriction to the single-succedent calculus appears to force GD to
require a hypersequent calculus, despite the existence of simple multi-succedent calculi [9, 10].)
Moreover, that particular method does not yet give a simple translation for the intermediate
logic Bd2, and its applicability to modal logic is not yet developed.

Display calculi provide another approach in the proof theoretical investigation of non-
classical logics, not using Kripke semantics (cf. the monograph [46] for extensive references).
Our method is no less general: in particular, geometric implications properly cover the class of
frame conditions that characterize properly displayable modal and tense logics [22].

We omit any contribution to the debate with those who see labelled calculi as impure, beyond
mention of our view that no uniformly and entirely successful approach (allowing e.g. proofs
of interpolation results, easy implementation, uniformity of coverage w.r.t. the intermediate
logics and simple notation) has yet been achieved. A referee has suggested a reference to the
work in [3], with a sequent calculus quite similar to G3I; this incorporates conditions on the
accessibility relation as axioms, but achieving only partial admissibility of Cut. To achieve this
in full, a transformation to another calculus is required.

References

[1] D’Agostino, M. et al, Handbook of Tableaux Methods, Kluwer, 1998.

[2] Avellone, A. et al, Duplication-free tableau calculi and related cut-free sequent calculi for
the interpolable propositional intermediate logics, L.J. of the IGPL 7, pp. 447–480, 1999.

[3] Baaz, M., and R. Iemhoff. On Skolemization in constructive theories, J. Symbolic Logic
73, pp. 969–998, 2008.

19
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