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Abstract
It is well-known that intuitionistic propositional logic Int may be faithfully embedded not just into the modal logic S4 but
also into the provability logics GL and Grz of Gödel-Löb and Grzegorczyk, and also that there is a similar embedding of Grz
into GL. Known proofs of these faithfulness results are short but model-theoretic and thus non-constructive. Here a labelled
sequent system Grz for Grzegorczyk logic is presented and shown to be complete and therefore closed with respect to Cut.
The completeness proof, being constructive, yields a constructive decision procedure, i.e. both a proof procedure for derivable
sequents and a countermodel construction for underivable sequents. As an application, a constructive proof of the faithfulness
of the embedding of Int into Grz and hence a constructive decision procedure for Int are obtained.
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1 Introduction

Motivated by the idea that intuitionism expresses a modal notion of provability, Gödel [13] defined in
1933 a translation of intuitionistic logic Int into the modal logic S4, stated without proof the soundness
of the translation and remarked [14]1 that ‘presumably a formula holds in Heyting’s calculus if and
only if its translation is provable in S4’.2 It took some years before McKinsey and Tarski [23] proved
that which Gödel had merely conjectured, faithfulness of the embedding of intuitionistic logic in S4
by means of a suitable translation: a translated formula A� is provable in S4 iff A is provable in Int.
The result was proved indirectly, using algebraic semantics and completeness of S4 with respect to
closure algebras and of Int with respect to Heyting algebras. Various slightly different translations
(modifying that of [13]), proof methods and results in this area are summarized in [39] (p. 314). The
translation ·� that we use will be defined in Section 6.

The result was later extended in various ways: first, into embedding results for intermediate logics
in modal logics between S4 and S5 by Dummett and Lemmon [9], and second, into the embeddings

1Here in translation, including use of the name S4 in place of the name he used.
2As a referee remarked, Gödel’s translation, taken literally, is seen not to be faithful by considering the intuitionistically

unprovable formula (P⊃P)⊃(P∨¬P) which is translated to the S4 provable formula �(P⊃P)⊃�(P∨¬P); however one
can assume that in his note the recursive part of the definition was left implicit.
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2 Cut-free sequent system for Grzegorczyk logic

of Int into what were later called the provability logics GL and Grz of Gödel-Löb and (resp.) of
Grzegorczyk. Dummett and Lemmon proved that Int+� � A if and only if S4+�� � A�. A similar
result, with Grz in place of S4, was stated (without proof) in [12]. See also [24] for a survey.

The provability logic GL extends the normal modal logic K by Löb’s axiom schema
�(�A⊃A)⊃�A (from which the 4 schema �A⊃��A follows, and the T schema �A⊃A does not
follow); its semantics is given by irreflexive transitive Noetherian frames. In 1976, Solovay [37]
emphasized the importance of GL by presenting it as the logic that characterizes arithmetic
provability, i.e. he showed that, for any modal formula A, GL � A if and only if, for every realization
r of the atoms in A as sentences of PA (Peano Arithmetic), one has PA �Pr(A), where, for formula
X, the sentence Pr(X) of PA is defined on atoms X as r(X), routinely on conjunctions, disjunctions,
negations, implications and absurdity, but for modal formulae �B one has Pr(�B)≡Bew(�Pr(B)�),
where �·� is a fixed Gödel numbering of sentences of PA as numerals and Bew (short for Beweisbar)
is a defined unary predicate with Bew(�·�) capturing arithmetic provability of sentences. The Löb
axiom schema �(�A⊃A)⊃�A is then interpreted as saying, for any sentence S of PA, that, if PA
�Bew(�S�)⊃S, then already PA �S, i.e. Löb’s Theorem.

It had been observed already by Gödel in 1933 that a naive ‘provability’ interpretation of Int
would clash with the alethic interpretation of necessity: S4 proves �(�A⊃A), but the instance of this
with ⊥ in place of A, translated by a provability interpretation into PA, expresses the provability of
consistency, Bew(�¬Bew(�⊥�)�), which by the second incompleteness theorem fails in any system
containing arithmetic.

Grzegorczyk defined in [16], along the lines of the semantic topological method of McKinsey and
Tarski, a special class of topological (point-free) spaces associated to finite reflexive transitive and
antisymmetric frames (i.e. finite partial orders) and showed that Heyting algebras can be embedded
in these frames. He also provided an axiomatization of the logic (now called Grz) characterized
by such frames, as the extension of S4 by the axiom ((A��B)��B)∧ ((¬A��B)��B)��B),
where C �D abbreviates �(C⊃D), and proved semantically that it is a proper extension of S4, not
contained in S5 but in which Int is faithfully embedded by means of the translation ·�. Segerberg
later [36] gave a simpler axiomatization over S4 using the schema �(G(A)⊃A)⊃A, where G(A)≡
�(A⊃�A).

Several authors independently proposed [2–4, 6, 15, 18, 19] a modified interpretation (the
provability-truth interpretation) of modality in terms of arithmetic provability; this uses a
translation ·+ from Grz to GL, in which (�A)+ is defined as A+ ∧�(A+); for its motivation see
[20, 21]. Provability of A in Grz is then equivalent to provability in GL of its translation A+ and
therefore to provability in PA of every Pr(A+). That Int can be embedded into GL then follows from a
modification ·� of the translation ·� used for the embedding into S4 (and Grz); this modification ·�
interprets atoms P as P∧�P and implicational formulae A⊃B as (A�⊃B�)∧�(A�⊃B�). The
modal interpretation ·� of Int, together with the translation ·+ of Grz into GL, thus gives the
embedding ·� of Int into GL.

However, unlike the proofs of soundness, the syntactic proofs of faithfulness of these embeddings
are not entirely straightforward, as witnessed in section 9.2 of [39] for the relatively simple case of
the embedding of Int into S4. Semantic arguments can be found in, e.g., [8, 15]. In the case of the
syntactic proofs, careful invention of a strengthened induction hypothesis, stronger than that which
has to be proved, is required. This is simplified in that simple case by the use of labelled systems
[11]; we show in Section 6 how to attack the problem for the faithfulness of the embedding ·� of Int
into Grz.

A first step to establishing such a faithfulness result consists in the formulation of a cut-free
sequent system for the logic (in this case, Grz) that is the target of the embedding. A (traditional)
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Cut-free sequent system for Grzegorczyk logic 3

sequent calculus for Grz (and for GL) was presented by Avron in [1] and shown to be complete with
respect to Kripke semantics by the method of saturated sequents and canonical models constructions.
Borga and Gentilini [7] prove cut-admissibility for an unlabelled calculus. A similar approach, but
with tableaux rather than sequent systems, was pursued in [33]. As argued in [28], a more direct
completeness proof than the one based on canonical model constructions is obtained in labelled
systems: a failed proof search explicitly contains a Kripke countermodel. In addition, uniformity of
syntax is a strong desideratum in view of syntactic embedding results.

In our previous work [11], to which we refer for a short account of the background, based on
[25, 26, 29], on labelled sequent calculi for modal systems (especially the labelled calculus G3K for
the modal logic K and the reflexivity and transitivity rules Ref and Trans needed for G3S4 (for S4))
and for the labelled calculus for Int used here, we have given a simple and uniform embedding result
for a wide class of intermediate logics and their corresponding modal companions. In particular, the
proof of faithfulness of the embeddings is achieved in a syntactic way and is as straightforward as the
proof of soundness and the proof for the Int into S4 embedding considerably simplifies the earlier
syntactic proof of [39] for this simple case.

Our goals in this article are thus, after some preliminaries including the setting up of a labelled
sequent calculus, to give a constructive proof of completeness of the calculus and to give a simple
syntactic proof of the faithfulness of this embedding.

The method of labelled sequent calculus we build upon covers in a uniform way all logics
characterized by universal or geometric conditions on their Kripke frames. Grzegorczyk logic is
characterized by reflexive, transitive and Noetherian frames: the last condition is not first-order, but
it can nevertheless be internalized in the syntax of the calculus by a suitable characterization of the
forcing relation for boxed formulas in such frames. This results in a modification of the rules for the
necessity operator, analogous to the one used in [26] for GL.

We present in Section 2 a labelled sequent calculus G3Grz for Grz and give in Section 3 a
constructive completeness proof for it, which both establishes the finite model property and gives
a decision procedure for Grz: we show in fact that, for any given labelled sequent in the modal
language, either a derivation in the calculus or a finite countermodel can be constructed. (It is this
last feature that merits the epithet ‘constructive’ for the decision procedure.)

The complete sequent calculus permits a proof that the standard modal translation of intuitionistic
logic is a faithful embedding into Grz. The proof of faithfulness is obtained in a constructive syntactic
fashion through an induction on height of derivations and so, in contrast with semantic proofs of
the same result (cf. [8]), one can recover a derivation of ⇒A in G3I from a derivation of ⇒A� in
G3Grz.

Thus, one may obtain a constructive decision procedure for Int as a consequence of the faithfulness
of the embedding and the constructive decision procedure for Grz.

2 A labelled sequent system for Grzegorczyk logic

The provability logic Grz is characterized by reflexive, transitive and Noetherian frames. The latter
property is not first-order, so the general methods used in our earlier work [11, 26, 27] for internalizing
the frame properties into the syntax of sequent calculus cannot be applied in a straightforward way.
Instead, analogous to the special method followed for GL in Negri [26], a suitable characterization of
the forcing relation for modal formulas, and a consequent modification of the rules for �, permits the
formulation of an appropriate labelled sequent calculus. However, Grz is characterized by reflexive
(rather than irreflexive), transitive and Noetherian frames; this tiny detail makes important differences
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in the proof-theoretical analysis of these logics, even if the guiding idea for internalizing Noetherianity
is similar.

We start with recalling the well-known definition of a Noetherian relation.

Definition 2.1
Let R be a relation on a set S.

1. An R-sequence3 is a (finite or infinite) sequence (xi) of elements of S such that, for any two
successive elements xi and xi+1 of the sequence, xiRxi+1 holds.

2. An R-sequence (xi) is convergent iff, for some i, for all j> i for which xj is defined, xj =xi.
3. R is Noetherian iff every R-sequence is convergent.

‘Is stationary’, ‘is eventually stationary’, ‘becomes stationary’ and ‘stabilises’ are sometimes used
in place of ‘is convergent’. Jeřábek [17] shows that the axiom DC of Dependent Choice is equivalent
in Zermelo–Fraenkel set theory to the proposition that every poset that is ‘upwards well-founded’,
i.e., such that every non-empty subset has a maximal element, is Noetherian in the above sense; and
he isolates an interesting condition which, in the absence of DC, lies strictly between this converse
version of well-foundedness and Noetherian (as in the definition we have given) and which helps
exactly characterize the frames that are models of Grz. Note that we phrase the definition so that the
relation can be reflexive. If the relation is irreflexive, then ‘convergent’ is equivalent to ‘finite’.

Since every finite sequence is convergent, we have the first part of:

Lemma 2.2
The Noetherian condition on R is equivalent to the convergence of every infinite R-sequence. In the
presence of irreflexivity, it is equivalent to the finiteness of every R-sequence.

Proof. It remains to prove the second part: this is routine. �
We recall the standard definition of Kripke semantics (w.r.t. a set S, a relation R on S and a ‘world’

x∈S) for normal modal logics:

x��A ⇐⇒ for all y∈S, xRy implies y�A.

It is convenient to use the abbreviation G(A) for the formula �(A⊃�A).
Next, we prove a characterization of forcing of boxed formulas in Noetherian models.4

Lemma 2.3
If R is a transitive Noetherian relation on S, then, for all x∈S and formula A,

x��A ⇐⇒ for all y∈S, xRy and y�G(A) imply y�A.

Proof. In one direction (left to right) this is immediate. In the other direction, suppose x 
��A, but that
the right-hand side (the RHS) holds. Let x0 =x. Then, for some x1 ∈S with x0Rx1, x1 
�A. By the RHS,
x1 
��(A⊃�A), so for some x2 ∈S with x1Rx2, x2 
�A⊃�A, i.e. x2 �A but x2 
��A. In particular,
x2 
=x1, since x1 
�A. Since x2 
��A, there is some x3 ∈S with x2Rx3, x3 
�A. By transitivity, xRx3.
By the RHS, x3 
��(A⊃�A); so for some x4 ∈S with x3Rx4, x4 
� (A⊃�A), i.e. x4 �A but x4 
��A.

3Also known as an R-chain. The word ‘sequence’ is used in the sense of being indexed either by the ordered set of all
natural numbers less than some fixed natural number or by the ordered set of all natural numbers.

4We observe that the same result can be obtained via the equivalence, valid in Grz-models �A ≡ �(G(A)⊃A) (cf., e.g.,
[8]), but since the purpose here is to motivate the definition of the proof system we prefer to give an independent proof.
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In particular, x4 
=x3, since x3 
�A. The argument can be repeated (using DC) to obtain x5,x6 with
x4Rx5, x5Rx6, x5 
�A, x6 �A but x6 
��A and so on, giving an infinite sequence that cannot converge,
since ∀i≥0. x2i+2 
=x2i+1. This contradicts the assumption that R is Noetherian. �

Different notions of Noetherianity have been considered in the literature on constructive
mathematics and a useful survey on their interrelations, in view of applications in algebra, is provided
in [32]. Among these variants is the constructively weaker notion due to Richman and Seidenberg
stating that for every chain x0Rx1Rx2 ... there exists n such that xn =xn+1. The proof above shows
(since one has not just ∀i≥0. x2i+2 
=x2i+1 but also ∀i≥0. x2i 
=x2i+1) that Lemma 2.3 can indeed
be proved (using DC) also with this weaker assumption on the relation R.

The following rules (in the context of labelled sequent calculi such as G3K for the modal logic K,
as presented in [26], in which � and � are multisets of labelled formulae x :A, with possibly also
some ‘relational atoms’ xRy in �) are justified by the characterization in Lemma 2.3 of the forcing
relation in frames with a transitive Noetherian relation:

xRy,x :�A,�⇒�,y :G(A) xRy,x :�A,y :A,�⇒�

xRy,x :�A,�⇒�
L�Z

xRy,y :G(A),�⇒�,y :A
�⇒�,x :�A

R�Z (with y fresh) .

Rule R�Z has the condition that y is fresh, i.e. is not in the conclusion. The fresh label in R�Z
will be called an ‘eigenlabel’ (also known as an ‘eigenvariable’ [31]) by analogy with the usage in
first-order logic.

There are several alternative possibilities for presentation of Grz as a labelled sequent calculus;
we defer to Section 4 discussion thereof. Our choice here is to use the R�Z just given but the standard
L� rule; this allows hp-invertibility of all inference rules and hp-admissibility of Weakening and of
Contraction. (For this terminology, see, e.g., [30] (pp. 31, 34) for ‘height-preserving’ (hp-), or [39]
(pp. 76–77), where the equivalent variant ‘depth-preserving’ (dp-) is used.) Syntactic cut elimination
is not proved for the system; on the other hand this formulation of the calculus permits a completeness
proof that yields at the same time a semantic proof of admissibility of Cut, the finite model property
and a constructive decision procedure.

In the following, we shall denote by G3Grz the system obtained from G3K by replacing rule R�

by R�Z , leaving L� (from G3K) unchanged, and adding the rules Ref and Trans for reflexivity and
transitivity:

xRy,x :�A,y :A,�⇒�

xRy,x :�A,�⇒�
L�

xRx,�⇒�

�⇒�
Ref

xRz,xRy,yRz,�⇒�

xRy,yRz,�⇒�
Trans .

The initial sequents are those of G3K, i.e. those of the form x :P,�⇒�,x :P where P is atomic.
The notation size(A) denotes the size of the formula A, i.e. the number of logical connectives.

3 Structural properties of G3Grz

It is unproblematic to verify that all the preliminary properties proved for G3K and its extensions
in [26] hold also for G3Grz. In particular, we have:

Lemma 3.1
All sequents of the form x :A,�⇒�,x :A are derivable in G3Grz with derivation height at most
2∗size(A).
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Lemma 3.2
The Substitution rule

�⇒�

�(y/x)⇒�(y/x)
(y/x)

is hp-admissible in G3Grz.

Proposition 3.3
The rules of Weakening

�⇒�
x :A,�⇒�

LW
�⇒�

�⇒�,x :A RW
�⇒�

xRy,�⇒�
LWR

are hp-admissible in G3Grz.

As a consequence of admissibility of Weakening, rule R� of G3K is admissible in G3Grz, which is
thus an extension of G3S4, and admissibility of Necessitation is established in a way similar to that
in [26]:

Corollary 3.4
The rule, where y does not occur in the conclusion,

xRy,�⇒�,y :A
�⇒�,x :�A R�

is admissible in G3Grz.

Proposition 3.5
The Necessitation rule ⇒x :A

⇒x :�A Nec

is admissible in G3Grz.

Proposition 3.6
Every sequent of the form

⇒x :�A⊃A

is derivable in G3Grz.

Proof. Routine use of R⊃, Ref , L� and Lemma 3.1. �
Proposition 3.7
Every sequent of the form

⇒x :�A⊃��A

is derivable in G3Grz.

Proof. Routine use of R⊃, R� (twice), Trans, L� and Lemma 3.1. �
Axiomatic presentations of Grzegorczyk logic (such as those in [5, 8, 36]) use the ‘Grzegorczyk
formula’, namely

�(�(A⊃�A)⊃A)⊃A.

With the notation we have introduced, it can be rewritten as �(G(A)⊃A) ⊃ A. The following results
shows the derivability of the corresponding sequents in G3Grz.
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Lemma 3.8
All sequents of the form

x :�(G(A)⊃A),�⇒�,x :G(A)

are derivable in G3Grz.

Proof. We have the derivation

xRz,xRy,yRz,x :�(G(A)⊃A),y :A,z :G(A),z :G(A)⊃A,�⇒�,z :A
xRz,xRy,yRz,x :�(G(A)⊃A),y :A,z :G(A),�⇒�,z :A L�

xRy,yRz,x :�(G(A)⊃A),y :A,z :G(A),�⇒�,z :A Trans

xRy,x :�(G(A)⊃A),y :A,�⇒�,y :�A
R�Z

xRy,x :�(G(A)⊃A),�⇒�,y :A⊃�A
R⊃

x :�(G(A)⊃A),�⇒�,x :G(A)
R�

.

with R� justified by Corollary 3.4 and the top-sequent derivable by L⊃ and Lemma 3.1. �
Proposition 3.9
The ‘Grzegorczyk sequents’, i.e. those of the form

⇒x :�(G(A)⊃A)⊃A,

are derivable in G3Grz.

Proof. We have the derivation

xRx,x :�(G(A)⊃A)⇒x :G(A) xRx,x :�(G(A)⊃A),x :A⇒x :A
xRx,x :�(G(A)⊃A),x :G(A)⊃A⇒x :A L⊃

xRx,x :�(G(A)⊃A)⇒x :A L�

x :�(G(A)⊃A)⇒x :A Ref

⇒x :�(G(A)⊃A)⊃A
R⊃

.

with top-sequents derivable by Lemmas 3.8 and 3.1, respectively. �
More simply, we may derive sequents with a variant form of the Grz formula, which (in the

absence of reflexivity) plays a role in the weak Grzegorczyk logic wGrz studied by, e.g., Litak [22]:

Proposition 3.10
All sequents of the form

⇒x :�(G(A)⊃A)⊃�A

are derivable in G3Grz.

Proof. We have the derivation

xRy,x :�(G(A)⊃A),y :G(A)⊃A,y :G(A)⇒y :A
xRy,x :�(G(A)⊃A),y :G(A)⇒y :A L�

x :�(G(A)⊃A)⇒x :�A
R�Z

⇒x :�(G(A)⊃A)⊃�A
R⊃

with top-sequent derivable by L⊃ and Lemma 3.1. �
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Without loss of generality we now assume that derivations are pure, i.e., that each eigenlabel
used at a step of R�Z appears only in the subtree above that step. Clearly, by hp-admissibility of
substitution, such a condition can always be satisfied.

Lemma 3.11
The following rule is hp-admissible for all labels y:

�⇒�,x :�A
xRy,y :G(A),�⇒�,y :A .

Proof. By induction on the height n of the derivation of �⇒�,x :�A.
First, suppose n=0. Since x :�A is not principal in initial sequents, then also �⇒� and hence

xRy,y :G(A),�⇒�,y :A are initial sequents.
Second, suppose n>0. If x :�A is not principal in the last step, then the conclusion follows by

the induction hypothesis, application of the last rule and possibly an hp-admissible substitution.
Otherwise, with x :�A principal, the final step has as premiss, for some fresh y′, the sequent
xRy′,y′ :G(A),�⇒�,y′ :A. By substituting y for y′ we obtain the desired conclusion, using
Lemma 3.2.

�
Theorem 3.12
All the rules of the system G3Grz are hp-invertible.

Proof. For hp-invertibility of the rules for ∧, ∨, ⊃ and L� see the argument for Proposition 4.11
of [26]. The hp-invertibility of R�Z is the content of Lemma 3.11. �

We then have:

Theorem 3.13
The Contraction rules

x :A,x :A,�⇒�

x :A,�⇒�
LC

�⇒�,x :A,x :A
�⇒�,x :A RC

xRy,xRy,�⇒�

xRy,�⇒�
LCR

are hp-admissible in G3Grz.

Proof. The hp-admissibility of contraction LCR on relational atoms xRy is routine.
The other two rules are dealt with by simultaneous induction on the height of the derivation, by

case analysis on the last rule applied. For example, when the contracted labelled formula x :�B is
principal for an application of R�Z we have

xRy,y :G(B),�⇒�,x :�B,y :B
�⇒�,x :�B,x :�B R�Z

.

By Lemma 3.11, we have a derivation of

xRy,xRy,y :G(B),y :G(B),�⇒�,y :B,y :B

with lower height than the original derivation. By the induction hypothesis we can contract the two
occurrences of y :G(B) and, as already shown, relational atoms xRy can be contracted. An application
of R�Z gives the contracted conclusion �⇒�,x :�B. �
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The following two easy consequences will be useful later:

Lemma 3.14
The following rule is admissible:

xRy,x :�A,y :�A,�⇒�

xRy,x :�A,�⇒� .

Proof. By induction on the derivation of the premiss. If the last step has y :�A principal, using some
atom yRz in �, the premiss is

xRy,x :�A,y :�A,z :A,�⇒�

to which we apply the induction hypothesis to obtain

xRy,x :�A,z :A,�⇒�,

which we weaken with xRz, apply L� on x :�A using xRz to obtain

xRy,xRz,x :�A,�⇒�

from which we remove xRz by Trans. Otherwise we just use the induction hypothesis. �
Lemma 3.15
The following rule is admissible:

xRy,x :G(A),�⇒�,y :A,y :�A
xRy,x :G(A),�⇒�,y :A .

Proof. By Theorem 3.12, from the premiss we can obtain

xRy,yRy,x :G(A),y :G(A),�⇒�,y :A,y :A.

We remove yRy by Ref, use Contraction on y :A and obtain

xRy,x :G(A),y :G(A),�⇒�,y :A

from which we remove y :G(A) by appeal to Lemma 3.14 (since G(A) is of the form �B). �

4 Other formulations

We discuss here other possible formulations of Grz as a labelled sequent calculus. Each of the various
possibilities is suitable for a different purpose.

First, there is the possibility of using, along with R�Z , the rule L�Z presented earlier; this gives
a harmonious system, i.e. one with, for each connective, a left and a right rule justified by the same
semantic explanation, of which the importance has often been stressed in the literature on Gentzen
systems. One of the reasons for this choice is that, when different explanations are used for the left
and the right rules, syntactic cut elimination can be lost, or at least the standard reductions fail. This
was the second author’s approach in [26] for GL, which included a syntactic cut-elimination proof.
However, one then has to include as initial sequents those where the principal formulae are of the
form �A (which ensures the derivability of the first premiss of the L�Z rule), and the hp-invertibility
of rules is lost.
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10 Cut-free sequent system for Grzegorczyk logic

A second variation is to use not a reflexive relation R but an non-reflexive one (which we write as
<), with two premisses for the right rule for � and a corresponding split of the L� (or L�Z) rule
into two rules. Thus, with the rule Trans as before but the rule Ref discarded, the changed logical
rules would be:

x<y,�,y :G(A)⇒�,y :A �,x :G(A)⇒�,x :A
�⇒�,x :�A

R�′ (with y fresh)

x<y,x :�A,y :A,�⇒�

x<y,x :�A,�⇒�
L�1

x :�A,x :A,�⇒�

x :�A,�⇒�
L�2.

This approach appears to be promising for a proof of the faithfulness of the embedding of Grz
into GL, but with a more complicated meta-theory.

5 Soundness and completeness

Instead of proving admissibility of Cut syntactically, we proceed by showing that the calculus G3Grz
is sound and complete; we shall prove that derivable sequents are valid in reflexive and transitive
Noetherian frames and that for any sequent in the language of Grz either a proof in the calculus or a
countermodel on a reflexive and transitive Noetherian frame can be found.

We start with the definitions of interpretation in a frame, of truth and of validity (from [31]) adapted
to the case of Grz:

Definition 5.1
Let K be a frame with a reflexive, transitive and Noetherian accessibility relation R. Let W be the set
of labels used in derivations in G3Grz. An interpretation of the labels in the frame K is a function
[[·]] :W →K . A valuation of atomic formulas in the frame K is a function V :AtFrm→P(K) that
assigns to each atom P a set of nodes of K , i.e. ‘the set of nodes at which P holds’; the standard
notation for k ∈V(P) is k �P, read as ‘P holds at k’.

Valuations are extended to arbitrary formulas by the following inductive clauses:

k �⊥ for no k,
k �A∧B if k �A and k �B,
k �A∨B if k �A or k �B,
k �A⊃B if from k �A follows k �B,
k ��A if, for all k′, from kRk′ follows k′ �A.

Definition 5.2
A sequent �⇒� is true for an interpretation [[·]] and a valuation V in the frame (K,R) if, whenever
for all labelled formulas x :A and relational atoms yRz in � it is the case that [[x]]�A and [[y]]R[[z]],
then, for some w :B in �, [[w]]�B. A sequent is valid in a frame if it is true for every interpretation
and every valuation in the frame.

Theorem 5.3
If the sequent �⇒� is derivable in G3Grz, then it is valid in every reflexive, transitive and
Noetherian frame.

Proof. Let (K,R) be such a frame. We argue by induction on the derivation of �⇒� in G3Grz.
All the cases are similar to those for extensions of the basic modal system G3K considered in [31]
except for the rule R�Z specific to the system.
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If �⇒� is the conclusion of R�Z from the premiss xRy,y :G(A),�⇒�′,y :A, where y is fresh,
assume as induction hypothesis that the premiss is true for every interpretation and some valuation
V in K . Consider an arbitrary interpretation [[·]]; suppose that [[·]] and V make true all members of �

but no members of �′. Let k be an arbitrary member of K and [[·]]′ the interpretation that is like [[·]]
but with [[y]]=k. By the induction hypothesis, specialized to [[·]]′, and the freshness of y, one sees
that [[x]]Rk and k �G(A) imply k �A; since that holds for all k ∈K , by Lemma 2.3 one concludes that
x :�A is true for [[·]] and V . The validity of the premiss therefore implies that of the conclusion. �
Theorem 5.4
Let �⇒� be a sequent in the language of G3Grz. Then it is decidable whether the sequent is
derivable in G3Grz. In the negative case, the failed proof search gives a countermodel to the sequent
on a reflexive, transitive and Noetherian frame.

Proof. We use an adaptation to labelled sequents of the method of reduction trees detailed for
Gentzen’s LK by Takeuti (cf. [38] ch. 1, pf. 8) and in turn due to Schütte [35]. For an arbitrary sequent
�⇒� in the language of G3Grz we apply, whenever possible, root-first the rules of G3Grz, in a
given order. The procedure will construct either a derivation in G3Grz or a countermodel. The proof
is similar to the proof of Theorem 11.28 in [31] and therefore some common details will be omitted.
We stress however one difference: rather than constructing a countermodel on an infinite branch, we
shall construct it on an appropriately pruned branch.

1. Construction of the reduction tree: The reduction tree is defined inductively in stages as follows:
Stage 0 has �⇒� at the root of the tree. For each branch, stage n>0 has two cases:

Case I: If the top-sequent is either an initial sequent or has some x :A, not necessarily atomic, on both
left and right, or is a conclusion of L⊥, the construction of the branch ends.

Case II: Otherwise we continue the construction of the branch by writing, above its top-sequent,
other sequents that are obtained by applying root-first the rules of G3Grz whenever possible, in a
given order and under suitable conditions.

There are 10 different stages: 8 for the rules of the basic modal systems, 2 for Ref and Trans. At
stage n=10+1 we repeat stage 1, at stage n=10+2 we repeat stage 2, and so on for every n until
an initial sequent, or a conclusion of L⊥, or a saturated branch (defined below) is found.

The stages for the propositional rules and for L� are similar to those in the cited Theorem 11.28
of [31]. Note that the propositional rules discard the principal formula but L� retains it; all such
formulae however are available somewhere on the branch for when we need to discuss the counter-
model construction.

For the stage relative to R�Z , we consider all labelled formulas of the form x :�B in the succedent.
If the succedent of the top-sequent contains both x :�B and x :B, and the antecedent contains, for
some x0, both x0Rx and x0 :G(B), we do not further analyse x :�B; this is justified by Lemma 3.15.
More generally, if x :B is in the succedent of any sequent on the branch, we do the same. For each of
the remaining labelled boxed formulas xi :�Bi, i=1,...,m, we apply several times (indicated by the
superfix ∗) the rule R�Z , that is, we construct the step

x1Ry1,...,xmRym,y1 :G(B1),...,ym :G(Bm),�⇒�,y1 :B1,...,ym :Bm

�⇒�,x1 :�B1,...,xm :�Bm
R�Z∗

,

where y1,...,ym are fresh variables.

 by guest on July 19, 2013
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[12:14 17/7/2013 ext036.tex] LogCom: Journal of Logic and Computation Page: 12 1–19

12 Cut-free sequent system for Grzegorczyk logic

Finally, for n=9,10, we consider the cases of the frame rules Ref and Trans. By an easy adaptation
of the argument detailed in Section 8 of [11], it is enough to instantiate Ref only on terms in the
top-sequent.

Observe also that, because of height-preserving admissibility of contraction, once a rule has been
considered, it need not be instantiated again on the same principal formulas (for L� such principal
formulas are pairs of the form xRy,x :�B) and it need not be applied whenever its application produces
a duplication of labelled formulas or relational atoms.

To show that the procedure terminates, it is enough to show that every branch in the reduction tree
for a sequent �⇒� is finite. Every branch contains one or more chains of labels x1Ry1,...,xmRym ...;
each label that was not already in the endsequent is introduced by a step of R�Z . By inspection of
the rules of G3Grz, it is clear that all the formulas that occur in the branch are subformulas of �,�

or formulas of the form �(A⊃�A) or of the form A⊃�A for some subformula �A of �,�. To ensure
that all proper chains of labels in the reduction tree are finite, it is therefore enough to prove the
following statement

Rule R�Z cannot be applied twice to the same formula along a chain of labels.

This done, we can conclude that all the chains of labels in the tree are finite. To conclude that the
branch is finite, it is enough to observe that it contains only a finite number of such chains (the number
of chains is bounded by a function of the number of disjunctions or commas in the positive part of the
endsequent; observe that this argument would break down in the labelled calculus for intuitionistic
logic because here we rely on the fact that propositional rules have premisses in which the active
formulas are strictly simpler than the principal formula).

To prove the above statement, suppose, e.g., that we have a derivation that contains the following
steps (in which recall that G(A)≡�(A⊃�A)):

xRy,yRz,xRz,y :G(A),�′′ ⇒�′′,z :�A....
xRy,y :G(A),�′ ⇒�′,y :A

�′ ⇒�′,x :�A
R�Z

and is closed under all the available rules (excluding R�Z) of the reduction procedure. Then, by the
closure properties for L� (operating on yRz and y :�(A⊃�A)) and L⊃, we have that either z :�A
is in �′′ (in which case the top-sequent is initial) or z :A is in �′′ (or in the succedent somewhere
below), in which case (since also yRz and y :G(A) are in the antecedent) extension by R�Z is blocked.
Therefore the application of R�Z to z :�A is blocked by definition of the reduction tree. The general
case, where the chain is longer than just xRy,yRz, is similar.

A branch which either ends in an initial sequent or in a sequent with the same labelled formula,
even compound, in both the antecedent and succedent, or at the conclusion of L⊥, or has a top-
sequent amenable to any of the reduction steps, is called unsaturated. Every other branch is said to
be saturated.

2. Construction of the countermodel: If the reduction tree for �⇒� is not a derivation, it has at least
one saturated branch. Let �∗ ⇒�∗ be the union (respectively, of the antecedents and succedents)
of all the sequents �i ⇒�i of the branch up to its top-sequent. We define a Kripke model that
forces all the formulas in �∗ and no formula in �∗ and is therefore a countermodel to the sequent
�⇒�.

Consider the frame K , the nodes of which are the labels that appear in the relational atoms in �∗
and the order on which is given by these relational atoms. Clearly, the construction of the reduction
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tree imposes the frame properties on the countermodel: Ref and Trans hold because the branch is
saturated. Morever, any label that appears in the sequent will appear in a relational atom (and thus
in the frame K), because the rule Ref has been applied. Noetherianity clearly holds because all the
strictly ascending chains in the countermodel are finite by construction.

The model is defined as follows. First, the interpretation [[x]] of each label x is just x itself. As
for the valuation, for each labelled atomic formula x :P in �∗ we stipulate that x�P. Since the
top-sequent is not initial, for all labelled atomic formulas y :Q in �∗ we infer that y�Q.

We then show by induction on size(A) that x�A if x :A is in �∗ and that x �A if x :A is in �∗.
Therefore we have a countermodel to the endsequent �⇒�.

If A is ⊥, it cannot be in �∗, by definition of saturated branch: so x �A.
If A is atomic, the claim holds by the definition of the model.
If x :A≡x :B∧C is in �∗, then by the saturation of the branch we also have x :B and x :C in �∗.

By the induction hypothesis, x�B and x�C, and therefore x�B∧C.
If x :A≡x :B∧C is in �∗, then by the saturation of the branch either x :B or x :C is in �∗, and

therefore by the induction hypothesis, x �B or x �C, and therefore x �B∧C.
If x :A≡x :B∨C is in �∗, we argue as with x :A≡x :B∧C in �∗.
If x :A≡x :B∨C is in �∗, we argue as with x :A≡x :B∨C in �∗.
If x :A≡x :B⊃C is in �∗, then, by saturation, either x :B is in �∗ or x :C is in �∗. By the induction

hypothesis, in the former case x �B, and in the latter x�C, so in both cases x�B⊃C.
If x :A≡x :B⊃C is in �∗, then x :B is in �∗ and x :C is in �∗. By the induction hypothesis x�B

and x �C, so x �B⊃C.
If x :A≡x :�B is in �∗, for any occurrence of xRy in �∗ we find, by the construction of the

reduction tree, an occurrence of y :B in �∗. By the induction hypothesis, y�B, and therefore
x��B.

If x :A≡x :�B is in �∗, we consider the step where it is analysed. If x :B is in the succedent of
that step (or any succedent below it), then by the induction hypothesis x �B. Since xRx is also in �∗
by construction of the reduction tree, it follows that x �A. Otherwise there is xRy in �∗ and y :B in
�∗. By the induction hypothesis y�B, and therefore x �A. �
Corollary 5.5
If a sequent �⇒� is valid in every reflexive, transitive and Noetherian frame, then it is derivable
in G3Grz.

Corollary 5.6
A formula A is provable in Grz iff, for some (or any) label x, the sequent ⇒x :A is derivable in
G3Grz.

Proof. By ‘provable in Grz’ we mean ‘provable in an axiomatic Hilbert-style system for K with the
Grz formulae as axioms’, and we take it as well-known [5] that this is equivalent to validity in all
reflexive, transitive and Noetherian frames. So Theorems 5.3 and 5.4 extend this well-known result
to relate Grz-provability to G3Grz-derivability. �

We observe that completeness implies in particular closure of our sequent calculus with respect
to Cut, so we have an indirect proof of admissibility of the Cut rule. The proof of Theorem 5.4
is also of interest because it establishes the finite model property for Grz and gives a constructive
decision procedure for it, i.e. an algorithm that, given a sequent, constructs either a derivation or a
countermodel.
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6 Embedding of intuitionistic logic into Grzegorczyk logic

To make this article more self-contained, we take from [11] the main points of the labelled sequent
calculus G3I for Int. We use � rather than the relation symbol R, both in G3I and in G3Grz. The
rules Ref and Trans given above for G3Grz are used (with this change) in G3I as well.

Initial sequents are those of the form x � y, x :P, �⇒�, y:P; recall that P is a metavariable ranging
over atomic formulae. The rules for ∧ and ∨ are exactly the same for G3I as for G3Grz—but we
give them here again for completeness. The logical rules are as follows (Table 1):

Table 1. Logical rules of the system G3I

x :⊥,�⇒�
L⊥

x :A,x :B,�⇒�

x :A∧B,�⇒�
L∧ �⇒�,x :A �⇒�,x :B

�⇒�,x :A∧B
R∧

x :A,�⇒� x :B,�⇒�

x :A∨B,�⇒�
L∨ �⇒�,x :A,x :B

�⇒�,x :A∨B
R∨

x � y,x :A⊃B,�⇒�,y :A x � y,x :A⊃B,y :B,�⇒�

x � y,x :A⊃B,�⇒�
L⊃

x � y,y :A,�⇒�,y :B
�⇒�,x :A⊃B

R⊃ (with y fresh)

The main results [11] about G3I are that a formula A is provable in Int (e.g. in Heyting’s calculus)
iff for some (or any) x the sequent ⇒x :A is derivable in G3I; that Weakening, Contraction and Cut
are admissible in G3I, and that all the logical rules are invertible.

The translation ·� from formulae of Int to Grz (as to S4) has P� =�P, ⊥� =⊥, (A∧B)� =
A�∧B�, (A∨B)� =A�∨B� and (A⊃B)� =�(A�⊃B�). Routinely, it determines a translation from
sequents of G3I to G3Grz, as also [11] to G3S4: formulae are translated, labels are unchanged, and
relational atoms x � y are unchanged. So, if � is a multiset of labelled formulae, then �� is the
result of applying the translation to all formulae in �.

The translation is sound, i.e. if a sequent is derivable in G3I then its translation is derivable in
G3Grz. This follows routinely from soundness of the translation of G3I into G3S4 ([11]) because,
by Corollary 3.4, the R� rule of G3S4 is admissible in G3Grz and therefore G3S4 is a subsystem
of G3Grz .

The main content of this section is that a faithfulness result can be proved for G3Grz just as for
G3S4. The proof is complicated by the fact that in the calculus G3Grz the R� rule of G3S4 is
replaced by R�Z , with extra antecedent formulae G(A). The analogue for G3Grz of Lemma 4 of
[11] is the following:

Lemma 6.1
Suppose

1. �, � are multisets of labelled formulas from Int, possibly with relational atoms also in �;
2. �′, �′ are multisets of labelled atomic formulas;
3. � is a multiset of labelled formulae of the form G(P) or G(A�⊃B�);

and that

G3Grz � ��,�′,�⇒��,�′.
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Then it follows that, if �∗ is obtained from � by discarding every labelled G(P) and (while
retaining the label) replacing each G(A�⊃B�) by A, then

G3I � �,�′,�∗ ⇒�,�′.

Proof. By induction on the derivation of ��,�′,�⇒��,�′.
If it is an initial sequent, then some labelled formula x :P is both in �′ and in �′; the conclusion

then follows by Ref from the G3I initial sequent

x � x,�,�′,�∗ ⇒�,�′.

If it is a conclusion of L⊥, so also is �,�′,�∗ ⇒�,�′. If it is derived by a G3Grz rule for ∧ or
for ∨, the induction hypothesis applies to the premisses and then the corresponding rule in G3I gives
the conclusion.

If it is derived by a modal rule, and the principal formula occurrence is in �� or in ��, then the
principal formula, being a translated formula, can only be of the form �P or of the form �(A�⊃B�).
There are thus four cases:

1. If �P is principal on the left we have (with �=x � y,x :P,�′′)

x � y,y:P,x :�P,�′′�,�′,�⇒��,�′
x � y,x :�P,�′′�,�′,�⇒��,�′ L�

,

which is (by the induction hypothesis) translated to the admissible G3I step

x � y,y:P,x :P,�′′,�′,�∗ ⇒�,�′
x � y,x :P,�′′,�′,�∗ ⇒�,�′ .

2. If �P is principal on the right, we have the step (with y fresh and �=�′′,x :P)

x � y,��,�′,�,y:G(P)⇒�′′�,�′,y:P
��,�′,�⇒�′′�,�′,x :�P

R�Z

from the premiss of which, by the induction hypothesis, we obtain a G3I derivation of

x � y,�,�′,�∗ ⇒�′′,�′,y:P;
since y is fresh, we can substitute x for y and then use Ref to remove x � x and obtain

�,�′,�∗ ⇒�′′,�′,x :P.

3. If �(A�⊃B�) is principal on the left, we have (with �=x � y,x :A⊃B,�′′) the step

x � y,x :�(A�⊃B�),y:A�⊃B�,�′′�,�′,�⇒��,�′
x � y,x :�(A�⊃B�),�′′�,�′,�⇒��,�′ L�

from which, by hp-invertibility of L⊃ in G3Grz, we get derivations in G3Grz of the sequents

x � y,x :�(A�⊃B�),�′′�,�′,�⇒��,�′,y:A�
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and
x � y,x :�(A�⊃B�),y:B�,�′′�,�′,�⇒��,�′.

to which the induction hypothesis applies. This gives derivations in G3I of the sequents

x � y,x :A⊃B,�′′,�′,�∗ ⇒�,�′,y:A
and

x � y,x :A⊃B,y:B,�′′,�′,�∗ ⇒�,�′

from which the conclusion follows by a step of L⊃ in G3I.
4. If the formula �(A�⊃B�) is principal on the right, then the step is (with y fresh, and with

�=�′′,x :A⊃B):

x � y,��,�′,�,y:G(A�⊃B�)⇒�′′�,�′,y:A�⊃B�

��,�′,�⇒�′′�,�′,x :�(A�⊃B�)
R�Z

from the premiss of which, by hp-invertibility of R⊃ in G3Grz, we have a derivation of

x � y,��,�′,�,y:A�,y:G(A�⊃B�)⇒�′′�,�′,y:B�

to which the induction hypothesis applies. This gives us a derivation in G3I of

x � y,�,�′,�∗,y:A,y:A⇒�′′,�′,y:B
and thus also (using a contraction) of

x � y,�,�′,�∗,y:A⇒�′′,�′,y:B;
an R⊃ step (using freshness of y) in G3I gives us the desired conclusion.

Finally, where the principal formula is in �, we have a case not encountered in the G3S4 proof. Such
a formula is either of the form G(P) or of the form G(A�⊃B�), so there are two cases:

1. The labelled formula x :G(P) in � is principal, and the last step is thus

x � y,�′′�,�′,�, y:P⊃�P⇒��,�′
x � y,�′′�,�′,�⇒��,�′ L�

from the premiss of which, by hp-invertibility of L⊃ in G3Grz, we obtain derivations of

x � y,�′′�,�′,�⇒��,�′,y:P
and

x � y,�′′�,�′,�,y:�P⇒��,�′

to which the induction hypothesis applies. This gives us G3I derivations of

x � y,�′′,�′,�∗ ⇒�,�′,y:P
and

x � y,�′′,�′,�∗,y:P⇒�,�′

from which the desired conclusion x � y,�′′,�′,�∗ ⇒�,�′ is obtained by Cut.
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2. The labelled formula x :G(A�⊃B�) in � is principal, and the last step is thus

x � y,�′′�,�′,�, y:(A�⊃B�)⊃(�(A�⊃B�))⇒��,�′
x � y,�′′�,�′,�⇒��,�′ L�

.

From this, two steps are required. First, using the hp-invertibility of L⊃ in G3Grz, we obtain
a derivation of

x � y,�′′�,�′,�, y:�(A�⊃B�)⇒��,�′

to which the induction hypothesis applies: we thus obtain a G3I-derivation of

x � y,�′′,�′,�∗, y:A⊃B⇒�,�′ .

Second, using the hp-invertibility of L⊃ again and then that of R⊃, we obtain a derivation of

x � y,�′′�,�′,�,y:A� ⇒��,�′,y:B�

to which the induction hypothesis applies. We thus obtain a G3I-derivation of

x � y,�′′,�′,�∗,y:A⇒�,�′,y:B .

Since x :G(A�⊃B�) is in �, x :A is in �∗, so monotonicity in G3I gives us a G3I-derivation of

x � y,�′′,�′,�∗ ⇒y:A
and we also have easily a G3I-derivation of

y:B⇒y:A⊃B .

Using the four sequents displayed in boxes, cuts on y:A, y:B and y:A⊃B and some contractions
now give us, as required, a G3I-derivation of

x � y,�′′,�′,�∗ ⇒�,�′.

�
Theorem 6.2
If a sequent �⇒� of G3I has its translation �� ⇒�� derivable in G3Grz, then the sequent is
derivable in G3I.

Proof. By application of Lemma 6.1, with �′, �′ and � empty. �
We have thus proved faithfulness of the translation ·� (now to be called an ‘embedding’) of G3I into
G3Grz, and thus of Int into Grz.

Corollary 6.3
The embedding of G3I into G3Grz gives a constructive decision procedure for G3I and thus for Int.

Proof. Take a sequent �⇒� to be proved or refuted in G3I, translate it to �� ⇒��, and construct
its reduction tree for the rules of G3Grz, that is, apply the constructive decision procedure established
by Theorem 5.4 for G3Grz. If a derivation is obtained, then by Lemma 6.1 this can be translated
back to a proof in G3I, else the sequent is not provable and a finite countermodel is found. It is
routine to show that a countermodel to a translated sequent of Int is a counter-model to the original
sequent. �
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7 Conclusion

After a talk in Padova by the second author, Giovanni Sambin asked whether a labelled sequent
calculus can be used to obtain a syntactic proof of the faithfulness of the embedding of intuitionistic
logic Int into the Gödel-Löb provability logic GL. The motivation for looking into the embedding
was to exploit the good meta-theoretic properties of GL for obtaining a constructive decision
procedure for Int. Here we have answered a related question by giving a simple syntactic proof
of the faithfulness of the embedding of Int into the provability logic Grz. Our answer leads to the
same desired consequence. A similar syntactic proof of the faithfulness of the embedding into GL
seems harder to establish because the characterizing frames for GL are, unlike those for Int and
Grz, irreflexive. One may however observe that the decision procedure for GL in [34] (using an
unlabelled calculus) is terminating without any loop-checking, and this gives a decision procedure
for Int with a similar property, albeit less efficient than that of Vorob’ev (for details and variations
of which see [10]).
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