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Abstract

The evolution of completeness proofs for modal logic with respect to the possible world
semantics is studied starting from an analysis of Kripke’s original proofs from 1959 and
1963. The critical reviews by Bayart and Kaplan and the emergence of Henkin-style
completeness proofs are detailed. It is shown how the use of a labelled sequent system
permits a direct and uniform completeness proof for a wide variety of modal logics that is
close to Kripke’s original arguments but without the drawbacks of Kripke’s or Henkin-style
completeness proofs.

Introduction

The question about the ultimate attribution for what is commonly called Kripke semantics
has been exhaustively discussed in the literature, recently in two surveys (Copeland 2002 and
Goldblatt 2005) where the rôle of the precursors of Kripke semantics is documented in detail.

All the anticipations of Kripke’s semantics have been given ample credit, to the extent
that very often the neutral terminology of “relational semantics” is preferred. The following
quote nicely summarizes one representative standpoint in the debate:

As mathematics progresses, notions that were obscure and perplexing become
clear and straightforward, sometimes even achieving the status of “obvious.” Then
hindsight can make us all wise after the event. But we are separated from the
past by our knowledge of the present, which may draw us into “seeing” more than
was really there at the time. (Goldblatt 2005, section 4.2)

We are not going to treat this issue here, nor discuss the parallel development of the related
algebraic semantics for modal logic (Jonsson and Tarski 1951), but instead concentrate on one
particular and crucial aspect in the history of possible worlds semantics, namely the evolution
of completeness proofs for modal logic with respect to Kripke semantics.

Kripke published in 1959 a proof of completeness for first-order S5 and in 19631 an
extension of the method to cover the propositional modal systems T, S4, S5, and B. His
method employed a generalization of Beth tableaux and completeness was established in a
direct and explicit way by showing how a failed search for a countermodel gives a proof.

1The results of Kripke’s 1963 paper had already been announced in an abstract published in 1959.
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Kripke’s proof was criticized in a review by Kaplan as lacking in rigor and as making
excessive use of “intuitive” arguments on the geometry of tableau proofs. Kaplan suggested
a different, more “mathematical” and more elegant approach based on an adaptation of
Henkin’s completeness proof for classical logic. Indeed, a Henkin-style completeness proof for
S5 had already been published in 1959 by Bayart and other proofs were published at the time
of the review or shortly after (Makinson 1966, Cresswell 1967).

Henkin-style completeness proofs were since then preferred in the literature on modal logic,
even for labelled systems. The explicit character of Kripke’s original proof, that constructs
countermodels for unprovable formulas, is lost with the Henkin approach.

The purported mathematical elegance of a proof of completeness in the Henkin style
resembles a well-designed trick. The proof gives no way to obtain derivability from validity,
nor does it show how to construct a countermodel for underivable propositions. For modal
logic other specific problems arise. For instance, in systems with an irreflexive accessibility
relation, as those needed in temporal logic, the canonical accessibility relation need not be
irreflexive; Some extra devices, such as the one called bulldozing have to be used to obtain
an irreflexive frame from the canonical one (cf. Bull and Segerberg 1984, 2001).

The criticism of insufficient formalization in Kripke’s original argument can be overcome
by the use of a system that embodies Kripke semantics in an explicit way, through the use of
a labelled syntax. In Kripke, the ramified structure of systems of sets of alternative tableaux
contains the semantics in the form of geometric conditions on tree-structures in proofs. We
show how this structure can be replaced by a simple labelled sequent system. Completeness
is established with a Schütte-style construction of an exhaustive proof search in the labelled
system: either a proof or a countermodel is found. The countermodel is extracted directly from
the labels used in a non-conclusive branch in the search tree. The problems mentioned above
with the treatment of negative properties of the accessibility relation, such as irreflexivity,
simply do not arise.

The contents of the paper are as follows: Section 1 presents a background on modal logic
and its Kripke semantics; It can be skipped by readers already familiar with modal logic. In
Section 2 we present a re-reading of Kripke’s original completeness proofs, as published in
the papers from 1959 and 1963, respectively, and the reviews to these papers by Bayart and
Kaplan. In Section 3 we give a sketch of a Henkin-style completeness proof for modal logic. In
Section 4 we present our method for obtaining labelled sequent calculi with good structural
properties for all modal logics characterized by a relational semantics. The completeness
proof is presented is Section 5.

1. Background on modal logic and its Kripke semantics

Traditional Kripke completeness is concerned with systems of normal modal logics, that is,
systems obtained as extensions of basic modal logic. In this Section we shall recall the basic
definitions and the standard notions of what is nowadays regarded as “Kripke semantics.”
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1.1. The language and axioms of modal logic

In modal logic, we start from the language of propositional logic and add to it the two modal
operators 2 and 3, to form from any given formula A the formulas 2A and 3A. These are
read as “necessarily A” and “possibly A,” respectively.

A system of modal logic can be an extension of intuitionistic or classical propositional
logic. In the latter, the notions of necessity and possibility are usually connected by the
equivalence 2A ⊃⊂ ∼3 ∼A.

It is seen that necessity and possibility behave analogously to the quantifiers: In one
interpretation, the necessity of A means that A holds in all circumstances, and the possibility
of A means that A holds in some circumstances. The definability of possibility in terms of
necessity is analogous to the definability of existence in terms of universality.

The system of basic modal logic, denoted by K in the literature, adds to the axioms of
classical propositional logic the following:

Table 1. The system of basic modal logic

1. Axiom: 2(A ⊃ B) ⊃ (2A ⊃ 2B),

2. Rule of necessitation: From A to infer 2A.

One axiom and one rule is added to the axioms and rules of propositional logic. The rule of
necessitation requires that the premiss be derivable in the axiomatic system, i.e., its contents
are that if A is a theorem, also 2A is a theorem. If instead of axiomatic logic we start from
a system of natural deduction, the following rules are added:

Table 2. Natural deduction for basic modal logic

2(A ⊃ B) 2A

2B
A

2A

The second rule, called “necessitation” or “box introduction,” requires a restriction: If from
any formula A one could conclude 2A, by first assuming A and then applying necessitation and
implication introduction, one could conclude A ⊃ 2A. Anything implies its own necessity,
which clearly is wrong. In the axiomatic formulation, the premiss of necessitation was a
theorem. In a natural deduction system, one requires that A be derivable with no open
assumptions. If one thinks of the analogy between necessity and universal quantification, it
appears that the restriction is analogous to the variable condition in the rule for introducing
the universal quantifier. Inappropriate formulations of the rule of necessitation have caused
considerable confusion in the literature and led many authors to the conclusion that the
deduction theorem fails in modal logic (see Hakli and Negri 2008 for a thorough discussion of
this issue).

The analogy between necessity and possibility and the quantifiers suggests other operators
similar to those of modal logic. For example, whatever must be done is obligatory, whatever
can be done is permitted. These two notions belong to deontic logic. Even more simply, we
can read 2A as “always A” and 3A as “some time A,” respectively, which gives rise to tense
logic.
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The early study of modal logic, to the late 1950s, consisted mainly of suggested axiomatic
systems based on an intuitive understanding of the basic notions. Certain axiomatizations
became standard and are collected here in the form of a table. All of them start with the
axioms of classical propositional logic and the axioms of basic modal logic of table 1.

Table 3. Extensions of basic modal logic

Axiom
T 2A ⊃ A

4 2A ⊃ 22A

E 3A ⊃ 23A

B A ⊃ 23A

3 2(2A ⊃ B) ∨2(2B ⊃ A)
D 2A ⊃ 3A

2 32A ⊃ 23A

W 2(2A ⊃ A) ⊃ 2A

Well-known extensions of basic modal logic are obtained through the addition of one or more
of the above axioms to system K, for instance K4 is obtained by adding 4, S4 by adding T
and 4, S5 by adding T, 4, and E (or T, 4, and B), deontic S4 and S5 are obtained with the
addition of axiom D to S4 and S5, respectively. The addition of W gives what is known as
the Gödel-Löb system. Axiom 2, also known as axiom M, gives the extension of K4 and S4
known as K4.1 and S4.1, respectively. Axiom 3 is used for instance in the extension S4.3
of system S4.

The study of modal logic was completely changed in the late 1950s through the invention
of a relational semantics of modal logic to which we now turn.

1.2. Kripke semantics

What is known as Kripke semantics, also known under the neutral term relational seman-
tics, was presented by Saul Kripke in 1959 for the modal logic S5. It was modified later to
accommodate also other modal logics and intuitionistic logic (Kripke 1963, 1965). The idea
had several significant anticipations in the work of Arnould Bayart, Rudolf Carnap, Jaakko
Hintikka, Stig Kanger, Richard Montague, Arthur Prior, and others. Questions about the
originality and ultimate attribution for the invention of Kripke semantics have raised a con-
siderable debate. We shall not take any position on these issues here, but refer to Goldblatt
(2005) for an in-depth discussion.

The basic idea of the semantics is that a proposition is necessary if and only if it is true
in all “possible worlds.” The idea is made precise as follows:

A Kripke frame is a set W, the elements of which are called possible worlds, together
with an accessibility relation R, that is, a binary relation between elements of W. A Kripke
frame becomes a Kripke model when a valuation is given. A valuation val takes a world
w and an atomic formula P and gives as value 0 or 1, to determine which atomic formulas
are true at what particular worlds. The notation is
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w 
 P whenever val(w,P ) = 1.

It is read as: formula P is true at world w, alternatively as w forces P . If val(w,P ) = 0,
we write w 1 P. A valuation is just like a line in a truth table, except that it is indexed by
a world. If there is just one world, we have essentially the truth-table semantics of classical
propositional logic. Valuations are supposed to be actually given, not just to exist in some
abstract sense, so we have w 
 P or w 1 P for each atom P.

Valuations are extended in a unique way to arbitrary formulas by means of inductive
clauses. For the propositional connectives, the inductive extension is straightforward:

Table 4. Valuations for the connectives

w 
 A&B whenever w 
 A and w 
 B,
w 
 A ∨B whenever w 
 A or w 
 B
w 
 A ⊃ B whenever from w 
 A follows w 
 B
w 
 ⊥ for no w.

It was assumed above that it is decidable if an atomic formula is forced at a given world. The
same property holds then for arbitrary formulas, by the inductive clauses of table 4. Further,
if w 1 A, then w 
∼ A. To prove this, assume w 
 A. We have a contradiction (in fact,
0=1), so that w 
 ⊥. Therefore, by the inductive clause for implication, w 
∼A.

Definition 1.1. Given a Kripke frame W, formula A is valid in W if, for every valuation,
w 
 A for every world w in W.

The central idea in Kripke’s semantics for modal logic is that a formula of the form 2A is
true at w if A is true at all worlds accessible from w through the relation R:

w 
 2A if and only if for all o, o 
 A follows from wRo.

The second key insight of Kripke semantics is that the axioms of different systems of modal
logic correspond to special properties of the accessibility relation. Let us take what is probably
the simplest example, namely a reflexive frame: We assume the accessibility relation to be
reflexive. The condition corresponds to axiom T of table 3:

w 
 2A ⊃ A for every world w.

To see this, assume w 
 2A. Then o 
 A for every o accessible from w, in particular, by
reflexivity, for w itself, so w 
 A. Therefore w 
 2A ⊃ A. On the other hand, it is easily seen
that a frame that validates 2A ⊃ A has to be reflexive, so that reflexivity of the accessibility
relation is equivalent to having a modal system with axiom T.

Similarly, it is seen that 2A ⊃ 22A is valid in every transitive frame and that every
frame validating it has to be transitive. We say that there is a correspondence between a
modal axiom and a property of the accessibility relation.

Observe that the defining axiom of the system of basic modal logic K, 2(A ⊃ B) ⊃ (2A ⊃
2B), is valid in every frame.

Table 6 of Section 4 gives a list of common modal axioms together with their corresponding
frame conditions.
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2. Kripke’s original completeness proofs

In this Section we shall analyze the content of Kripke’s original completeness proofs for
systems of modal logic, as published in 1959 and 1963, and the criticisms that were raised by
Bayart and Kaplan in their reviews, both published in 1966.

2.1. A completeness theorem in modal logic

In his paper of 1959, the young Saul Kripke presented a completeness theorem for 1st-order
S5 with equality.

The starting point is a Hilbert-style axiomatization obtained from Rosser’s 1953 first-order
predicate calculus with equality, with the addition of the following axiom schemes and rules
of inference:

A1: 2A ⊃ A

A2: ∼2A ⊃ 2 ∼2A

A3: 2(A ⊃ B) ⊃ (2A ⊃ 2B)

R1: If ` A and ` A ⊃ B then ` B

R2: If ` A then ` 2A

Given a non-empty domain D and a formula A, a complete assignment for A in D is a
function which to every free individual variable assigns an element of D, to every propositional
variable either T or F , and to n-ary predicates P (x1, . . . , xn) n-tuples of D.

A model of A in D is a pair (G, K) where G is a complete assignment in a set K of
assignments, such that every member of K agrees with G on the assignment of free variables
of A. The evaluation of an element H of K on an arbitrary subformula of A is obtained
inductively in the usual way from the assignment of individual and propositional variables
and of predicates. For example, P (x1, . . . , xn) is true in the model for the assignment H if
the values α1, . . . , αn assigned to the variables belong to the subset of n-tuples assigned to
the n-ary predicate P ; ∀xB is true if B(x) is true for every assignment of x in D; 2B is true
if B true under every assignment in K.

A formula A is valid in (G, K) if it is assigned T by G, valid in D if it is valid in every
model in D, satisfiable if it is valid for some model based on D, and universally valid if
valid on every non-empty domain.

The intuitive idea here is that a proposition is necessary if and only if it is true in all
possible worlds; All possible worlds are just all possible evaluations, the real world being
represented by G and the other members of K representing possible worlds:

The basis of the informal analysis which motivated these definitions is that a
proposition is necessary if and only if it is true in all “possible worlds”. (It is not
necessary for our present purposes to analyze the concept of a “possible world”
any further.) ... In modal logic, however, we wish to know not only about the
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real world but about other conceivable worlds; P may be true in the real world
but false in some imaginable one, and similarly for P (x1, ..., xn). Thus we are led
not to a single assignment but to a set K of assignments, all but one of which
represent worlds which are conceivable but not actual; the assignment representing
the actual world is singled out as G, and the pair (G, K) is said to form a model
of A. (Kripke 1959, p. 2)

Kripke shows, using an adaptation to modal logic of Beth’s method of semantical tableaux,
that a formula is derivable in S5 if and only if it is universally valid. The tableau method
is presented as a test of semantical entailment from A1& . . .&An to B through a systematic
search for a countermodel in which A1, . . . , An are valid but B is not. The construction
produces a system of alternative sets of tableaux, each set containing a main tableau and
subsidiary tableaux.

The rules for tableaux are the familiar ones, with the splitting into alternative tableaux
in the case of conjunction in the right (and disjunction in the left if a full language is used).
The rules for necessity are:

Yl. If 2A appears in the left column of a tableau, then we put A in the left column of every
tableau of the set

Yr. If 2A appears in the right column of a tableau, then we introduce a new auxiliary
tableau which is started out by putting A in its right column.

A tableau is closed if and only if either a formula occurs in both of its columns, or a = a,
for some variable a, occurs in its right column. A set of tableaux is closed if and only if at
least one of its members is closed. A system is closed if and only if all its alternative sets are
closed.

Theorem 1: B is semantically entailed by A1& . . .&An if and only if the con-
struction beginning with A1& . . .&An in a left column and B in a right column is
closed.

The proof is divided in two parts, the first part (Lemma 1, validity) shows that if B is not
semantically entailed by A1& . . .&An, then the tableau construction cannot be closed.

If B is not semantically entailed by A1& . . .&An, there is a model (G, K) on D such that
A1, . . . , An are true and B false in it. The inductive clauses for valuations match the tableaux
rules in such a way that they preserve countermodels, so in the end, since the construction is
closed, every alternative set contains a tableau which either has a formula in both columns
or has a = a in the right column. So there would be some formula which is at the same time
true and false in the model, or a = a would be false, a contradiction.

The information on the existence of a countermodel is directly transferred to a constraint
on the tableau.

The second part (Lemma 2, completeness) shows that if the tableau construction is not
closed, then a countermodel is found.
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Lemma 2: If the construction starting with A1, . . . , An on the left and B on the
right is not closed, then B is not semantically entailed by A1, . . . , An.

The proof of Lemma 2 is obtained by choosing one of the alternative sets which is not closed
and by defining a suitable countermodel on the basis of that. As domain D the set of free
variables in the latter set is taken. The assignment is defined as follows: Every free variable
except those eliminated by the rule of substitution for identity (Il) is assigned to itself. Free
variables eliminated by rule Il are assigned the variable that replaces them. Propositional
variables occurring on the left of the tableaux of the chosen set are assigned T , those occurring
on the right are assigned F . Predicates Pn of n variables are assigned the set of n-tuples
(x1, . . . , xn) of variables such that Pn(x1, . . . , xn) appears on the left in the tableaux of the
set. It is then shown by induction on formulas that every formula occurring on the left (resp.
right) is assigned T (resp. right).

After proving a Löwenheim-Skolem result, by which a formula is satisfiable in a finite or
denumerable domain if it is satisfiable in a nonempty domain, Kripke proceeds with the proof
of completeness with respect to the original Hilbert-type system. For importing the com-
pleteness result proved for the tableau system, a form of a deduction theorem is proved. If we
start a construction with A1, . . . , An in the left column and B on the right of a tableau (initial
stage), after m applications of the rules there are finitely many tableaux, and this is called the
(m + 1)th stage of the construction. Each stage is put in correspondence with an equivalent
characteristic formula: The characteristic formula of a given tableau with A1, . . . , Am in the
left and B1, . . . , Bn in the right is A1& . . .&An& ∼ B1& ∼ Bm; the characteristic formula
of any of the alternative sets at a given stage is ∃x1 . . .∃xp(A&3B1& . . .&3Bq) where A
is the characteristic formula of the main tableau of the set and B1, . . . , Bq are the charac-
teristic formulas of the auxiliary tableaux of the set and x1, . . . , xp are the free variables of
A&3B1& . . .&3Bq. Finally, the characteristic formula of a stage is D1 ∨ · · · ∨ Dr, where
D1, . . . , Dr are the characteristic formulas of the alternative sets of the stage. Then it is
shown (Lemma 4) that if A is the characteristic formula of the initial stage and B is the
characteristic formula of any stage, then A ⊃ B is provable in the given Hilbert system S5∗=

(S5 with equality and quantifiers).
The proof of completeness for S5∗= (Theorem 5) can be summarized as follows: If A

is universally valid, then the tableau construction beginning with A in the right column is
closed. If B is the characteristic formula of the earliest stage at which the closure holds, by
Lemma 4 the implication between the closure formula of the initial stage and B is derivable
in S5∗=, that is, ` ∃a1 . . . ap ∼A ⊃ B. It is detailed how the fact that B is the characteristic
formula of a stage of closure gives `∼B, from which `∼ ∃a1 . . . ap ∼A, and therefore ` A
follows.

Theorem 6 establishes validity: If ` A in S5∗=, A is universally valid. The proof consists
in observing that the axioms of S5∗= are universally valid and that modus ponens preserves
universal validity. As for the rule of necessitation, if A is universally valid, the tableau
construction starting with A on the right closes, hence also the tableau construction starting
with 2A closes, so universal validity of 2A follows by Theorem 1.

Kripke proceeds with defining truth tables for S5 and establishing that a formula is a
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tautology if and only if it is universally valid. In the final part, second order quantification is
treated.

2.2. Semantical analysis of modal logic I. Normal modal propositional calculi

In Kripke (1963) the results of Kripke (1959) were extended to various systems of modal logic:
Gödel-Feys-von Wright’s M (T), the Brouwersche system B, and Lewis’ S4 and S5.

The core of normal modal systems is taken to consist of axioms A1 and A3 and rules
R1 and R2 (see previous Section), which give the system M, alternatively called system T.
System S4 is obtained by the addition of

A4: 2A ⊃ 22A,

the Brouwersche system by the addition of

A ⊃ 23A,

and S5 by the addition of

A2: ∼2A ⊃ 2 ∼2A.

The novelty here is the explicit appearance of the accessibility relation:

A normal model structure (n.m.s) is an ordered triple (G, K,R) where K is a
non-empty set, G ∈ K, and R is a reflexive relation defined on K. If R is
transitive, we call the n.m.s. an S4 model structure; if R is symmetric, we call it
a BROUWERsche model structure; if R is an equivalence relation, we call it an
S5 model structure. (Kripke 1963, p. 68)

An M ( S4, S5, Brouwersche) model for a formula A is given by a binary function Φ that
has as arguments the propositional variables P of A and the elements H of K, and as range
the truth values T , F . The function is extended in a unique way to all subformulas of A by
the following inductive clauses:

Φ(B&C,H) = T if and only if Φ(B,H) = T and Φ(C,H) = T
Φ(∼B,H) = T if and only if Φ(B,H) = F
Φ(2B,H) = T if and only if Φ(B,H ′) = T for all H ′ such that HRH ′

Truth (falsity) of A in a model is defined as truth (resp. falsity) in the real world G, Φ(A,G) =
T (resp. Φ(A,G) = F ); validity as truth in all models, and satisfiability as truth in at least
one of them.

The relation of the new definitions to those in Kripke (1959) is given in section 2.1 (In-
formal explanation). Two main differences arise: Whereas in the previous work worlds were
identified with complete assignments, here the two notions are distinct, to the effect that
there can be worlds in which the same truth values are assigned to the atomic formulas. The
second novelty is the relation R, for which the following informal explanation is given:
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Intuitively we interpret the relation R as follows: Given any two worlds H1,H2 ∈
K, we read “H1RH2” as “H2 is possible relative to H1”, “possible in H1”, or
“related to H1”; that is to say, every proposition true in H2 is to be possible in
H1.2 (Kripke 1963, p. 70)

On the basis of this reading, modal axioms are related to properties of the accessibility
relation: Transitivity is shown to correspond to 33A ⊃ 3A, and symmetry to A ⊃ 23A

In section 2.2 a connected model structure is defined as one in which all the possible worlds
are related through the transitive closure R∗ (the ancestral, in Kripke’s terminology) of R.
Here Kripke shows that every satisfiable formula has a connected model, or equivalently,
that every non-valid formula has a connected countermodel. Given a model with valuation
Φ on (G, K,R), a connected countermodel is defined by the restriction of Φ and R to the
set of worlds accessible form the “real world” G through the transitive closure of R. By
the restriction to connected models an equivalence relation gives the same models as a total
relation, so the treatment of Kripke (1959) for S5, without the accessibility relation, can be
seen as a special case of the new one.

A further reduction is prepared for with the definition of a tree as a triple (G, K, S) where
S is a binary relation on K, G has no predecessor with respect to S, and every other element
of K has a unique predecessor.

In section 3, semantic tableaux are presented as a generalization of the tableaux of Kripke
(1959). A tableau construction gives at each stage a system of alternative sets of tableaux,
each containing a main tableau and auxiliary tableaux.

The completeness proof is given by a systematic search of a countermodel; If no counter-
model is found, the formula is valid. The procedure for a formula of the form A1& . . .&Am ⊃
B1∨· · ·∨Bn starts by imposing A1, . . . , Am to be true in the model and B1, . . . , Bn false, that
is in putting A1, . . . , Am to the left and B1, . . . , Bn to the right of the main tableau. The rules
for the tableau construction transform the requirement into equivalent conditions on more
elementary formulas. The rules can either produce a continuation of the same tableau (rules
for negation, conjunction, and necessity on the left) or, in the case of right conjunction, the
splitting of the tableau into alternative sets of tableaux t1, t2.... The splitting corresponds to
the fact that in order to falsify a conjunction it is enough to falsify one of the conjuncts. For
necessity on the right, the tableau construction proceeds by creating from the given tableau
t that contains a formula 2A on the right, a new auxiliary tableau t′ such that tRt′. For
specific modal systems, additional properties are assumed on R. These properties are not
made a formal part of the syntax in the tableau construction.

Kripke did not devise a formal notation to fully describe his tableau construction and
wrote in fact:

I hope that this explanation makes the process clear intuitively; the formal state-
ment is rather messy... (Kripke 1963, p. 73)

2Observe that this informal reading imposes the definition of the canonical accessibility relation if possible
worlds are Henkin sets (see Section 3 below).
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A tableau is closed if the same formula appears on both sides of the tableau, a set of tableaux
is closed if some tableau in it is closed, and a system is closed if each of its alternative sets is
closed. A construction is closed if at some stage a closed system of alternative sets appears.

Some additional restrictions are posed in order to facilitate the tableau construction, for
instance, a rule need not be applied if it produces a formula that is already in the tableau.3

Another optimization in the tableau construction is the irrelevance of the order of application
of the rules, so that no special strategy is needed (but see Bayart’s objection in Section 2.3
below for the predicate case).

The procedure is clarified by an example that shows how the tableau procedure works for
the formula 2(A & B) ⊃ 2(2A & 2B): A closed S4 tableau construction is obtained, that
is, the search for a countermodel fails and therefore the formula is valid.

In section 3.2, Kripke proves the completeness of the tableau procedure with respect to
the semantics.

First (Lemma 1) he shows validity: If the construction for A is closed, then A is valid. This
is proved by contradiction: If A is not valid, there exists a valuation Φ on a model structure
(G, K,R) with Φ(A,G) = F . It is then shown by induction on the stages of the tableau
construction, started with A on the right, that each stage can be put in correspondence with
worlds in the model and the relation that links auxiliary tableaux with the relation in the
model, and that formulas on the right are false and those on the left true under the assignment
Φ. The construction is closed, so a contradiction follows because there would be a formula
both true and false under Φ.

Lemma 2 proves completeness, again by contradiction: If the construction for A is not
closed, then A is not valid.

The proof can be summarized as follows: The tableau construction has a tree structure
that can either be finite or infinite. If the construction is finite it has, because it is not closed,
at least one alternative set S0 that is not closed. Then a countermodel (G, K,R) is defined
by taking for K the set S0, for R the relation R between elements of S0, and for G the main
tableau of S0. The valuation Φ is defined by putting Φ(P,H) = T if P appears on the left
side of H, and Φ(P,H) = F otherwise. It is then shown by induction on formulas that for
arbitrary formulas A we have Φ(A,H) = T if A appears on the left of H, and Φ(A,H) = F
otherwise. Therefore A is false under Φ.

In case the tableau construction is infinite, the proof is a bit more complex and König’s
lemma is used to extract an infinite path that is used to define the countermodel.

By the completeness proof, the previously established reduction to connected structures
is strengthened to a reduction to trees. The reduction is used for obtaining a reformulation of
the tableau rules in which relation R is replaced by a unary successor relation S. The tableau
rules are thus modified so that the properties of the relation R become part of the rules. For
example, the left rule for 2 that subsumes transitivity is as follows:

Yl: If 2A appears on the left of a tableau t1, we put A on the left of t1 and put
2A on the left of any tableau t2 such that t1Rt2. (Kripke 1963, p. 81)

3Observe the analogy to the search for minimal derivations in Gentzen systems with height-preserving
contraction, where a rule need not be applied if it leads to a duplication of formulas in a sequent.

11



A similar modification is given for the Brouwerische system, which incorporates symmetry of
R.

Kripke defines two tableaux t1 and t2 to be contiguous if t1St2 or t2St1 and observes that,
because of the new formulation, application of a rule to a tableau affects only the tableaux
contiguous with it.4

In section 4, completeness of the Hilbert systems is proved. The proof of validity (con-
sistency) reduces to the immediate task of verifying that the axioms are valid and that the
rules preserve validity.

For completeness, first the definition of a characteristic formula of a tableau is given as in
Kripke (1959), and the lemma already proved in Kripke (1959) for S5 (Lemma 4) is extended
to the systems here considered. If the tableau procedure started with A is closed, we find for
each of the alternative sets Sj a stage of closure, that is, with the same formula both on the
left and on the right of the tableau, so the characteristic formula Dj contains the conjuction
of a formula and its negation. By the above mentioned lemma, we have ` ∼A ⊃ D1∨· · ·∨Dm

and since for all j, ` ∼Dj , we have ` ∼(D1∨· · ·∨Dm), and therefore, because all the systems
are extensions of classical logic, we get ` A.

The rest of the paper contains proofs of decidability for all the systems considered, ob-
tained by means of a bound in the tableau proof search procedure, a section on matri-
ces to establish independence results, and a proof, by the method later called “glueing of
Kripke models,” of the modal disjunction property. The last one had already been proved by
McKinsey-Tarski (1948) and Lemmon (1960) using algebraic semantics.

2.3. Reviews

Both of Kripke’s papers were carefully reviewed. In 1966, a review of Kripke (1959) by
Arnould Bayart appeared. After a detailed summary of the basic definitions and results of
the paper, the reviewer observed a lack of determinism in the tableau rules for the quantifiers
and suggested the introduction of a control mechanism to avoid dead-ends:

An objection against both the proof and the statement of theorem 1 is that, at
each step of the construction of a system of tableaux, several possibilities generally
occur so that different end results can be reached. If one starts with bx and ∼bx
in the left column and with (x)bx in the right column, one obtains a closed tableau
by working on ∼ bx, and one obtains an infinite not closed tableau by working
on (x)bx. The rules for constructing tableaux should be supplemented by a rule
imposing some definite choice at each step and guaranteeing that each formula
appearing in a not closed branch of the construction will at some moment become
the object of an application of a construction rule and that the rules for universal
quantification in a left column will be applied for all individual variables appearing
in the branch.

The same year, Kripke (1963) was reviewed by David Kaplan who, even if he praised Kripke’s
result, found that the development lacked in rigor:

4This system of rules thus enjoys the remarkable property nowadays called locality.
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Although the author extracts a great deal of information from his tableau con-
structions, a completely rigorous development along these lines would be extremely
tedious. As a consequence a number of small gaps must be filled by the reader’s
geometrical intuition ... The dangers inherent in relying on intuition are illustrated
by the author’s need to correct a fallacious proof in A completeness theorem in
modal logic ... the author criticizes another writer’s faulty version of the rule;
but his own formulation also requires amendment ... The proofs of the decision
procedures seemed to the reviewer excessively intuitive even within the allowable
space, and the proof for S4 contains an error (which can be corrected... ).

Kaplan went on suggesting an alternative approach to the completeness proof for modal logic:

The reviewer believes that future research will bring considerably simpler more
rigorous proofs which avoid the tableau technique. In fact the interesting half of
the main theorem can be established by using the technique of Henkin ...

After a sketch of the idea of the Henkin-style proof of completeness for modal logic, Kaplan
observed that the proof was suggested to him by Dana Scott and that the argument was
already foreshadowed in Kanger (1957). The review also witnesses the already existent debate
on the ultimate attribution of the possible world semantics. The contributions of Carnap,
Kanger, Hintikka, and Montague are mentioned as important anticipations. The review ends
with words of praise for the paper as one “among the most important contributions to the
study of modal logic,” followed by a list of corrections to about 20 misprints.

3. Henkin-style completeness proof

Kaplan’s review of 1966 gave the guiding ideas of the adaptation of the proof of Henkin (1949)
to modal logic as suggested to him by Lemmon and Scott.

Henkin-style completeness proofs for various systems of modal logic with respect to the
relational semantics were published at the same time (Makinson 1966), or shortly after.5

Indeed, Cresswell refers to the papers by Arnould Bayart (1958, 1959), who was apparently
the first to have given a proof of completeness in this style for modal logic. Bayart considered
second-order S5. In the first of the two papers, he proved validity (in French, correction), in
the second quasi-completeness (in French, quasi-adequation), the quasi being referred to the
limitations for the second order case. The papers by Bayart are difficult to read; They use
Polish notation and an archaic style of exposition, which may explain why they were little
known. Instead of tableaux, they use a system of sequent calculus with invertible rules. The
use of the possible worlds semantics is independent of Kripke’s, and declared by the author
to have been inspired by Leibniz. Bayart himself did not mention his alternative approach to
completeness for S5 in his review of Kripke (1959).

Henkin-style completeness proofs seem to have been unanimously considered superior to
the proofs originally devised by Kripke. Kaplan’s criticism of Kripke (1963) was confirmed
in Makinson’s review of Kripke (1965).

5In 1967 a paper by Cresswell with a completeness proof for T and S with the Barcan formula appeared.
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It should be remarked that alternative and simpler proofs have since been con-
structed for these completeness theorems, in which maximal consistent set con-
structions do the work of Kripke tableaux. (Makinson, 1970)

In addition, a reviewer of Makinson’s paper wrote:

The proof, which makes no use of the axiom of choice, and which is nicely worked
out in detail, is Henkin-style and thus avoids the Beth-Hintikka technique of se-
mantic tableaux employed by Kripke... (Åqvist 1970, p. 136)

Before discussing the relative advantages of the two approaches, we sketch the structure of
Henkin-style completeness proofs for modal logic.

We recall that a frame is F is a non-empty set S endowed with a binary relation R. A
model M is given by a frame together with an assignment V of atomic formulas to subsets
of S. Often the forcing relation notation M 
v P is used for v ∈ V (P ). The assignment V
is extended to arbitrary formulas by the standard inductive clauses, for example:

M 
v A ⊃ B if from M 
v A, M 
v B follows
M 
v 2A if M 
w A for all w such that vRw

Validity in a model is defined by truth in every world:

M 
 A if M 
v A for all v ∈ S

Validity in a frame is defined by validity in every model based upon the frame:

F 
 A if M 
 A for all V

If C is a class of frames, A is valid in the class of frames, C 
 A, if it is valid in every frame
of the class, that is, F 
 A for all F in C. For example, 2(A ⊃ B) ⊃ (2A ⊃ 2B) is valid in
all frames; 2A ⊃ 22A is valid in all transitive frames.

Let L be a normal modal logic. L is usually defined by the set of propositional tautologies
plus the axiom 2(A ⊃ B) ⊃ (2A ⊃ 2B) and closure under the rules of modus ponens and
necessitation.

The deducibility relation is defined implicitly by: `L A if A ∈ L.

L is sound with respect to C if from `L A, C 
 A follows.
L is complete with respect to C if from C 
 A, `L A follows.

Soundness is proved by a straightforward induction on the derivation of A in L and we need
not go into the details here. If L has additional axioms, then it is proved that they are valid
in the class of frames considered.

Completeness is proved by the canonical model construction. From L a special model is
built in which validity and derivability coincide. We start with the proof for classical logic.

A set of formulas ∆ is a maximal set if it is consistent and has no consistent extension.
We recall that a set of formulas is consistent if for no finite subset ∆0 of ∆, ∆0 `L⊥. An
equivalent characterization for a maximal set ∆ requires that ∆ is consistent and for every
A, either A or ∼A is in ∆.
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By Lindenbaum’s Lemma, every consistent set of formulas Γ can be extended to a maximal
consistent set: One starts from an enumeration of the formulas in the language, A0, . . . , An, . . . ,
and defines inductively a chain of sets of formulas as follows:

∆0 ≡ Γ
∆n+1 ≡ ∆n ∪ {An} if ∆n `L An

∆n+1 ≡ ∆n ∪ {∼An} otherwise

It is not difficult to verify that ∆ ≡
⋃

n≥0 ∆n is a maximal consistent set that contains Γ.
By the construction of a maximal set containing a set of formulas Γ, the following hold:

1. Maximal sets are deductively closed.
2. If Γ 0 A, then there exists a maximal set that contains Γ but not A.

The valuation in the canonical model is defined by putting ∆ 
 P if P ∈ ∆. It is then shown
by induction on formulas that also for arbitrary formulas A we have ∆ 
 A if A ∈ ∆. By
taking the contrapositive of 2. above, we have:

Completeness. If Γ |= A, then Γ ` A.

The argument is augmented as follows to cover modal logic:
The canonical model is a Kripke model in which the nodes are maximal consistent sets of

formulas, the accessibility relation is such that two nodes Γ,∆ are related if all the necessary
truths in the former are in the latter, and a formula is forced at a node if it belongs to that
node. The notation is:

ML ≡ (SL, RL, V L)

Here
SL ≡ {Γ : Γ is L-maximal consistent}
ΓRL∆ if for all A, 2A in Γ implies A in ∆
V L(P ) ≡ {Γ : P ∈ Γ}

We have:

Truth Lemma. ML 
Γ A if and only if A ∈ Γ.

The proof is by induction on A, the only non-trivial case being the one of a modalized formula.
The case follows from the definition of validity in the model, from the definition of RL, and
from the fact that maximal consistent sets are deductively closed.

To prove that validity and derivability coincide in the canonical model, that is,

ML 
 A if and only if `L A

it is enough to prove the more general:

Lemma. Γ |=ML A if and only if Γ `L A.

The left-hand side of the latter amounts to the fact that every maximal set that contains Γ
also contains A, so the equivalence immediately follows from the properties 1. and 2. above.

Observe that the proof gives no way to obtain derivability from validity, nor does it show
how to construct a countermodel for underivable propositions. The explicit character of
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Kripke’s original proof, that constructs countermodels for unprovable formulas, is lost with
the Henkin approach.

In the next two Sections we review the definition and properties of our labelled calculi, and
show how they can be used to make rigorous and generalize Kripke’s original completeness
proof.

4. A sequent system with internalized Kripke semantics

The development of structural proof theory has led to the remarkable class of sequent calculi,
called G3-calculi, in which all of the structural rules–weakening, contraction, and cut–are
admissible. We shall present a method for obtaining similarly behaving labelled sequent
calculi for modal logics. In these, all the structural rules are admissible; They support,
whenever possible, proof search, and have a simple and uniform syntax that allows easy
proofs of metatheoretic results, such as those reviewed in the previous Sections.

We shall present in this Section a sequent system for the basic modal logic K with rules for
the modalities 2 and 3. These rules are obtained through a meaning explanation in terms of
the possible worlds semantics and an inversion principle. The modal logic K is characterized
by arbitrary frames and restrictions on the class of frames that characterize a given modal logic
amount to the addition of certain frame properties to our sequent calculus. These properties
are added in the form of mathematical rules, following the method of extension of sequent
calculus presented in chapter 6 of Negri and von Plato (2001). All the extensions are thus
obtained in a modular way. As a consequence, the structural properties of the resulting calculi
can be established in one theorem for all systems. A basic knowledge of sequent calculus, for
example Negri and von Plato (2001, chapter 3), is sufficient for what follows.

4.1. Basic modal logic

Basic modal logic is formulated as a labelled sequent calculus through an internalization of
the possible worlds semantics within the syntax. First we enrich the language so that sequents
are expressions of the form Γ → ∆ where the multisets Γ and ∆ consist of relational atoms
wRo and labelled formulas w : A, the latter corresponding to the forcing w 
 A in Kripke
models. Here w, o range over a set W of labels/possible worlds and A is any formula in the
language of propositional logic extended by the modal operators of necessity and possibility,
2 and 3.

The rules for each connective/modality are obtained from its meaning explanation in
terms of the relational semantics: The inductive definition of forcing for a modal formula is:

w 
 2A whenever for all o, from wRo follows o 
 A.

The definition gives:

If o : A can be derived for an arbitrary o accessible from w, then w : 2A can be
derived.
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Formally, we have the rule
wRo,Γ → ∆, o : A

Γ → ∆, w : 2A
R2

In the rule, the arbitrariness of o becomes the variable condition that o must not occur in
Γ,∆.

Reading the semantical explanation in the other direction, we have that w 
 2A and wRo
give o 
 A. A corresponding rule for the antecedent side is:

o : A,w : 2A,wRo, Γ → ∆
w : 2A,wRo,Γ → ∆

L2

The rules for 3 are obtained similarly from the semantic explanation

w : 3A whenever for some o, wRo and o : A.

The rules of sequent calculus for the propositional connectives are obtained by a labelling of
the active formulas with the same label in the premisses and conclusion of each rule of the
calculus G3cp (cf. Negri and von Plato 2001, p. 49). The following sequent calculus G3K
for basic modal logic is thus obtained:

Table 5. The sequent calculus G3K

Initial sequents:

w : P,Γ → ∆, w : P wRo, Γ → ∆, wRo

Propositional rules:

w : A,w : B,Γ → ∆
w : A&B,Γ → ∆

L&
Γ → ∆, w : A Γ → ∆, w : B

Γ → ∆, w : A&B
R&

w : A,Γ → ∆ w : B,Γ → ∆
w : A ∨B,Γ → ∆

L∨
Γ → ∆, w : A,w : B

Γ → ∆, w : A ∨B
R∨

Γ → ∆, w : A w : B,Γ → ∆
w : A ⊃ B,Γ → ∆

L⊃
w : A,Γ → ∆, w : B

Γ → ∆, w : A ⊃ B
R⊃

w :⊥,Γ → ∆
L⊥

Modal rules:

o : A,w : 2A,wRo,Γ → ∆
w : 2A,wRo, Γ → ∆

L2
wRo,Γ → ∆, o : A

Γ → ∆, w : 2A
R2

wRo, o : A,Γ → ∆
w : 3A,Γ → ∆

L3
wRo,Γ → ∆, w : 3A, o : A

wRo,Γ → ∆, w : 3A
R3

In the first initial sequent, P is an arbitrary atomic formula. In R2 and in L3, o is a fresh
label. Observe that atoms of the form wRo in the right-hand side of sequents are never active
in the logical rules nor in the rules that extend the logical calculus. Moreover, the modal
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axioms that correspond to the properties of the accessibility relation are derived from their
rule presentations alone. As a consequence, initial sequents of the form wRo,Γ → ∆, wRo
are needed only for deriving properties of the accessibility relation, namely, the axioms that
correspond to the rules for R given below. Thus such initial sequents can as well be left out
from the calculus without impairing the completeness of the system.

4.2. Extensions

Our aim is to extend the above basic calculus so that the structural properties of the extensions
are automatically guaranteed. This will follow from the form of the axioms that characterize
the extensions. The following table continues table 3 with the frame properties of modal
axioms:

Table 6. Modal axioms with corresponding frame properties

Axiom Frame property
T 2A ⊃ A ∀w wRw reflexivity
4 2A ⊃ 22A ∀wor(wRo& oRr ⊃ wRr) transitivity
E 3A ⊃ 23A ∀wor(wRo&wRr ⊃ oRr) euclideanness
B A ⊃ 23A ∀wo(wRo ⊃ oRw) symmetry
3 2(2A ⊃ B) ∨2(2B ⊃ A) ∀wor(wRo&wRr ⊃ oRr ∨ rRo) connectedness
D 2A ⊃ 3A ∀w∃o wRo seriality
2 32A ⊃ 23A ∀wor(wRo&wRr ⊃ ∃l(oRl & rRl)) directedness
W 2(2A ⊃ A) ⊃ 2A no infinite R-chains + transitivity

The frame properties in the first group (T, 4, E, B, 3) are universal axioms, those in the
second group are what are known as geometric implications (cf. Negri 2003), whereas the last
one is not expressible as a first-order property.

The systems T, K4, KB, S4, B, S5, . . . are obtained by adding one or more axioms
to the system K. Sequent calculi are obtained by adding to the system G3K the rules that
correspond to the properties of the accessibility relation that characterize their frames. For
instance, a sequent calculus for S4 is obtained by adding to G3K the rules that correspond
to the axioms of reflexivity and transitivity of the accessibility relation:

wRw,Γ → ∆
Γ → ∆

Ref
wRr, wRo, oRr,Γ → ∆

wRo, oRr, Γ → ∆
Trans

A system for S5 is obtained by adding also the rule that corresponds to symmetry:

oRw,wRo,Γ → ∆
wRo,Γ → ∆

Sym

The rule for euclideanness is

oRr, wRo, wRr,Γ → ∆
wRo,wRr, Γ → ∆

Eucl
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If o is substituted for r in Eucl, a duplication wRo, wRo is produced in the premiss and in
the conclusion. The same happens in Trans if w ≡ o ≡ r. Contracted instances of these rules
must be added to the system:

wRw,wRw,Γ → ∆
wRw,Γ → ∆ Trans∗

oRo, wRo,Γ → ∆
wRo,Γ → ∆ Eucl∗

Both of the contracted rules are instances of rule Ref, therefore, in order to have the rule
of contraction admissible, they have to be added into systems that do not contain rule Ref.
Similar additions must be made for all extensions by rules that have instances with two
occurrences of the same relational atom in the conclusion. The condition we require to be
satisfied by this addition is called closure condition (cf. section 6.1 of Negri and von Plato
2001). The closure condition is unproblematic because it requires only a bounded, very small
number (usually one or two) of rules to be added. This is general and uniform even if, as seen
above, there are contracted rules that may turn out to be superfluous in some systems.

Extensions are obtained in a modular way for all possible combinations of properties.

G3T = G3K + Ref
G3K4 = G3K + Trans
G3KB = G3K + Sym
G3S4 = G3K + Ref + Trans
G3TB = G3K + Ref + Sym
G3S5 = G3K + Ref + Trans + Sym

A system for deontic logic is obtained by the addition of the geometric rule Ser :

wRo,Γ → ∆
Γ → ∆

Ser

Here the variable condition is o /∈ Γ,∆.
Directedness is another property that follows the pattern of a geometric implication,

and it is converted into the rule

oRl, rRl, wRo, wRr,Γ → ∆
wRo,wRr, Γ → ∆

Dir

The variable condition is l /∈ wRo,wRr, Γ,∆.
The property that corresponds to axiom W , needed for provability logic, can be incorpo-

rated in the system through a modification of the rules for 2 (cf. section 5 of Negri 2005).

4.3. Structural properties

Let G3K* be any extension of G3K by rules for the accessibility relation that follow the
regular rule scheme for extensions of sequent calculus (as in chapter 6 of Negri and von Plato
2001) or the more general geometric rule scheme (as in Negri 2003). The following properties
can be established uniformly for all systems that belong to the class G3K*. We refer to
Negri (2005) for the proofs.
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Lemma 4.1. Sequents of the form

w : A, Γ → ∆, w : A

with A an arbitrary modal formula are derivable in G3K*.

To prove the correspondence between our systems and their Hilbert-style presentations, it is
necessary to show that the characteristic axioms are derivable and the systems closed under
the rules of necessitation and modus ponens. The latter will be a consequence of admissibility
of cut.

Lemma 4.2. For arbitrary A and B, the sequent

→ w : 2(A ⊃ B) ⊃ (2A ⊃ 2B)

is derivable in G3K*.

The rule of necessitation,
→ w : A
→ w : 2A

is a context-dependent rule, as it requires both the antecedent and succedent contexts to be
empty. As an explicit rule, it would impair the flexibility of the systems in the permutations
that are needed for proving cut elimination; However, we do not need to add any such rule
because we can show that it is admissible. To prove this, we exploit the first-order features
of the system to show a lemma about substitution.

Substitution of labels is defined in the obvious way for relational atoms and labelled
formulas and is extended to multisets componentwise. We have

Lemma 4.3. If Γ → ∆ is derivable in G3K*, then Γ(o/w) → ∆(o/w) is also derivable, with
the same derivation height.

Theorem 4.4. The rules of weakening

Γ → ∆
w : A,Γ → ∆

LW
Γ → ∆

Γ → ∆, w : A
RW

Γ → ∆
wRo,Γ → ∆

LW
Γ → ∆

Γ → ∆, wRo
RW

are height-preserving admissible in G3K*.

Corollary 4.5. The necessitation rule is admissible in G3K*.

We also obtain a very useful property of a sequent calculus, namely:

Lemma 4.6. All the rules of G3K* are height-preserving invertible.

The most important structural property of our calculi, besides cut-admissibility, is height-
preserving admissibility of contraction. First observe that there are, a priori, four contraction
rules, namely left and right contraction for expressions of the forms w : A and wRo. Explicitly
stated, the rules of left and right contraction are:
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w : A,w : A, Γ → ∆
w : A,Γ → ∆

LC
wRo,wRo,Γ → ∆

wRo,Γ → ∆
LCR

Γ → ∆, w : A,w : A

Γ → ∆, w : A
RC

Γ → ∆, wRo,wRo

Γ → ∆, wRo
RCR

Observe that rule RCR is not needed in case we use the calculus without the initial sequent
wRo,Γ → ∆, wRo.

Theorem 4.7. The rules of contraction are height-preserving admissible in G3K*.

Also cut can take two forms, namely

Γ → ∆, w : A w : A,Γ′ → ∆′

Γ,Γ′ → ∆,∆′ Cut

and
Γ → ∆, wRo wRo,Γ′ → ∆′

Γ,Γ′ → ∆,∆′ CutR

However,CutR is not needed if the variant of G3K without the initial sequent wRo,Γ →
∆, wRo is used.

We have:

Theorem 4.8. The cut rule is admissible in G3K*.

5. Kripke completeness revisited

Kripke’s original proof of completeness for modal logic used a direct construction of a Beth
tree from a failed proof search. In later proofs, Kripke countermodels had nodes built from
Henkin sets of formulas and extra devices that impose additional properties on the accessi-
bility relation that are not automatically captured by the Henkin construction.6 Kripke used
tableaux in which the semantical element was hidden in their tree structure and therefore
had to use some not fully formalized arguments in his completeness proofs. We show that,
for the labelled calculus introduced in the previous Section, we can give a completeness proof
close to Kripke’s original argument but without any appeal to geometric intuition. For every
sequent, the proof search either ends in a proof or fails, and the failed proof tree gives a
Kripke countermodel.

5.1. Soundness

We reformulate first the semantical notions of Section 2 so that they apply to our labelled
calculi:

Definition 5.1. Let K be a frame with an accessibility relation R that satisfies the properties
∗. Let W be the set of variables (labels) used in derivations in G3K∗. An interpretation

6Such devices include for example “bulldozing” methods for imposing irreflexivity.
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of the labels W in frame K is a function [[·]] : W → K. A valuation of atomic formulas in
frame K is a map V : AtFrm → P(K) that assigns to each atom P the set of nodes of K in
which P holds; the standard notation for k ∈ V(P ) is k 
 P .

Valuations are extended to arbitrary formulas by the following inductive clauses:

k 
 ⊥ for no k,
k 
 A&B if k 
 A and k 
 B,
k 
 A ∨B if k 
 A or k 
 B,
k 
 A ⊃ B if k 
 A implies k 
 B,
k 
 2A if for all k′, from kRk′ follows k′ 
 A,
k 
 3A if there exists k′ such that kRk′ and k′ 
 A.

Definition 5.2. A sequent Γ → ∆ is valid for an interpretation and a valuation in
K if for all labelled formulas w : A and relational atoms oRr in Γ, whenever [[w]] 
 A and
[[o]]R[[r]] in K, then for some l : B in ∆, [[l]] 
 B. A sequent is valid if it is valid for every
interpretation and every valuation in a frame.

Theorem 5.3. If the sequent Γ → ∆ is derivable in G3K∗, then it is valid in every frame
with the properties ∗.
Proof. By induction on the derivation of Γ → ∆ in G3K∗. If it is an initial sequent, then
there is a labelled atom w : P both in Γ and in ∆ so the claim is obvious, and similarly if the
sequent is conclusion of L⊥ since for no valuation can ⊥ be forced at any node.

If Γ → ∆ is a conclusion of a propositional rule, assume the rule is L& with the premiss
w : A,w : B,Γ′ → ∆. Assume that for an arbitrary assignment and interpretation, all the
formulas in Γ are valid. Since [[w]] 
 A&B is equivalent to [[w]] 
 A and [[w]] 
 B, the inductive
hypothesis, i.e., validity of w : A,w : B,Γ′ → ∆ for every interpretation, gives the desired
conclusion.

If Γ → ∆ is a conclusion of a modal rule, say R2, with the premiss wRo,Γ′ → ∆′, o :
A, assume by the induction hypothesis that the premiss is valid. Let [[·]] be an arbitrary
interpretation that validates all the formulas in Γ′. We claim that one of the formulas in
∆′ or w : 2A is valid under this intepretation. Let k be an arbitrary element of K such
that [[w]]Rk; let [[·]]′ be the interpretation identical to [[·]] except possibily on o, where we set
[[o]]′ ≡ k. Clearly [[·]]′ validates all the formulas in the antecedent of the premiss, so it validates
a formula in ∆′ or o : A (the alternative being independent of the choice of [[o]]′). In the former
case we have that also [[·]] validates a formula in ∆′, in the latter that [[·]] validates w : 2A.

If the sequent is a conclusion of a mathematical rule without eigenvariables, let the rule
be for instance Trans:

wRr, wRo, oRr,Γ → ∆
wRo, oRr, Γ → ∆

Let [[w]]R[[o]] and [[o]]R[[r]]. Since R satisfies transitivity by assumption, we have [[w]]R[[r]], so
validity of the premiss gives validity of the conclusion.

If the sequent is a conclusion of a mathematical rule with eigenvariables, let the rule be
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for instance Directedness
oRl, rRl, wRo, wRr,Γ → ∆

wRo,wRr, Γ → ∆

Here l is an eigenvariable. Since by hypothesis the frame is directed, if [[w]]R[[o]] and [[w]]R[[r]],
there exists d such that [[o]]Rd and [[r]]Rd. The premiss is valid for all interpretations, in
particular for one that coincides with [[·]] on all labels, except possibly on l where it is assigned
value d (this choice is possible because l is an eigenvariable). It follows that one of the formulas
in ∆ holds under this interpretation. QED.

5.1. Completeness

The proof of completeness follows the pattern of the proof of completeness for predicate logic,
as in Negri and von Plato (2001, section 4.4).

The idea we pursue with the labelled system is the same as in Kripke’s proof, but instead
of looking for a failed search of a countermodel, we look directly for a proof: To see whether a
formula is derivable, we check if it is universally valid, that is, valid at an arbitrary world for
an arbitrary valuation, w 
 A. This is translated to a sequent → w : A in our calculus. The
rules of the calculus applied backwards give equivalent conditions until the atomic components
of A are reached. It can happen that we find a proof, or that we find that a proof does not
exist either because we reach a stage where no rule is applicable, or because we go on with
the search forever. In the two latter cases the attempted proof itself gives a countermodel.

Theorem 5.4. Let Γ → ∆ be a sequent in the language of G3K∗. Then either the sequent
is derivable in G3K∗ or it has a Kripke countermodel with properties ∗.
Proof. We define for an arbitrary sequent Γ → ∆ in the language of G3K∗ a reduction tree
by applying the rules of G3K∗ root first in all possible ways. If the construction terminates
we obtain a proof, else the tree becomes infinite. By König’s lemma an infinite tree has an
infinite branch that is used to define a countermodel to the endsequent.

1. Construction of the reduction tree: The reduction tree is defined inductively in stages as
follows:

Stage 0 has Γ → ∆ at the root of the tree. Stage n > 0 has two cases:

Case I: If every topmost sequent is an initial sequent or a conclusion of L⊥ or of a zero-premiss
mathematical rule, the construction of the tree ends.

Case II: If not every topmost sequent is an initial sequent or a conclusion of L⊥ or of a zero-
premiss mathematical rule, we continue the construction of the tree by writing above those
topsequents that are not initial, nor conclusions of L⊥ or of a zero-premiss mathematical rule,
other sequents that are obtained by applying root-first the rules of G3K∗ whenever possible,
in a given order.

There are 10 + r different stages, 10 for the rules of the basic modal systems, r for the
mathematical rules. At stage n = 10 + r + 1 we repeat stage 1, at stage n = 10 + r + 1 we
repeat stage 2, and so on for every n.
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We start, for n = 1, with L&: For each topmost sequent of the form

w1 : B1&C1, . . . , wm : Bm&Cm,Γ′ → ∆

where B1&C1, . . . , Bm&Cm are all the formulas in Γ with a conjunction as the outermost
logical connective, we write

w1 : B1, w1 : C1, . . . , wm : Bm, wm : Cm,Γ′ → ∆

on top of it. This step corresponds to applying root first m times rule L&.
For n = 2, we consider all the sequents of the form

Γ → w1 : B1&C1, . . . , wm : Bm&Cm,∆′

where w1 : B1&C1, . . . , wm : Bm&Cm are all the labelled formulas in the succedent with a
conjunction as the outermost logical connective. We write on top of them the 2m sequents

Γ → w1 : D1, . . . , wm : Dm,∆′

where Di is either Bi or Ci and all possible choices are taken. This is equivalent to applying
R& root first successively with principal labelled formulas w1 : B1&C1, . . . , wm : Bm&Cm.

For n = 3 and 4 we consider L∨ and R∨ and define the reductions symmetrically to the
cases n = 2 and n = 1, respectively.

For n = 5, for each topmost sequent that has the labelled formulas w1 : B1 ⊃ C1, . . . ,
wm : Bm ⊃ Cm with implication as the outermost logical connective in the antecedent, Γ′ the
other formulas, and succedent ∆, we write on top of it the 2m sequents

wi1 : Ci1 , . . . , wik : Cik ,Γ′ → wjk+1
: Bjk+1

, . . . , wjm : Bjm ,∆

Here i1, . . . , ik ∈ {1, . . . ,m} and jk+1, . . . , jm ∈ {1, . . . ,m} − {i1, . . . , ik}. This step, perhaps
less transparent because of the double indexing, corresponds to the root-first application of
rule L⊃ with principal formulas w1 : B1 ⊃ C1, . . . , wm : Bm ⊃ Cm.

For n = 6, we consider all the labelled sequents that have implications in the succedent,
say w1 : B1 ⊃ C1, . . . , wm : Bm ⊃ Cm, and ∆′ the other formulas, and write on top of them

w1 : B1, . . . , wm : Bm,Γ → w1 : C1, . . . , wm : Cm,∆′

that is, apply root first m times rule R ⊃.
For n = 7, we consider all topsequents with modal formulas w1 : 2B1, . . . , wm : 2Bm and

relational atoms w1Ro1, . . . , wmRom in the antecedent, and write on top of these sequents
the sequents

o1 : B1, . . . , om : Bm, w1 : 2B1, . . . , wm : 2Bm, w1Ro1, . . . , wmRom,Γ′ → ∆

that is, apply m times rule L2.
For n = 8, let w1 : 2B1, . . . , wm : 2Bm be all the formulas with 2 as the outermost

connective in the succedent of topsequents of the tree, and let ∆′ be the other formulas. Let
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r1, . . . , rm be fresh variables, not yet used in the reduction tree, and write on top of each
sequent the sequent

w1Rr1, . . . , wmRrm,Γ → ∆, r1 : B1, . . . , rm : Bm

that is, apply m times rule R2.
For n = 9, let w1 : 3B1, . . . , wm : 3Bm be all the formulas with 3 as the outermost

connective in the antecedent of topsequents of the tree, and let Γ′ be the other formulas. Let
l1, . . . , lm be fresh variables, and write on top of each sequent the sequent

w1Rl1, . . . , wmRlm, l1 : B1, . . . , lm : Bm,Γ′ → ∆

that is, apply m times rule L3.
For n = 10, consider all topsequents with modal formulas w1 : 3B1, . . . , wm : 3Bm in

the succedent and relational atoms w1Ro1, . . . , wmRom in the antecedent, and write on top
of these sequents the sequents

w1Ro1, . . . , wmRom,Γ → ∆′, w1 : 3B1, . . . , wm : 3Bm, o1 : B1, . . . , om : Bm

that is, apply m times rule R3.
Finally, for n = 10+ j, we consider the generic case of a mathematical rule, that is, a rule

for the relation R. For systems with the subterm property,7 the mathematical rules need to be
instantiated only on terms in the conclusion or on eigenvariables. Thus, if the system contains
rule Ref, instances of that rule consist in adding to the antecedent all the relational atoms
wRw for w in Γ → ∆; With a rule with eigenvariables, such as seriality, the step for that rule
adds all the atoms of the form wRo for w in Γ → ∆ and o a fresh variable. Observe that
because of height-preserving substitution and height-preserving admissibility of contraction,
once a rule with eigenvariables has been considered, it need not be instantiated again on the
same principal formulas. If it is a rule such as Trans, consider all the sequents with a pair of
atoms of the form wRo, oRr in the antecedent and write on top of them the sequents with
the atoms wRr added.

For any n, for each sequent that is neither initial, nor conclusion of L⊥, nor of a zero-
premiss mathematical rule, nor treatable by any one of the above reductions, we write the
sequent itself above it.

If the reduction tree is finite, all its leaves are initial or conclusions of L⊥, or of zero-premiss
mathematical rules, and the tree, read from the leaves to the root, yields a derivation.

2. Construction of the countermodel: If the reduction tree is infinite, it has an infinite branch.
Let Γ0 → ∆0 ≡ Γ → ∆,Γ1 → ∆1 . . . , Γi → ∆i, . . . be one such branch. Consider the sets of
labelled formulas and relational atoms

Γ ≡
⋃
i≥0

Γi ∆ ≡
⋃
i≥0

∆i

7Cf. section 6 of Negri 2005.
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We define a Kripke model that forces all the formulas in Γ and no formula in ∆ and is
therefore a countermodel to the sequent Γ → ∆.

Consider the frame K the nodes of which are all the labels that appear in the relational
atoms in Γ, with their mutual relationships expressed by the wRo’s in Γ. Clearly, the con-
struction of the reduction tree imposes the frame properties of the countermodel, for instance,
in the system G3S4, the constructed frame is reflexive and transitive. The model is defined
as follows: For all atomic formulas w : P in Γ, we stipulate that w 
 P in the frame, and
for all atomic formulas o : Q in ∆ we stipulate that o 1 Q. Since no sequent in the infinite
branch is initial, this choice can be coherently made, for if there were the same labelled atom
in Γ and in ∆, then, since the sequents in the reduction tree are defined in a cumulative way,
for some i there would be a labelled atom w : P both in the antecedent and in the succedent
of Γi → ∆i.

We then show inductively on the weight of formulas that A is forced in the model at node
w if w : A is in Γ and A is not forced at node w if w : A is in ∆. Therefore we have a
countermodel to the endsequent Γ → ∆.

If A is ⊥, it cannot be in Γ because no sequent in the branch contains w : ⊥ in the
antecedent, so it is not forced at any node of the model.

If A is atomic, the claim holds by the definition of the model.
If w : A ≡ w : B&C is in Γ, there exists i such that w : A appears first in Γi, and therefore,

for some l ≥ 0, w : B and w : C are in Γi+l. By the induction hypothesis, w 
 B and w 
 C,
and therefore w 
 B&C.

If w : A ≡ w : B&C is in ∆, consider the step i in which the reduction for A applies. This
gives a branching, and one of the two branches belongs to the infinite branch, so either w : B
or w : C is in ∆, and therefore by the inductive hypothesis, w 1 B or w 1 C, and therefore
w 1 B&C.

If w : A ≡ w : B ∨ C is in Γ, we reason similarly to the case of w : A ≡ w : B&C in ∆.
If w : A ≡ w : B ∨ C is in ∆, we argue as with w : A ≡ w : B ∨ C in Γ.
If w : A ≡ w : B ⊃ C is in Γ, then either w : B is in ∆ or w : C is in Γ. By the inductive

hypothesis, in the former case w 1 B, and in the latter w 
 C, so in both cases w 
 B ⊃ C.
If w : A ≡ w : B ⊃ C is in ∆, then for some i, w : B ∈ Γi and w : C ∈ ∆i, so by the

inductive hypothesis w 
 B and w 1 C, so w 1 B ⊃ C.
If w : A ≡ w : 2B is in Γ, we consider all the relational atoms wRo that occur in Γ. If

there is no such atom, then the condition that for all o accessible from w in the frame, o 
 B
is vacuously satisfied, and therefore w 
 2B in the model. Else, for any occurrence of wRo
in Γ we find, by the construction of the reduction tree, an occurrence of o : B in Γ. By the
inductive hypothesis, o 
 B, and therefore w 
 2B in the model.

If w : A ≡ w : 2B is in ∆, consider the step at which the reduction for w : A applies.
We then find o : B in ∆ for some o with wRo in Γ. By the induction hypothesis, o 1 B, and
therefore w 1 A.

The cases of w : A ≡ w : 3B in Γ and of w : A ≡ w : 3B in ∆ are symmetric to those of
w : A ≡ w : 2B in ∆ and of w : A ≡ w : 2B in Γ, respectively. QED.

Corollary 5.5. If a sequent Γ → ∆ is valid in every Kripke model with the frame properties
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∗, then it is derivable in the system G3K∗.

In case the system has an irreflexive accessibility relation, we have a zero-premiss mathemat-
ical rule of the form

wRw,Γ → ∆

A sequent of this form cannot appear in the infinite branch, and therefore the countermodel
will be irreflexive by construction. The problem with properties such as irreflexivity in the
Henkin-style completeness proof thus disappears with our approach.

Conclusion and further work

We have reviewed here two main styles of completeness proofs for modal logic, Kripke’s
original proofs and Henkin-style proofs, and discussed their relative merits. Although Kripke’s
original proofs were more informative, Henkin-style proofs have been preferred in the literature
on modal logic because of the difficulties in formalizing Kripke’s original proof.

There are two main trends in the recent literature on the proof theory of modal logic: one
that enriches the language of sequents by the use of labels (cf. Negri 2007 for references to the
vast literature), another that avoids the use of labels. Recent variants of the latter approach
include the systems of nested sequents (Kashima 1994), tree-sequents (Cerrato 1996), deep
sequents (Brünnler 2006, Stouppa 2007), and tree-hypersequents (Poggiolesi 2008). These
works can be regarded as formalizations of Kripke’s original approach even if they do not
explicitly refer to Kripke’s own contributions. Also, the treatment of modal systems with
geometric frame conditions has so far remained out of their scope.

Section 1.5 of Boretti (2008) contains a useful methodological discussion of labelled and
unlabelled systems. In her words, “whereas the semantic notions are explicitly internalised
into the labelled calculi in the form of the syntactical counterparts of forcing (x : A) and
accessibility relation (xRy), tree-hypersequents and deep sequent systems hide their relational
semantics under a more complex syntax.”

We have presented here a labelled sequent system that simplifies Kripke’s tableau method
thanks to the fact that the accessibility relation is an explicit part of the syntax and not an
implicit property of proof-trees. A wide class of modal systems is covered and a uniform,
simple, and direct proof of completeness obtained that does not present the shortcomings of
the original Kripke proofs, nor the limitations of Henkin-style proofs. Completeness proofs
for first-order modal logic and for provability logic, along the lines of the method presented
here, appear in Negri and von Plato (2008). A similar treatment for non-normal modal logics
should not present any extra difficulty, and is left to future work.
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