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Structural proof analysis in natural deduction, in contrast to sequent calculus, soon leads to very

complicated considerations. This difficulty is mainly due to the complex notion of normal derivation. In
recent work, what are known as “general elimination rules” have been introduced. These rules permit
a simple definition of normality and a straightforward proof of normalization. They also lead to a full

understanding of the relation between natural deduction and sequent calculus. The improved control

over the structure of normal derivations enables, for example, proofs of underivability in intuitionistic
logic that so far have been possible only throught sequent calculus.

I INTUITIONISTIC NATURAL DEDUCTION ... .ttuttutttntene ittt eaene e, 1
1. Introduction rules as determined by the BHK-explanations......................... 1
2. Inversion principles. Determination of elimination rules................. .. ... .. .. 1
3. Discharge principle. Definition of derivations ............. .. ... ... i oL 2
4. Normal derivations . .....ooiiiiiii i i i i e 3
5. Translation from sequent calculus to natural deduction ............................ 3
6. Interpretation of weakening and contraction in natural deduction................... 4
IT NORMALIZATION . .« ottt ettt ettt e e et e et e e et e e e e e e e e e e e e e e aee e 5
7. Normalization . .. ... .. e 5
8. Strong normalization ... .... ... ... i 9
9. Applications of normalization ........... .. .. i 9
10. Translations from natural deduction to sequent calculus.......................... 11
11. Non-normal derivations and derivations with cuts .......... ... ... ... ..o .. 13
IIT CLASSICAL NATURAL DEDUGTION .. .ttuttttte ettt eaee it et eaene e eae e eaeens 15
12. Natural deduction for classical propositional logic ........... ... .ot 15
13. Normal derivations and the subformula property ........ ... ... ... oL 16
14. Interpretation of classical propositional logic ....... ... oo il 18
15. Infinitary natural deduction....... ... ... i 18
16. Natural deduction for classical predicate logic............. ..o, 20

R EFE REN CES &ttt ittt ittt ettt et e e e e e e e e e e e e e e e e e e e e e e et 25



I INTUITIONISTIC NATURAL DEDUCTION

Gentzen’s rules of natural deduction for intuitionistic logic have proved to be remarkably
stable. There has been variation in the way the discharge of assumptions is handled. Then in
1984, Peter Schroeder-Heister changed the rule of conjunction elimination so that it admitted
an arbitrary consequence similarly to the disjunction elimination rule. We shall do the same
for the rest of the elimination rules, then prove normalization and show some applications of
the system of “natural deduction with general elimination rules.”

1. Introduction rules as determined by the BHK-conditions

As explained in Gentzen, the introduction rules formalize natural conditions on direct proofs
of propositions of the different logical forms. These are often referred to as the BHK-conditions
(for Brouwer, Heyting, and Kolmogorov). The rules are:

1
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In rule DI, m > 0 copies of formula A are discharged. We may leave undiscarged copies
as well. The number next to the rule is a discharge label and those on top of formulas
assumption labels.

The introduction rules for the quantifiers are

Aly/z) A(t/z)
vzA " 3ga '

Rule VI has the standard variable restriction: y not free in any assumptions A(y/z) depends
on.

2. Inversion principles. Determination of elimination rules

Gentzen noticed that the elimination rules of natural deduction (F-rules) somehow repeat
what was already contained in derivations with corresponding introduction rules (I-rules),
and speculated that it should be possible to actually determine F-rules from Irules. The idea
is captured by the principle that “whatever follows from the direct conditions for introducing
a formula, must follow from that formula.” The principle determines the following general
elimination rules, with a slight proviso on implication:
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Here any numbers m,n > 0 of assumptions A and B can be discharged. If m =0 or n = 0,
there is a vacuous discharge, if m > 1 or n > 1, there is a multiple discharge. Otherwise a
discharge is simple. Each instance of a rule must have a fresh discharge label.

The standard elimination rules of natural deduction follow by setting, in turn, C = A or
C=Bin &F,and C =B in DE.

A direct proof of A D B consists in a derivation of B from the assumption A. Thus,
our inversion principle dictates that C follows from A D B if C follows from the existence of
such a derivation. First-order logic cannot express this, so rule DF only shows how arbitrary
consequences of B reduce to arbitrary consequences of A under the major premiss A D B.
Schroeder-Heister, instead, used a higher-order rule, and so does type theory.

The propositional part of intuitionistic natural deduction is completed by adding an elim-
ination rule for | and by defining negation and equivalence:

L
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The elimination rules for the quantifiers are
1
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The standard variable restriction holds for rule JFE.

3. Discharge principle. Definition of derivations
“Compulsory discharge” dictates that one must discharge if one can. But look at

4]
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Assumption A is discharged at the second step, the first being a vacuous discharge. If it
happened that B is identical to A, compulsory discharge would require a discharge of A
at the first step, so something that looked like a syntactically correct derivation under the
“compulsory” idea turned out not to be so. We adopt instead the following:

Discharge principle. Each rule instance must have a fresh discharge label.

We can now give a formal definition of the notion of a derivation of formula A from the
open assumptions I'. The open assumptions are counted with multiplicity, so they are
multisets of formulas. The base case of a derivation is the derivation of a formula A from the
open assumption A:
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Now the rest is defined inductively according to the last rule applied, straightforward for rules
that do not change the assumptions, and exemplified by &FE for the rest:

Given derivations of A&B from I" and C from A™, B" A,
11
r [A™B",A

A&B C

&E1
C

is a derivation of C from T', A.

The full definition is given in Structural Proof Theory, SPT for short, pp. 167-170. We
observe that the composition of derivations is justified by the definition: Given derivations
of A from I' and of C' from A, A with no clash on labels, they can be put together into a
derivation of C from T', A. The discharge of assumptions needs to be treated explicitly for
composition to produce a correct derivation.

4. Normal derivations

Definition. A derivation is normal if all major premisses of elimination rules are assump-
tions.

In particular, the major premiss of rule L F is an assumption in a normal derivation, analo-
gously to the situation in sequent calculus in the derivations of which the corresponding rule
is always a topmost rule.

5. Translation from sequent calculus to natural deduction

We define a translation from derivations in the sequent calculus GOi to derivations in natural
deduction. The former is like Gentzen’s original intuitionistic single-succedent calculus LJ,
except that it has independent contexts in all two-premiss rules. Weakening and contraction
remain explicit rules and only cut is eliminable.

Definition. A formula is used in a sequent calculus derivation if it is active in a left rule.

For the translation, it is essential to assume that the sequent calculus derivation has no
unused formulas principal in weakening or contraction. The full translation can be
found in SPT, ch. 8. Here are some example translations:

If the last rule is L&, we have the translation

. 1 1 :
ABTLSC AYB [A}[BIT 50
A&B,T — C ~ C

E|1

Note how labels and brackets have been added in a hybrid expression that is translated next.



If the last rule is LD, we have the translation

: : : 1 :
r= A B,A—'>CL ADB T'+A [B,A=>C
AS>BT,ASC 2 ~ C >

E1

The principal formula of the left rule, the one with the connective, becomes a major
premiss of the corresponding E-rule. Note that the translation produces major premisses
that are not derived but open assumptions, as required by our notion of normal derivations.

If a step of weakening is met we have, by the condition of no unused weakening formulas,
some assumption label n and the translation

IS5 C
R

AT >C ~ T5C

If a step of contraction is met, the translation is

A, AT S C
—C

Py tr

AT 50~ [ALALDSC

In the end, initial sequents of the forms A — A or 1 — C are met, translated into an
assumption A and an instance of LFE, respectively. Formulas in the antecedents can have

n n
labels and brackets that are maintained, so, for example, [A] — A turns into [A].

Observation. The order of logical rules is maintained in the translation, with left rules giving
E-rules and right rules I-rules. Cut-free derivations turn into normal derivations.

6. Interpretation of weakening and contraction in natural deduction

Theorem. Assume a derivation of I' — C in GOi with no unused weakening or contraction
formulas. Then:

(i) If A is principal in weakening, it is vacuously discharged in the translated derivation
in natural deduction.

(ii) If A is principal in contraction, it is multiply discharged in the translated derivation
in natural deduction.

The result goes also in the other direction: vacuous discharges give weakenings, and multiple
discharges contractions. The order of logical rules in normal and cut-free derivations, respec-
tively, is the same. The latter has steps of weakening and contraction the position of which
can vary. It is possible to change the calculus GOi a bit, into a “sequent calculus in natural
deduction style,” exemplified by the rule

A™ B"T — C
A&B,T = C ©




Any numbers m,n > 0 of active formulas are permitted, with number 0 marking implicit
weakening and number > 1 contraction. Thus, this calculus has no structural rules (see SPT,
ch. 5.2).

IT NORMALIZATION

The standard normalization procedure of Gentzen and Prawitz consists of the removal of con-
secutive introduction-elimination pairs. Such pairs are known as “detours,” or “Umwege” in
Gentzen’s terminology. Later Prawitz considered permutation convertibilities, instances
of VE or JF that conclude a major premiss of an F-rule, and simplification convertibili-
ties.

7. Normalization

Definition 7.1. An E-rule with a major premiss derived by an I-rule is a detour convert-

ibility.

A detour convertibility on A& B and the result of the conversion are, with obvious labels left

unwritten,

[A™, B"] : Do :
: A ™ A B, "X .B

A& B C :
C w ¢

[a 2

A detour convertibility on disjunction is quite similar. A detour convertibility on A D B and
the result of the conversion are

[A™] A, mx A A, mx A
: 1B"] : :
B ; B, m™ B
A>B™ A ¢, :
¢ ¢
: N :

There is no I-rule for L so no detour convertibility either.

Definition 7.2. An E-rule with a major premiss derived by an FE-rule is a permutation
convertibility.

The novelty of general elimination rules is that permutation conversions apply to all cases
in which a major premiss of an F-rule has been derived. With six E-rules, this gives 36
convertibilities of which we show a couple:



A permutation convertibility on major premiss C& D derived by &F on A& B and its conver-
sion are

[Am,Bn] [Am’Bn] [Ck Dl]
: : [Ck, DY : :
A&B  C&D : : Cc&D E
c&kbD " B . A&B E,
FE E
: N :

A permutation convertibility on major premiss C O D derived by VE on A V B obtains
whenever a derivation has the part

[A™] [B"]
: : : [D']
AVB CO>D C>D . :
¢coD C FE O
L
After the permutation conversion the part is
[A™] [D'] [B"] [D']
. CoD C E_, COD C E _,
AV B E E .

E

Finally, we have permutation convertibilities in which the conversion formula is 1 derived by
L FE. Since LF has only a major premiss, a permutation conversion just removes one of these
instances:

1

— 1F

1 1
ELE ~ aJ_E'

Definition 7.3. A simplification convertibility in a derivation is an instance of an E-
rule with no discharged assumptions, or an instance of VE with no discharges of at least one
disjunct.

As with permutation conversions, also simplification conversions apply to all E-rules when
general elimination rules are used. A simplification convertibility can prevent the normaliza-
tion of a derivation, as is shown by the following:

1 2
[A] (B] 3
A>54a- "t BDBZ’Q €,
(AD A)&(B D B) Co>C
coC kb



There is a detour convertibility but the pieces of derivation do not fit together in the right
way to remove it. Instead, a simplification conversion will remove the detour convertibility:

3
cCo>C ™’

Threads in place of branches. Due to the form of the general E-rules we consider sub-
formula structure along threads in a derivation (a term suggested to us by Dag Prawitz),
instead of branches of the derivation tree as would be the case for the special elimination
rules in the V,3-free fragment. These threads are constructed starting with the endformula
of a derivation:

1. For I-rules with conclusion A o B, the threads are

A B A B B
A&B A¥B AVB AVB A>SB

2. For rules &FE, VE, and DF with conclusion C, the thread continues up from the minor
premiss C, with two threads produced for VE:

3. If the last formula is an open assumption A or an assumption A discharged by DI, the
thread ends with topformula A.

4. If the last formula is an assumption A or B discharged by &FE or VE, the construction of
the thread continues from the major premiss A&B or AV B:

5. With L FE, there is no minor premiss so the construction continues directly from the major
premiss L:

Q-



6. If the last formula is an assumption B discharged by DF, the construction continues with
the major premiss A D B. A new thread begins with the minor premiss A as endformula:

B

U ees

A

"Q‘Q""U:J

A

Note that the construction of threads will not reach the parts of derivation that can be
deleted in a simplification convertibility.

We can depict threads as follows, with a semicolon separating the ith major premiss of
an E-rule Ay, from its components Cj,, discharged by the elimination:

(Ala---aAhl;Chu---aAhz;Chza---aAhi;Chia---aA)

Height along threads: The height of a major premiss Ay, in a thread is measured as
follows. Let hy be the number of steps from the top formula to a first major premiss A, and
h; the number of steps from the temporary assumption of the preceding major premiss Ay, ,
to Ap,. The height of A, in the thread is the sum hy +... + h;.

From the construction of threads it is immediate that each formula in a derivation is in
at least one thread. A thread is normal if it is a thread of a normal derivation. The height
of each major premiss in normal threads is equal to zero. It is easily seen that the converse
also holds. The formulas in a thread divide into an “FE-part” of nested sequences of major
premisses, each a subformula of the preceding formula, and an “I-part” in which formulas
start building up in the other direction through introduction rules. Each formula in a normal
thread is a subformula of the endformula or of an open assumption. (For a proof, not difficult,
see SPT, p. 197).

Lemma 7.4. A permutation conversion on major premiss A diminishes its height by one
and leaves all other heights unaffected.

Given a derivation, consider its conversion formulas in each thread, ordered by length into
multisets.

Lemma 7.5. Detour conversions on & and V reduce the multiset ordering of conversion
formulas in threads affected by the conversion.

Note that permutation conversions do not create any new conversion formulas and therefore
do not affect the multiset ordering. They can change a permutation convertibility into a
detour convertibility. If this happens with implication, a new thread with the minor premiss
as endformula is constructed.

The construction of threads is essential in lemma, 7.5. It is seen from the detour conversion
scheme for & that parts of the derivation get multiplied. These parts can contain conversion



formulas of any length, so that the multiset of conversion formulas for the whole derivation
is not necessarily reduced. For threads, instead, it is reduced.

For the case of detour conversion on implication, we cut the converted derivation into two
parts:

1. The derivation of the minor premiss A, copied m x n times in the converted derivation.
2. The derivation to C' from m x n copies of A, changed into open assumptions.

No conversion can create new major premisses of F-rules. Therefore only a bounded number
of detour convertibilities on implication can be met, and the cutting into parts must terminate.
Each part either is or becomes normal through conversions other than detour on implication.
By the lemmas, this process stops independently of the order of conversions. We then have
a number of normal derivations that can be composed into a derivation with the original
conclusion. If new convertibilities are found, they are on components of the original detour
convertibilities on impliction, thus, on strictly shorter formulas. Thus, the process of cutting,
normalizing, and composing terminates and we have:

Theorem 7.6. Natural deduction with general elimination rules is normalizing.

Research problem. Show that the cutting into parts and normalization of the parts com-
mutes.

8. Strong normalization

It is known that the commutation of the research problem holds, for Joachimski and Matthes
(2003) proved directly strong normalization for natural deduction with general elimination
rules, or the termination of conversions in any order whatsoever. Their proof uses a system
of term assignment. The above proof of normalization is “almost strong,” in that the only
restriction on conversions concerns the cutting into parts of derivations at detour convertibil-
ities on implication. It would be interesting to find a simple proof of commutation based on
the conversion schemes and their combinatorial behaviour.

9. Applications of normalization

We give applications of normalization for natural deduction with general elimination rules to
proofs of underivability, Harrop’s theorem, and Mints’ theorem on proper assumptions.

(a) Proofs of underivability. If A is a theorem in intuitionistic logic, the last rule in
a normal derivation must be an I-rule. The reason is that an E-rule would leave its major
premiss as an open assumption. We can show underivability of the standard classical formulas,
double negation, excluded third, Dummett law (A D B) V (B D A), Peirce’s law ((A D B) D
A) D A, and so on, by showing the underivability of these when A and B are atomic formulas
P and Q.

(b) Harrop’s theorem. Harrop formulas are defined as follows: Atomic formulas and L
are Harrop, and if A and B are Harrop, also A& B is Harrop. If B is Harrop, also A D B is



Harrop. The idea is that there are no cases (disjunctions) among Harrop formulas, nor any
cases “hidden” inside implications, such as in A D BV C.

Theorem. If ' consists of Harrop formulas and AV B is derivable from T', then A or B is
derivable from T.

Proof: The proofis by induction on the height (max. number of consecutive steps of inference)
of a normal derivation. AV B cannot be an assumption for then I' = AV B. The last rule can
be VI or an E-rule. With VI, leave out the last step. With &F and DFE and major premisses
C&D and C D D, we have

1 1 1
[c™, D", T [D"],T
CkD _AVE,,, CoD O _AVE.,,,

The minor premiss A V B is derivable from C™, D™ T" and D", T, respectively. The major
premiss C'& D is an assmption and therefore a Harrop formula. Then also C' and D are Harrop
formulas and by the inductive hypothesis, A or B is derivable from C™, D" ', and &F gives
the conclusion. With major premiss C D D, D is a Harrop formula and by the inductive
hypothesis, A or B is derivable from D™ . If the last rule is L FE, change the conclusion
AV B into one of A or B. The last rule cannot be VE, for a major premiss C' V D is not a
Harrop formula and therefore not in I'. QED.

(c) Mints’ theorem. Formula A is a proper assumption if it is underivable. Mints’
theorem states that principal formulas in left rules of sequent calculus derivations can be
restricted to proper assumptions. We show the corresponding result for natural deduction:

Theorem. If C is derivable from ', it has a derivation in which all major premisses of
E-rules are proper assumptions.

Proof: Consider a derivable assumption A. The last rule in its (normal) derivation is an
I-rule, so a substitution in a normal derivation of C from T' creates a detour convertibility.
Conversions do not produce new major premisses of E-rules. Detour conversions produce
shorter conversion formulas. Therefore the substitution of derivable major premisses with
their derivations terminates. QED.

In Mints’ original proof of 1993, a derivable assumption (a formula in the antecedent part of
a sequent) is removed by a cut, say, the cut

—+A AT —>C
r—-c¢

Cut

It is not obvious that the repetition of cuts on derivable assumptions and their elimination
terminates. Our proof, in comparison, is almost trivial, because of the knowledge that the
substitution of a derivable assumption produces a detour convertibility. This would corre-
spond to a cut in which both cut formulas are principal in the derivation of the premisses of
the cut.

10



There is an essential difference between Harrop’s and Mints’ theorems, not visible because
we have not spent time on treating quantifier rules. Namely, Harrop’s theorem gives an
effective proof transformation, but Mints’ theorem does not. The reason is that it is not
decidable if a formula is a proper assumption.

10. Translations from natural deduction to sequent calculus

The translation we defined in paragraph 5 is easily defined also in the direction from normal
natural deduction derivations to cut-free sequent calculus derivations. Thus, an isomorphic
translation is established. Translations in this direction have been defined already by Gentzen,
and by Prawitz in his book Natural Deduction of 1965. Gentzen’s translation produces cuts
whenever the standard &FE and DF rules are translated. The “reason” for these cuts is that
the special elimination rules produce derivations that are not normal in our sense, hence, not
isomorphic to cut-free derivations. So there must be these cuts. With Prawitz’ translation,
the sequent calculus derivation is cut free, even if the natural deduction derivation was not
normal in our sense. It therefore follows that there must be a cut-elimination procedure
hidden in Prawitz’ translation. We show these phenomena through some examples:

Gentzen’s translation: In Gentzen’s translation, each rule is translated in two stages. In
the first stage, the open assumptions of a formula C in a derivation are collected into a
multiset (sequence in Gentzen) I' and the expression I' — C replaces the line on which C
occurred. This suffices for I-rules. For E-rules, a second stage inserts a cut. Here are two
examples:

Stage 1.
r
A&B&E I — A&B
A ~ r—- A
r oA
ADB ADE I +A>DB A— A
B ~ T,A — B
Stage 2.
A=A
I' - A&B A&B—)Acut
I'—> A
A — A B—)BLD
r+A>B ASBA—SB
u

A —B

The next example shows a combination of two eliminations with Gentzen’s & FE-rule:

11



Stage 1.

(A&B)&C (A&B)&C — (A&B)&C

A&B  F (A&B)&C — A&B

A (A&B)&C — A

Stage 2.

AYB — AYB
(A&B)&C — (A&B)&C (A&B)&C — A&B A A

Cut

(A4B)&C — A&B A%B — A"
(A&B)&C — A cut

Next eliminate the trivial upper cut with an initial sequent to get

AUB —» AYB Ao A

(A&B)&C — A&B ° A&B — 4 z&
(A&B)&C — A v

Neither premiss of the remaining cut is an initial sequent. The overall conclusion is that
Gentzen’s translation produces an essential cut whenever the derivation is not normal in our
sense, that is, whenever a major premiss of an E-rule has been derived.

Prawitz’ translation:

The translation is defined inductively by the height of a derivation. Assumptions A turn into
initial sequents A — A. We show by a few examples how the logical rules are translated.

Example 1. The last rule is D I:

[A],T
B
A>B "'
Translation of the premiss
AT
B
is by assumption
AT 5B
and an application of rule RD gives
AT 5B a
T >A>B

12



Example 2. The last rule is the standard DF rule with the major premiss an assumption:

r
Aag ADE
C

By assumption, a derivation of I' — A is at hand. Leaving out step DF we get a shorter
derivation of C from B taken as an assumption and formulas IV from I', not necessarily
all. Then also a derivation of B,IY — C is at hand. Weakening is an admissible rule in
Prawitz’ sequent calculus, so also a derivation of B,I' — C' is obtained. Now rule LD derives
A D B,I' = C, modulo possible duplications of formulas in I'. (Prawitz treats contexts as
sets so duplication will not be visible.)

Example 3. Last step is &F with major premiss derived:

(A&B)&C oE
A&B
=
The translation is in two parts:
(A&B)&C . : : A— A L&
A%B A&B — A A&B ALB = 4
: ~ (ALB&C — A ¢ A :

Next the parts are put together to produce

A— A
A&B — A
(A&B)&C — A

L&

L&

Our isomorphic translation produces (as shown in the next paragraph), after elimination of

a trivial cut,

A4B — A&B |, A— A I%

(A%B)&C — AUB " A%B — A "
(A&B)&C — A u

It is not surprising that a cut is produced at the formula A& B. That is where the original
derivation in natural deduction was cut into parts in Prawitz’ translation. We get the result
of the latter translation from isomorphic translation by one step of cut elimination.

Example 4. Step to be translated is DF with major premiss derived:
AD(BDC) A
DE

BO>C B
C

DFE

13



Prawitz’ translation is again produced in two stages. The result is
B—+B A= A

A—-A BOCB—C

AD(BDC),A,B—~C

LD
LD

Isomorphic translation:

A— A BDC’—>BDCLD B—+B C—~>C
AD(BDC),A—BDC B>C,B—C

AD(BDC(C),AB—C

LD
Cut

One step of cut elimination gives Prawitz’ translation.

Derivations are cut into two parts whenever the translation reaches a major premiss of an
elimination rule that is not an assumption. The parts are translated separately and then put
together. This process corresponds to a step of cut elimination.

11. Non-normal derivations and derivations with cuts

This is a vast topic. Convertibilities in natural deduction translate into cuts in which the
cut formula is principal in the right premiss (permutation convertibility) or in both premisses
(detour convertibility). This is quite natural, for what would you do with an assumption A
if it had not been analyzed into its components by an E-rule?

We give a couple of examples of the translation of non-normal derivations. They show
how major premisses of E -rules always become cut formulas.

1. Non-normality with a detour convertibility:

r A
A B :
A&B C o
C
This is translated into
r A A, B,0
A B o
T.A > A4B ™ 4A&B.e S50 ™™
TA0 > C cut

The translation now continues from the premisses of R& and Lé&.

2. Non-normality with a permutation convertibility:

[A],[B),T
A&B  C&D :
C&D b E

5 &E

14



The translation is

A,B,T C,D,A
c&D I
A4BT - C&D "™ C&D,ASE"™

AUB,T,A > E Cut

It happens that the cut formula is always principal in the right premiss of cut. Thus, a non-

normality becomes a left rule and a cut in sequent calculus. The existence of an independent

rule of cut in place of non-normality makes cut elimination more complicated than normal-

ization, and weaker in properties (failure of what would correspond to strong normalization).
For more, see SPT, ch. 8.

IIT CLASSICAL NATURAL DEDUCTION

We give first a system of natural deduction for the full language of classical propositional logic,
then prove normalization and the subformula property. Attempts at finding a corresponding
system for classical predicate logic have not resulted in a natural finitary system of rules,
contrary to the situation in sequent calculus.

12. Natural deduction for classical propositional logic

A rule of excluded middle for atomic formulas P,Q, R, ... is added to the system of intuition-
istic natural deduction for propositional logic with general elimination rules:

P [P

c c
C

EMo,1

In the first subderivation, m > 0 copies of the formula P and in the second, n > 0 copies of
the formula ~ P, are discharged.

The rule of indirect proof, used by Prawitz in 1965, is derivable with EMj: Assume there
is a derivation of 1 from ~ P. We then have the derivation

[~ Pl
. L
ia o LE
7 EM,,1

Contrary to the rule of indirect proof, the premiss ~ P is not discharged after | has been
derived, but one step later. The rule of indirect proof does not convert to the components

15



if it is applied to a disjunctive formula. For this reason, Prawitz had to consider the V-free
fragment. Rule EM for arbitrary propositional formulas A instead,

[A™] A"

C C
— < EM,(
C
is admissible:
Theorem. Rule EM is admissible for arbitrary propositional formulas.

Proof: We show that application of rule EM to a formula D converts to applications of rule
EM; to the atoms of D. Consider the case in which indirect proof is insufficient, that of a
disjunction A V B: We assume given the two derivations

AV B ~(AV B)
C C
We can assume that AV B and its negation are simply discharged in rule EM:
1 1
[AVvB] [~(AVB)]

c C

G EM,1
This derivation is converted into a derivation with EM applied to A and B:
~4] [A]__ [~B] [B]
2
[AV B T " T
[ j] T VE,1
4 ———DI2
B , 4avB"” ~(AV B)
AV B : :
: C C
: EM,3
C C ’
G EM,4

The other cases of conversions are similar to those for indirect proof. In the end, atoms of
formula D or 1 are reached. The false formula L is not an atom, but applications of rule
EM can be eliminated in this case: If a derivation of formula C' from the assumption ~ L is
given, the assumption is derivable by L F and DI. QED.

13. Normal derivations and the subformula property

Definition. A derivation in intuitionistic natural deduction +EMy is normal if no instance
of EMy is followed by a logical rule and all subderivations up to instances of EMy are normal
intuitionistic derivations.
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Lemma. Rule EMy commutes down with the logical rules, modulo possible multiplications of
open assumptions.

Proof: A routine verification. QED.

Thus, if formula C is classically derivable, the corresponding normal natural deduction deriva-
tion has intuitionistic subderivations followed by instances of EMj. In the system of Prawitz,
the rule of indirect proof for atoms is applied after the eliminative part and before the intro-
ductory part of a normal derivation.

Theorem. Subformula property.

(1) In a normal derivation of C from open assumptions I in intuitionistic natural deduction
+EM,, instances of EMy are on atoms of ', C.

(ii) In a derivation of C from open assumptions T in intuitionistic natural deduction
+EM,, instances of EMy can be restricted to atoms of C.

Proof: We first note that applications of EMj to atoms not in I', C can be permuted so that
they come right after the intuitionistic subderivation. For (i), assume there is an instance of
EM,; on an atom not in I', C. Let the first of these be on an atom P:

1 1
[P],PI [NP]aF”

C c
C

EM,1

Both subderivations are intuitionistic and by assumption normal. How can P be active in the
first derivation? It cannot be a premiss in an introduction rule, nor is it a major premiss of
an elimination rule, so it must be the minor premiss of DF. Then the major premiss is of the
form P D A and this is either an open assumption or a subformula of a major premiss that
is an open assumption or a discharged major premiss or a subformula of a discharged major
premiss. In the latter cases the major premiss is a subformula of C.

For (ii), consider a derivation with a first atom P active in EM, but not in C. The
subderivation of C from P,T” is transformed into a derivation of ~ P from ~ C,T" which
is then substituted for the assumption of ~ P in the second subderivation, followed by an
application of EM to C'

1
[P, T
2 :
[~C] C
1 "
N—P oIl &
2 :
[C] C EM,2
C b

By the lemma of the preceding paragraph, the application of EM to C' converts to atoms of

C. The proof transformation is repeated for the remaining atoms that are not atoms in C.
QED.
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Note that (ii) does not require normality.

14. Interpretation of classical propositional logic

Each instance of the rule of excluded middle can be presented as an instance of VE in which
the law of excluded middle is assumed for the atom in question:

[1%] [pr]

P/Y~P C C
C

VE,1

Given a derivation of the formula C in classical propositional logic, we do the above trans-
formation for each instance of EMy. Then we have a derivation of C from the original as-
sumptions plus those instances of excluded middle on which the rule was applied. Collecting
together these instances PV ~ Pi,..., P,V ~ F,,, we have the result that

(P1V NPl)& . &(PmV NPm) OC

is derivable in intuitionistic natural deduction. This gives us an interpretation:

Classical propositional logic is the special case of intuitionistic propositional logic in which the
atomic formulas are assumed to be decidable.

15. Infinitary natural deduction

The conditions for direct derivability of formulas by introduction rules bear a remarkable
similarity to the definition of truth in model-theoretic semantics. Thus, it has been suggested
that one gets the proof-theoretic reading by simply changing “truth” for “proof” in the truth
conditions for formulas. However, the similarity breaks down in the case of the universal
quantifier. The truth condition for Vz A is simply that A(a/z) be true for each element a of
the domain of discourse. The provability condition, instead, requires a proof of A(y/z) for
an arbitrary y, which means that there is a uniform proof for each of the instances A(a/z).
In the classical semantics, nothing of the kind is required. The solution we propose to the
discrepancy is to bring the syntax closer to the classical semantics, through an infinitary
introduction rule for the universal quantifier. We assume a well-defined formal syntax with
a denumerable infinity of expressions for individual constants ai,a2,... that make up the
domain of quantification D. The rule of universal introduction is

Alar/z) A(az/x)
VzA

VI,

The introduction rule for the existential quantifier is

Aai/z)
dzA I

18



The standard universal introduction rule is admissible: Assume that there is a derivation of
A(y/z) for y arbitrary. A substitution of y in this derivation by a;, for ¢« = 1,2,..., gives
derivations of A(a;/z) for i = 1,2,..., and rule VI, concludes VzA.

It is possible to formulate the calculus so that free variables are not used.

We now determine the general elimination rules for the above quantifiers by the inversion
principle. A strict obedience to the inversion principle would give the following universal
elimination rule:

1 1
[Alar/x)™ ], [Alaz/z)™]; ...

Vz A C
C

We allow instead only one instance of A and obtain a finitary rule:

VE,,1

[Afas )™

Yz A C
C

VE,1
For 3, an infinitary elimination rule is determined:
1 1
[Alar/z)™]  [A(a/z)™]

dz A C C
C

3E1

The rule has instances for any mi; > 0, mg > 0,.... As for universal introduction, the standard
existential elimination rule is admissible.

With the above rules, a perfect duality of universality and existence is achieved.

We shall designate the standard system of intuitionistic natural deduction by ND and the
one with the above quantifier rules by ND,,. There are no free variables in the quantifier rules
of ND,,, thus, no variable restrictions to care about, either.

The mirror image duality of universal and existential rules of ND,, is displayed better if
the rules are written as sequent calculus rules:

' » A(a;/z) A(ai/z),I' = C
T - 324 © VAT = C 7
Fl — A(al/m) F2 — A(G,Q/LC) " py A(al/x),l"l — C A((Q/])),FQ —C .. e
I',Ty,... = VzA ¢ J3zA,T{,Ty,... = C ¢
The infinitary universal elimination rule becomes
A(ar/z), Alag/z),...,I' —> CL y

VA, T — C

19



Theorem 1. A closed formula is derivable in ND if and only if it is derivable in ND,,.

Proof: The intuitionistic rule of universal introduction was shown admissible under rule
VI,, and an analogous argument shows standard existence elimination admissible. In the
other direction, consider a first instance of rule VI, in a derivation with the conclusion VzA.
Each of its premisses A(a;/x) is derivable by the rules of ND. For each valuation v, then,
v(A(ai/z)) =1 so by definition v(VzA) = 1 and by the completeness of ND, Vz A is derivable
in ND. If the first rule is 3F,,, the intuitionistic subderivations are transformed into

1
[A(as /)™

C

A(a;/z) D C o

followed by an application of rule VI, to conclude Vz(A D C). By above, this is derivable in
ND so C' is derivable from dzA in ND. QED.

Theorem 2. Derivations in ND,, are normalizing.

Proof: The new cases of detour convertibility are on the quantifiers. We have the conversions

s s 5 (A /)]
A(ar/z) Alaz/z) ... A(ai/z)... :

_ Ala/2)
VoA " Cunw
C UAw/o)] A/o) (A s
Alwf) ; ; Alai/a)
dz A C = C ... C VE 1 C

These conversions work in the same way as the standard detour conversions on V and 3. The
same holds for permutation convertibilities: If a major premiss of an E-rule has been derived
by JE, with the conclusion C, the elimination is permuted up in the auxiliary derivations of
C from the assumption A(a1/z), from the assumption A(az/z),.... QED.

16. Natural deduction for classical predicate logic

We assume that all quantified formulas are in prenex normal form. The rule of excluded
middle of propositional logic is generalized into infinitary rules for each quantifier prefix class
II,,%,. The simplest cases are universal and ezistential excluded middle. For a lighter
notation, we assume that each discharged formula is simply discharged:

[P(a), Plag),..]  [~Plas)] Pa)] [~ Plar),~Plas), ]
C C C VE Mp,1 C C C dE Mo,1
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In the case that the P(a;) are the same constant proposition P, the schemes reduce to the
propositional rule. A few examples will show the naturalness of these rules of inference. A typ-
ical classical mode of inference is to consider the two cases given by the formula Vz A vV dz ~ A.
We have with a rule of universal excluded middle the derivation:

1 1
Aw/o) Alwrfo),. ] [~Aw/)]
Yz A vI “ dr ~ A v
VoAV dr ~A VmAVElxNAVEMl
VzAV Iz ~A ’

The dual formula JzAV Vz ~ A is derived analogously by rule 3EM. A further example
shows a classical derivation of the existential formula 3z(A(z) D B), in which B is assumed
to be a constant proposition. For better readability, we leave out the substitution notation
and write arbitrary formulas as if they were atomic formulas:

2 2 1
[A(al)aA(a2)7"'] ~Al(a; Ala;
VzA(z) D B VzA(z) Vo ~ A ])]J_ ) o
B DFE EJ_E
Aa;) > B D;I A(a;) D B 3;
Jz(A(z) D B) Jz(A(z) D B) -

Jdz(A(z) D B)

The other classical prenex formulas are derived similarly. The generalizations of rules of ex-
cluded middle to an arbitrary number of universal or existential quantifiers, that is, the prenex

classes Iy, ¥y, is straightforward: For a formula Vz; ...Vz,P(z1,...,%,), the corresponding
rule of excluded middle requires a derivation of C' from all instances of P, and a derivation
of C from at least one counterinstance to P. Dually, the rule for 3z; ... 3z, P(z1,...,z,)

requires a derivation of C from at least one instance of P, and a derivation of C from the
negations of each instance of P.
The next quantifier classes are IIs and 5. The rule for Il is:

[P(al,ail),Pl(ag,aiz), ...]  [~Pl(aj,a1), r\flP(aj,ag), o

c C

v3 ,
c EMy,1
The rule for Xq is:
1 1
[P(G,Z', 0,1), ]?(a,-, G,Q), .. ] [NP(al, aj), f\jP(a,g, aj), . ]
¢ ¢
c IVE Mo,1
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The general case of rules of excluded middle is seen from the next cases, the prenex classes
IT3 and ¥3. To simplify notation, we write ¢ for a;. Rule VIVEM, requires derivations of C
from

P(laila )aP(l 7'17 )7
P(2,i9,1), P(2,19,2),..

and from
NP(Ja 17k)’NP(j52,k)a cee

for some j, k. Rule 3VAE M, requires the duals of these derivations. It is now straightforward
to write rules of excluded middle for arbitrary prenex classes II,,, ¥.,,. The corresponding rules
are designated by II, F M, and %, E My, and the infinite collctions by IIEMy and X FE M.

Theorem 1. Rule EM is admissible for arbitrary formulas.

Proof: The propositional part reduces as in paragraph 12. For quantificational formulas, we
consider the case of Vz3yA(z,y) which shows how the general case is handled. The derivation

VadyA(w,y)]  [~VayA(s,y)]

C C

EM,1
C
converts, with discharges indicated only by labels to save horizontal space, into the derivation
4. L 4. L
9 NA(Jal) A(Jal) NA(]aQ) A(]a2)
. SE SE
4 4 5 WAG,Y) L L
A(l,’ll) ar A(2712) ar V:L'HyA(m,y) J_VEQ
ALY ARy ... L 1 ’
VzyA(z,y) ) ~VayA(z,y)
c o Cyapma

The right branch shows typical nested major premisses of E-rules. The case 3zVyA(z,y) is
dual to this one. It is now clear how the general case reduces to rules I, EM and X, EM
on propositional formulas. We still have to show that these convert further to atoms. We
consider the case of the above conversion on VAEM. There are three cases according to the
form of the propositional part:

1. A& B: The relevant part of the derivation, with renamed labels, is
1 1 1 1
[A(L,i)&B(1,i1)]  [A(2,i2)&B(2,42)] ... [~(A(, D&B(;1))] [~ (AU, 2)&B(5,2))] ...
c c
C

vIEM,1
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We write the conversion in two parts, with the last step of VAEM omitted. In this step, the
open assumptions from both subderivations shown below are discharged. Brackets around
the discharged A- and ~ A-formulas and symbols for rules that are obvious are left out from
the first subderivation:

3 1 3 1
5 ~A@G,1) A1) ) ~A(5,2) A(5,2)
A(j, 1)&B(j, 1) L A(4,2)&B(5,2) L
A(ls,il) B(1,i1) A(23,i2) B(2,i2) n 312&&1 n Dlz&E,l
A(Li)&B(1,41)  A(2,i2)&B(2,i2) ... ~(A(5,1)&B(j5,1)) ~ ' ~(A(5,2)&B(5,2)) ~
¢ G évaEM,s
The right branch of the derivation is
4 4
~B(k,1) [B(k,1)] ~B(k,2) [B(k,2)]
[A(k, 1)&B(k, 1)] I 2B Ak, 2)&B(k, 2)] 1 o
) ) &E.A ’ 2 &E 4
DI,5 = DI,5

~(A(k,1)&B(k, 1)) ~ (A(k,2)&B(k, 2))
c
A last step of VAEM ischarges the B- and ~ B-formulas. 2. AV B: The conversion is similar

to case 1.

3. A D B: For typographical reasons, we show the conversion when rule VEM has been used.
Rule VAEM works in just the same way. Discharge brackets and some rule symbols are left
out:

6 4 6 5 3
~AL) AQ) ~AR) AR) ) 5 ,  ~BG) _ BG)
L L, B(1) B(2) Va(A D B) I
BM) B@) | A(1) D B(1) A(2) D B(2)... T Ve
A > B - A(;; 2 BE) Va(A > B) T s
(A D : .
5 ¢ vEMS
¢ C c JEM,6
QED.

Corollary 2. The calculus ND,+I1EMy+3XE My is complete for classical predicate logic.
Proof: By the theorem, rule EM is admissible for arbitrary formulas A. The law of excluded
middle for A follows: . .
4 A
AV ~A AV ~A
AV ~A

vI
EM,1
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QED.

The main task of constructing a classical calculus of natural deduction for the full language
of predicate logic is now finished. Contrary to the propositional case, there is no complete
separation of intuitionistic and classical inferences:

Theorem 3. Rules IIEMy and X EMy permute down with the logical rules except when an
infinity of premisses in V1, or 3E, have been derived by rule EM.

Proof: Consider rule &I with the premisses A and B derived by VEM. The derivation is

1 1 2 2
P(),P@),..] [~PE)]  [Q1),Q®)-.] [~QU)
A 1 A VEM,1 B B VEM,2

B
A&B &l

We shall write the infinite assumptions as P = P(1), P(2),... and Q = Q(1),Q(2),.... Rule
VEM permutes down:

1 3 2 3

1 3 3 2
Pl Q [~PG)) [Q  [P] ~QG] [~PG)] [~QG)

A B A B A B A B

— s &I — s &I — s &I &l
ALB A%B v ALB AB
ALB AYB ..
ALB !

Permutations for all the other finitary rules is easy. The generalization to arbitrary rules
1, EMy and X, EMy is straightforward for these rules. With rules VI, and 31, if an infinity
of premisses has been derived by rules EM, the permutations make the depth of derivation
grow indefinitely. QED.
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