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Abstract: A formulation of lattice theory as a system of rules added to sequent calculus is
given. The analysis of proofs for the contraction-free calculus of classical predicate logic known
as G3c extends to derivations with the mathematical rules of lattice theory. It is shown that
minimum-height derivations of quantifier-free sequents enjoy a subterm property: all terms in
such derivations are terms in the endsequent.

An alternative formulation of lattice theory as a system of rules in natural deduction style
is given, both with explicit meet and join constructions and as a relational theory with ex-
istence axioms. A subterm property for the latter extends the standard decidable classes of
quantificational formulas of pure predicate calculus to lattice theory.
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1. INTRODUCTION

Gentzen’s analysis of the structure of proofs in pure logic can be extended to mathemat-
ical theories, in the first place to theories that permit a quantifier-free axiomatization.
The axioms are converted into mathematical rules of proof by which a suitable for-
mulation of predicate logic is extended. The latter is a sequent calculus that needs none
of the standard structural rules of weakening, contraction, or cut. These extensions were
found first in Negri (1999) and Negri and von Plato (1998).

In Negri, von Plato, and Coquand (2001), a crucial property of formal derivations with
mathematical rules was located: It happens for some theories that if a given derivation
cannot be shortened, all terms in the derivation are terms in the endsequent. This sub-
term property is by no means obvious or universal, because in a proof search that starts
from the conclusion, the rules can instantiate new terms in the premisses. Examples of
theories that permit a sequent calculus formulation with the subterm property are partial
and linear order, projective and affine geometry, and lattice theory.

In the following, we shall present lattice theory as a system of rules of sequent calculus
that act on the left (assumption or antecedent) part of sequents. An alternative formu-
lation is given as a system of rules that act on the right (conclusion or succedent) part,
with the remarkable simplification that the number of possible cases in the succedent
can be limited to one. This latter system gives a solution to the derivability of atomic
formulas a < b in lattice theory in a number of steps bounded by the length of the terms
a,b.

The general problem of derivability of a quantifier-free sequent I' — A is equivalent,
by the invertibility of the logical rules of the sequent calculus we use, to the derivability
of a finite number of sequents I'; — A; with only atoms in T';,; A;. By the subformula
property of sequent calculus, these sequents are derived by only the rules of lattice theory.
There is no need to consider parts of derivations with logical rules, and we shall follow
this and assume all formulas to be atomic unless otherwise stated. For the logical rules,
we refer to Troelstra and Schwichtenberg (2000) or Negri and von Plato (2001).

The classical sequent calculus G3c has proved to be expecially suited for proof analysis.
It has the remarkable property of height-preserving admissibility of the rule of contrac-
tion. In terms of root-first proof search, this property inhibits those instantiations of rules
that produce a duplication of a formula in a premiss.

In the formulation with left rules, the derivations in lattice theory are linear: Each
rule has at most one premiss. All terms in a minimum-height derivation of ' — A are
subterms of the terms of I'; A. The number of distinct atomic formulas a < b with a,b
such subterms gives an upper bound for the height of derivation of ' — A. In the
formulation with right rules, the derivations can have a single formula in the succedent.
These rules can be readily translated into a system of rules in natural deduction style,
with intuitionistic logic as a basis. We shall study such systems for lattice theory in
sections 5 and 6. The subterm property is proved by showing that the rule of transitivity
can be permuted up relative to the other lattice rules.

It has been useful to consider both left and right rule systems. In establishing prop-
erties of axiomatic systems through proof analysis, the combinatorial possibilities for
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formulating systems of rules are numerous, and it is difficult to tell what path will lead
to results.

The subterm property shows derivability of universal formulas in lattice theory to be
decidable. There is no systematic corpus of results on decidable classes of formulas for
predicate logic with functions. The presence of functions permits the instantiation of ever
new terms different from the previously introduced ones, with no bound on proof search.
Lattice theory can be formulated as a relational theory, with two additional basic relations
and existential axioms instead of functions (constructions). From the subterm property
for the corresponding system of rules follows that most of the standard decidable classes
of quantificational formulas of pure predicate logic extend to lattice theory, similarly to
the case of partial order.

Derivability in lattice theory was studied by Thoralf Skolem in a forgotten paper of
1920 (see Burris 1995 and Freese et al. 1995 for its rediscovery by lattice theorists). His
main theorem gives the decidability of universal formulas of lattice theory, as a theory
with existential axioms instead of explicit constructions. The corresponding result for a
formulation with constructions is the first aim of our paper.

In a proof-theoretical approach, lattices are defined axiomatically and their properties
established by analyzing the structure of formal proofs. The methods of this paper lead,
in principle, to a full control over the structure of possible proofs in lattice theory.

2. AXIOMS AND RULES

2.1. Notation: Sequents I' — A hayve finite, possibly empty, multisets of formulas as
antecedent I' and as succedent A. The proof-theoretical meaning of a sequent I' — A
is that A gives the open cases that are derivable under the open assumptions T'.
An empty succedent represents the impossible case.

Arbitrary formulas are denoted by A, B, C, ... and atomic formulas (atoms) by P, Q,
R, Pi, Q1, Ry,.... Sequent calculus derivations are trees with initial sequents of the
form P,T — A, P as leaves. An atom that makes a sequent an initial sequent is called a
responsible atom. For the logical rules, we use the classical sequent calculus G3c.

2.2. Universal theories: Given a universal axiom V...VA, consider the conjunctive
normal form of its propositional matrix A. Each conjunct is a disjunction of atoms and
negations of atoms. We may write these conjuncts in the equivalent form P& ... &P, D
@1V ---V Qy. If each of the P; follows from some open assumptions I', the cases under
I are @4, .. .,Q,- This mode of inference is formalized by the right rule-scheme:

F%Aana"'aQn;PI F%Aana"'aQn;PmR
F%AJQIJ“'JQ'R

ule

For full generality, this rule-scheme permits arbitrary additional open cases A in the
succedent. Formulas @1, ..., @, in the conclusion are the principal formulas of the rule.
Each formula P; in a premiss is a removed atom. The principal formulas Q1,...,Q,
are repeated in the premisses (see below).

There is a dual left rule-scheme that has the same deductive strength as the right
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scheme, with principal formulas Py, ..., Py:

Ql,Pl,...,Pm,F—)A Qn,Pl,...,Pm,F—)A
Pl,...,Pm,F—) A

Rule

In words, if A follows from each of the cases @; (and I'), it already follows from the
P; together (and I'). As in the right scheme, each instance of a rule removes exactly
one atom @); from each premiss. As a limiting case, if n = 0, a rule has no premisses.
Its conclusion then acts as a topsequent by which a derivation branch can start. This
situation is not encountered in lattice theory. The other limiting case is when m = 0 and
the rule has no principal formulas.

Derivations by a left or right rule system are equivalent to derivations that start with
initial sequents and basic sequents Pi,..., P, — @1,...,Q, corresponding to the
rules, and use cuts on atoms

r-AP PT — A
r—A

Cut

as the only rule of inference.
Initial sequents of the form P,I" — A, P, instead of P — P, are used for obtaining
height-preserving admissibility of the rules of left and right weakening:

I - A I - A

AT A" To5A 4™

Height-preserving admissibility of a rule in a given system of rules means that if the
premiss of the rule is derivable with a derivation the maximum branch of which has no
more than n steps (height of derivation < n), the conclusion also is derivable in the
system with a height of derivation < n.

The principal formulas, @1, ..., Q, in the right scheme and P, ..., P,, in the left one,
are repeated in the premisses in order to achieve height-preserving admissibility of the
rules of left and right contraction:

AAT —» A ' - AAA
AT A ° TSaa

Thus, if a derivation has a rule instance that removes one of two identical atoms of
some premiss, the rule can be deleted and the derivation shortened by height-preserving
contraction.

The repetition of the principal formulas Py,..., P, in the left rule-scheme can be
justified by noting that if the assumptions Py, ..., P, are permitted in the conclusion,
it does no harm to permit the use of these assumptions elsewhere in the derivation, and
similarly for the right rule-scheme.

It can happen that a rule has instances in which two identical principal atoms @, @ in
the conclusion:

' —=AQ,---,0,Q,...,Qn, P ... T — A,Ql,...,Q,Q,...,Qn,PmR
' - AQ,...,0,Q,...,Qn,

In this case, the rule with duplications contracted to @,

FﬁA;Ql;"':Q;"';Qnypl FﬁA:Ql:---:Q;---:QumR
FéA;Ql;"';Q:"';Qn

ule

ule®



Sara Negri and Jan von Plato 4

has to be added to the system in order to have height-preserving contraction, and simi-
larly for systems of left rules. A rule system thus completed is said to satisfy the closure
condition. There can be only a bounded number of contracted forms of rules to be
added in order to satisfy the condition.

Theorem 2.1. The structural rules of left and right weakening and contraction are
height-preserving admissible and the rule of cut admissible in extensions of G3c with
rules following the right rule-scheme and the left rule-scheme and satisfying the closure
condition.

A proof for the left rule-scheme is given in Negri and von Plato (1998). The right rule-
scheme has a dual proof.

Height-preserving admissibility of contraction is a key property of extensions with
mathematical rules, which permits to prove results by arguments based on minimum-
height derivations. Instantiations of rules that give a duplication of an atom in some
premiss are not permitted.

The invertibility of the logical rules of the calculus G3c also holds for the calculus G3c
extended with rules following the rule-scheme (Negri and von Plato 1998). This property
has as consequence the separation of derivations into initial parts with mathematical rules
followed by a part with logical rules. For this reason we shall consider only derivations
of sequents that contain no compound formulas.

2.3. Theories with existence axioms: In Negri (2003), it is shown how axioms with a
quantificational structure can be turned into mathematical rules, if these axioms are what
are known as “geometric implications” in categorical terms. For the present purposes, it
is sufficient to say that the axioms of lattice theory in a relational formulation and with
existential axioms instead of constructions fall under the “geometric rule-scheme.” An
existential axiom that replaces a construction and postulated properties of constructed
objects has the form Vz ... Vy3z A(x,. .. ,y, z). It corresponds to the construction of some
z from any given x,...,y such that A(z,...,y,2) holds. Constructions can have condi-
tions, such as in elementary geometry where an intersection point of two lines, say, can
be constructed only if the lines are convergent. We do not meet this situation in lattice
theory, in the existential axioms of which the propositional part is an atomic formula
P(z,y,z). The rule corresponding to such an existential axiom is, with parameters a,b
in place of the universally quantified variables:

P(a,b,2),T — A
r—-A

E-Rule

The rule has the variable restriction that the eigenvariable z must not be free in the
conclusion. Assuming the premiss of the rule, application of the logical rule L3 followed
by LV twice gives as conclusion

VaVy3zP(z,y,2),[ = A

so that the rule has the same force as the existential axiom.

By the general theorem of Negri (2003), weakening and contraction are height-preserving
and, together with the rule of cut, admissible in extensions of G3c with rules following
the geometric rule-scheme.
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2.4. Single succedent rules in natural deduction style: The axioms of lattice theory
are all Harrop formulas, i.e., they do not contain any essential disjunction. Therefore
the left rule system has linear derivations. In terms of the rule-schemes, lattice theory has
rules with n = 1, and for this reason it is possible to give a single succedent rule system
for lattice theory. Furthermore, these rules can be written “in natural deduction style,”
meaning that the open assumptions appear at the leaves of derivation trees, instead of
being collected together on each line. In general, an axiom of the form P& ...&P, D @

becomes the rule
P ... P,

Q

From a comparison of this form of rule with a single succedent left rule scheme, it is
seen that the root-first construction of a derivation with left rules corresponds to a direct
derivation from assumptions with natural deduction style rules. Duplication of a formula
in a derivation with left rules corresponds to looping, i.e., to having a natural deduction
style derivation tree with a branch in which the same formula is concluded twice.

3. LATTICE AXIOMS AND RULES

We shall give the standard axioms of lattice theory with the meet and join constructions,
and a corresponding system of left rules.

3.1. Partial order: The axioms of a partial order are

a<a, Ref, agsb&bgscDdaxge, Trans.
These axioms lead to the system:
1. Left rules for partial order

aga,l =5 A ag<cagbbgel - A

R T
r— A i a<bbgel —» A ene

There is an instance of Trans with a duplication in the conclusion, when a,b, and ¢ are
syntactically identical, to be written a = b, b = ¢. This instance,
a<a,a<a,a<a,l = A
a<a,aga,l =5 A

Trans

is also an instance of rule Ref so that the closure condition is met without the addition
of any rules.
We use a defined notion of equality, with the obvious definition

a=b= ag<b&bga.
3.2. Lattice operations and laws: The following can be considered a standard axiom-

atization of lattice theory with meet and join operations anb (the meet of a and b), and
avb (the join of a and b):

anb<a (L), a<avb (Rvi),
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anb <b (Lng), b<avb (Rva),
<a&cgbDdegandh (RA), agc&bgeDdavbge (Lv).

The substitution of equals in the lattice operations,
b=cDanb=anc, b=cDavb=avc,

can be proved, because equality is defined through the partial order relation.
The above axiom system corresponds to the system of rules:

2. Left rules for lattice theory

wxbsa,F—)AL/\ agavb,F—)ARv

r > A ! r > A !

mbsb,I‘—)AL/\ bgavb,F—)ARv

N : N :
cgaAb,cga,cgb,F—)AR avb<c,a<ebg cF—)AL
cga,c<h T - A " agcbge, I - A v

The mnemonics LA, etc., indicate on which side of the removed atom the lattice opera-
tion is.

Before considering the closure condition, we give an example of a derivation in the
calculus for lattice theory, namely the substitution law b = ¢ D aab = anc. We first de-
compose root-first the logical part:

bgec b—>a/\b<aAc bge,c<b— anc <anb
b < <b — anb < anc & anc < anb
gc&c b — anb < anc & anc < and
<c & c<bDanbgane & anc < and

R&

Next the basic sequents b < ¢,¢c < b — anb < ancand b < ¢, ¢ < b — anc < anb are derived
by lattice rules. We show only the first:

anb < anc,anb < a,anb < c,anb < b,b < c,c <b — anb < anc
RA
anb < a,anb < c,anb < b,b<c,e<b — a/\bgaAcL
A1
anb < c,anb < b,b<c,c <b— anb < anc
Trans

a/\bgb,bgc,cgbﬁa/\bsa/\cL
b<e,e<b— anbganc

Having chosen rule Las as the downmost step, we find that rule Trans matches the
conclusion, and, after an instance of Laq, rule Ra, with its removed atom the responsible
atom. Thus, a problem of proof search is encountered when no rule with a principal
formula in the conclusion applies, and one of the four rules LAy, Las, Rvy, Rva, or Ref,
has to be instantiated.

The uniqueness rules for the meet and join constructions can have instances with a
duplication in the premiss and conclusion:

c<ana,c<a,c<a,l’ = A
c<a,c \a,F—>A

RA
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and similarly for join. The rules with the duplication contracted in both the premiss and
conclusion are added to the system to meet the closure condition:

3. Closure for left lattice rules

cage, = A
e, = A

c<ana,c<a,l’ = A ava <
Lv*
a

RA®
c<a, ' = A

As shown in Negri and von Plato (2001, p. 148), the contracted rules are admissible and
contraction admissible even in the system without the explicit addition of such rules.
However, in order to guarantee height-preserving admissibility of contraction, the rules
resulting from the closure condition are needed. The whole system of extension of G3c
by the rules of partial order and the left lattice rules and their closures (1.—3. above) is
denoted by G3LT. We conclude by theorem 2.1:

Theorem 3.1. The structural rules of left and right weakening and contraction are
height-preserving admissible and the rule of cut admissible in G3LT.

Derivations with the rules of lattice theory are linear, with just one premiss, and all
topsequents are initial sequents. The succedent remains the same throughout. Therefore
no sequent with an empty succedent is derivable and we obtain by this simple proof
analysis the

Corollary 3.2. Lattice theory is consistent.

4. THE SUBTERM PROPERTY

A derivation that cannot be shortened by the deletion of a rule is of minimum size.
Such shortenings, if possible, are produced as follows:

1. There is a duplication P, P in a premiss of a rule and P is the removed atom. The
conclusion is obtained by deleting the rule and applying height-preserving contraction to
the premiss.

2. The responsible atom in the initial sequent is not the removed atom in the first step.
Now the conclusion is also an initial sequent and the first step can be deleted.

In both cases, the shortened derivation is a proper subtree of the original one. The
second case is propagated down the derivation tree: The removed atom in a second step
of inference must be a principal atom of the first step, etc. Call the principal atoms of a
rule atoms activated by the removed atom of the rule and consider the transitive closure
of the activation relation. We now have:

Observation 4.1. Fach removed atom must be in the transitive closure of atoms acti-
vated by the responsible atom in the initial sequent, or else the derivation can be shortened.

Theorem 4.2. Subterm property. All terms in a minimum-height derivation of T — A
in G3LT are subterms of T', A.

Proof: The derivation of ' — A starts with an initial sequent

ag<e,I" - Allage



Sara Negri and Jan von Plato 8

in which A’,a < ¢ is equal to A. The first step removes a < ¢, else the derivation can be
shortened. If the first step is one of Ref, LAy, Las, Rvy, or Rvs, the conclusion follows in
one step from the initial sequent, and the claim holds. Else the first step is Ra, Lv, or
Trans. For each occurrence of these rules we consider the atoms activated by the rule. By
observation 4.1, at least one of them has to be the removed atom in the following step.
Inspecting the rules, we see that the terms in the activated atoms are subterms of a,c
and therefore subterms in A, except for rule Trans. Therefore, if the derivation contains
a term b; which is not a subterm of the conclusion, call it a new term, the atom in
which it occurs is activated by Trans. Consecutive applications of Trans produce chains
of activated atoms
dgbo,bo < bl,...,bn Le

in which d, e are subterms of the conclusion and the b; are new terms. Since all the atoms
of the chain contain new terms, they have to be removed further down in the derivation.

We show that it is not restrictive to suppose that d < by is not removed by a left rule:
If d < by were removed by La; or Lag, then by would be a subterm of d, hence of the
conclusion, contrary to the assumption. If d < by were removed by Lv, then d = dyvd,
and we have the activated atoms d; < b, d2 < b, so the chain could be replaced by either
of the chains

d; gbo,bo < bl,...,bn <e, fori = 1,2
In the case of Lv*, di = d», and a similar replacement in the chain is done. Since the
number of lattice operations in the left end of the chain is decreased, the replacement
eventually leads to a chain with the desired property. We show in a similar way that it
is not restrictive to assume that the last atom in the chain, b,, < e, is not removed by a
right rule.

In the chain d < bg,bo < b1,-..,b, < € there is a contiguous pair of atoms that are
removed by the rules Ra, La; or Rv;, Lv (or by pairs with one of the contracted rules,
RA*, La; or Rv;, Lv*): Start with d < bp. If the outermost lattice operation of by is A, it
can be removed only by RA. Whenever an atom is removed by Ref we analyze the next
atom, so we need not list it among the possibilities. Then by < by can be removed by
Rv;, Rn or La;. In the last case we are done, else we continue along the chain with the
case analysis: If the first case had occurred, by < by is removed by Lv, Rv;, or Ra; if the
second, it is removed by Rv;, RA, or La;. In the last case we have the conclusion, else
we continue the case analysis until we find that b, 1 < b, is removed by Rv; or Ra. But
then b, < e is removed by Lv or La;, respectively, since by assumption it is not removed
by a right rule.

We prove the existence of a contiguous pair in a similar way if the outermost lattice
operation of by is v.

Let two contiguous atoms b < fag and fag < f be removed by RA, La;. Then the topse-
quent contains the atoms b < f and b < g. Replace the two atoms b < fag and fag < f
with the single atom b < f, and continue the derivation as before except for deleting the
instances of Trans in which the two atoms were active and the two steps RA, La;. In
this way the derivation is shortened. A similar simplification is performed for contiguous
pairs removed by the rules Rv;, Lv. In case the contiguous pair is removed by one of
the contracted rules, say RA*, La;, the simplification is a special case of the above: The
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chain contains the atoms b < faf and faf < f, which are replaced by the single atom
b< f. QED.

Corollary 4.3. Conservativity of lattice theory over partial order. If ' — A
is derivable in G3LT and I' and A do not contain lattice operations, then I' — A is
derivable by rules Ref and Trans.

Proof. By the subterm property, no terms in a minimum-height derivation contain lattice
operations, thus the derivation contains no lattice rules. QED.

A proof of the conservativity theorem was given in Negri and von Plato (2001, theorem
6.6.5). The above proof of the subterm property for lattice theory is a generalization of
that proof.

Corollary 4.4. Word problem. The derivability in lattice theory of a sequent of the
form — a < b is decidable.

Proof. By the subterm property, there is a bounded number k of distinct terms that
can be instantiated. The number of distinct atoms in k terms is k2 and it gives an upper
bound for the number of steps in a duplication-free proof search. QED

The derivability of an atom when a finite number of atoms is assumed given is known as
the “word problem for finitely presented lattices” (see Freese et al. 1995, p. 249):

Corollary 4.5. Word problem for finitely presented lattices. The derivability in
lattice theory of a sequent of the form ay < by,-..,am < by, — a < b is decidable.

The number of subterms of a term is the length of the term, that is, the number of
lattice operations in the term +1. Proof search for a sequent I' — A can be effected as
follows: First observe that five rules have no principal formulas and can be permuted last.
Therefore, in root-first proof search, these rules can be instantiated first. The number
of instances for Ref is the total number n of subterms in I'; A, and the number for
La; the number of subterms of the form anb, and similarly for Las, Rvy, Rva. With no
duplications permitted, these five rules give altogether < 5n formulas to be added to the
antecedent ', to obtain I". Next, if there is a match in I with the two principal atoms
of the remaining three rules, T is extended by the corresponding removed atoms. No
duplications are permitted. This procedure is repeated until a match with an atom in A
is obtained, or until no new formulas appear.

Corollary 4.6. Decidability of IIj-formulas. The derivability in lattice theory of
sequents of the form — V...VA, with A quantifier free, is decidable.

Proof. Assume that A is in conjunctive normal form. Each conjunct A, is equivalent to
one of the form P& ... &Py, D Q1V---VQy,, with P, ; atoms. The lattice axioms are all
Harrop formulas and therefore, by the disjunction property under Harrop assumptions,
Ay, is derivable if and only if P& ...&P,, D @Q; is derivable for some j. Apply corollary
4.5 to each of the ;. QED.
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5. LATTICE THEORY WITH EXISTENCE AXIOMS

We study a system of rules of lattice theory that corresponds to Skolem’s original work
(1920). The rules are given in a single succedent formulation in natural deduction style,
following the idea in section 2.4.

5.1. Relational axioms and rules for lattice theory: The axiomatization of lattice
theory uses existence axioms for meets and joins instead of explicit meet and join op-
erations. We assume an infinity of parameters a, b, ¢, ... and variables z,y, 2, .... There
is a binary partial order relation a < b and two ternary relations M (a,b,¢) and J(a,b,c)
(“c is the meet of a and b,” and “c is the join of a and b”). We call atoms of these forms
O-atoms, M-atoms, and J-atoms. Equality is partial order in both directions. In the
substitution rules below, we abbreviate the two premisses a < b and b < a by a = b. The
first rule has zero premisses. In rules III-IV, the mnemonic letters L and R indicate
that the meet and join terms appear as left resp. right members of the order relation
in the conclusion. The rules for lattice theory are, with the Roman numerals giving the
correspondence with Skolem (1920):

Rules for relational lattice theory ReLT

I-II1. Rules for partial order:

a< <ec
Re _
a<a f a<c Trans

III-IV. Rules for Meet and Join:

M(a,b,c) s M(a,b,c) P J(a,b,c) : J(a,b,c) R
< c< agc bgec
M(a,b,c) d<a dgb J(a,b,c) agd bgd

d<c RM c<d LJ

V. Substitution of equals in Meet and Join:

SM

M(d,e,f) J(a 7f)

V1. Ezistential rules for Meet and Join:

M(a,b,c) a=d b=e c=f J(a,b,c) a=d b=e c=f
e

M(a,b,a)"] [I(ab2)")
g EM g EJ

A derivation can begin with any O-, M-, or J-atoms as assumptions. The existential
rules indicate by square brackets the discharged assumptions that can have been made
any number of times n > 1. Those assumptions that have not been discharged in a
derivation are the open assumptions of the derivation. The existential rules have the
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variable restriction that the eigenvariable  must not occur free in the conclusion C
nor in any open assumption C' depends on, except in the M- or J-atoms indicated as
discharged. We assume that the eigenvariable of a rule appears only in the subderivation
down to that rule. It follows that all the eigenvariables of existential rules in a derivation
are distinct.

The existential rules are equivalent to the existence axioms for meet and join, namely
VaVy3zM (z,y,z) and VaVy3IzJ(z,y, z). If the latter are assumed, the logical rules of
universal and existential quantifier elimination lead to the conclusions of the existential
lattice rules; In the other direction, the existence axioms are derivable by universal and
existential quantifier introduction and the existential lattice rules:

[M(a,b,v)] [M(a,bv)]
VaVyIz M (z,y, z) VEE JzM(a,b, z)
IzM(a,b, z) ’ C JzM(a,b, z)
C " VaVy3z M (x,y, z) e

From the left derivation, we observe that an existence axiom turns into a corresponding
existential rule of inference by the deletion of the existential premiss and its derivation.
A general theory of existential rules is given in Negri (2003). In Skolem (1920), rules
I-V are treated formally, but existence axioms and their variable restrictions are handled
somewhat intuitively.

We consider only derivations with atoms as assumptions and conclusion, because the
logical rules permute down with respect to the mathematical rules. Derivation trees have
assumptions and instances of rule Ref as leaves.

5.2. Permutability of rules: The order of application of lattice rules can be permuted
by suitable local transformations:

Lemma 5.1. (i) Instances of rules EM,EJ permute down with respect to all the other
rules of ReLT. (ii) Instances of rules SM,SJ permute down with respect to all the rules
except for EM,EJ. If the conclusion is an O-atom, no instance of SM,SJ is needed,
and otherwise just one instance of SM,SJ is sufficient.

Proof: (i) If EM or EJ concludes an atom C and C is a premiss of a lattice rule R
concluding D, rule R is applied to the premiss C' of EM or EJ, and then EM or EJ is
applied to D. By the conditions on eigenvariables, this can be always done. (ii) Consider
a substitution on a in M(a,b,c). We can leave out the superfluous premisses b = b and
¢ = ¢ and have the instance

M(a,b,c) a<d d<a
M(d,b,c)

SM

The conclusion M(d,b,c) can be a premiss in LMy, LM,, and RM. In the first case,
make the conversion

M(a,b,c) a<d d<a M(a,b,c)
4[,1\41
M(d,b,c) c<a a<d
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In the case of LM5 we convert as follows:
M(a,b,¢) a<gd d<a
SM
M(d,b,c) M(a,b,c)
——— LM ——— L
cg<b ~ cgb

If M(d,b,c) is a premiss in RM, the conversion is

Aﬂmbm)asddsaSM e<d d<a
a
C

M(d,b,c) e<d exgb M(a,b,c) e Trans o < p
e<c RM -, €

N[N

Other cases of substitutions are variants of these three, until when permuting down
substitution another substitution is met. We have, again assuming substitutions on the
first argument:

M(a,b,c) a<d d<a

SM
M(d,b,c) d<e exd
SM
M(e,b,c)
This is converted into transitivities and one substitution:
agd dge e<d d<a
M(a,b,c) —a<e <e Trans —e<a <a Trans
SM
M(e, b,c)

No variable restrictions are violated by the above proof transformations, so that the
transformations give a correct derivation of the original conclusion. In the end, if the
conclusion is an O-atom, no substitutions are needed, and otherwise there is at most one
substitution as a last rule. QED.

Lemma, 5.1 corresponds to lemma 2 in Skolem (1920). Rules SM,SJ,EM,EJ are the only
ones that conclude M- or J-atoms. If existential rules are permuted down and if the
conclusion of the derivation is an O-atom, no substitutions are needed down to the
derivation of the premiss of the first existential rule, and therefore no substitutions at
all. We show later that derivations that conclude M- or J-atoms can be reduced to

derivations concluding O-atoms so that, by lemma 5.1, we do not need to consider rules
SM,SJ.

Definition 5.2. A derivation tree in ReLT is loop free if it has no branches in which the
same atom occurs more than once, except as a premiss and conclusion of an existential
rule, and atoms of the form a < a appear only as leaves. A term in o derivation tree that
is mot a term in an open assumption or the conclusion is a new term.

Lemma 5.3. In a loop-free derivation of an O-atom with no instances of rules EM,EJ,
there are no new terms in the derivation.

Proof: We may assume by lemma 5.1 that there are no instances of rules SM,SJ. Then
M- and J-atoms are never conclusions so that terms in them remain terms in open
assumptions. Rule Trans is the only one that can remove a new term, say b:

ag<b bge

a<c Trans

RM
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Trace up atoms with the new term. First occurrences of b cannot be in any M- or J-atoms
or other assumptions. Thus, the new term must appear first in instances b < b of rule
Ref. Such an instance is not a premiss of Trans because the conclusion would be equal
to the other premiss and the derivation would have a loop. Therefore b < b is a premiss
of RM or LJ, say

M(b,e,f) bgb bge J(b,e, f)

b
b< f e [<

<b exb
2 LJ

Now the new term is in an M- or J-atom, contrary to assumption, and similarly if b < b
is the last premiss of RM or LJ. QED.

Lemma 5.4. In a loop-free derivation of an O-atom with one existential rule EM or
EJ as last step and discharged atom M (a,b,v) or J(a,b,v), first occurrences of the
eigenvariable v are not in instances of rule Ref.

Proof: By lemma 5.1, the derivation of the O-atom premiss of rule EM does not need
rules SM, SJ. Assume there is a leaf in the derivation tree that begins with v < v. It is
not a premiss in Trans or there is a loop. By the variable restriction on rule EM, v is not
in any open assumption. Therefore v < v is not a premiss in rule LJ. So v < v is a premiss
in RM, but then the first or second argument in M (a,b,v) is v and the conclusion of
RM is the same as the premiss v < v. The proof for EJ is dual to above. QED.

Theorem 5.5. Subterm property. If an O-atom is derivable from atomic assumptions
in ReLT, it has a derivation with no new terms.

Proof: We may assume the derivation is loop free. If there are no instances of EM or EJ,
the result is given in lemma 5.3. We show that derivations with existential rules transform
through suitable permutations into ones with loops: Assume the derivation has instances
of EM or EJ. By lemma 5.1, these can be permuted last, and each of them concludes
the O-atom that is the conclusion of the whole derivation. Consider the subderivation
down to a first instance of an existential rule, say EM that discharges M(a,b,v). By
lemma 5.1, rules SM,SJ can be assumed absent so that all M- and J-atoms in the
derivation are assumptions. The eigenvariable v is a new term and by lemma 5.4, all
topmost occurrences of v are in the discharged assumptions M (a, b, v). We transform the
derivation into another one that has the same terms and show that either it has a loop or
else it has the subterm property. The transformation consists in permuting up instances
of rule Trans.

As in the proof of lemma 5.3, only rule Trans can remove the new term v from the
derivation. Consider an instance such that v does not appear anywhere below in the
derivation:

Cgid Trans (1 )

If the premiss ¢ < v is concluded by LM; or LM>, then ¢ is identical to v. The left premiss
of Trans is v < v, but then the right premiss is identical to the conclusion and there is
a loop. Rules RJ;, RJ> cannot conclude ¢ < v or else v is in a J-atom. The remaining
cases are that ¢ < v has been concluded by Trans, LJ, or RM. With Trans, we permute
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up the Trans removing v:

cse exw esv v<d

Trans
c<v Trans v<d

<
Trans ————— Trans

cgd ~ cgd (2)

With LJ, there is some premiss of the form J(e, f,c) and Trans (abbr. Tr) is permuted
up as follows:

I(e, f,c)

<v fgw esv
(Y e

= v<d J(e,f,c)
Tr
cgd ~>

e
c<

The permutation of Trans removing v as in (2) and (3) is repeated until the left premiss
has been concluded by RM. We then have some term ¢’ such that
M (a,b,v)

!
<b

£a ¢
RM
v

cl
c <

vng
clgd rans (4)

Now consider the right premiss v < d of (4). Rules RJ1, RJ2, and LJ would give a
J-atom with term v, so the possible rules are LMy, LM>, RM, and Trans. With Trans
we permute similarly to (2):

vy g<d csv v<9g,
/ 77“’!‘&”8 ’ rans
c <v vgd c'<yg g<d
I—Trans n Trans
c <d ~ c <d (5)

With RM, there is some premiss of the form M(g,h,d) and Trans is permuted up as

follows:
U

M(g,h,d) v<g v<h d<v v<g d<v vgh
/ RM ] Tr n Tr
g vgd M(g,h,d) d<y d<h
Tr RM

¢ <d ~ <d (6)

cl
The permutation of Trans removing v as in (5) and (6) is repeated until for some term
d' an atom v < d' has been concluded by LM; or LM,. Then d' is identical to a or to b
and step (4) has become one of:

M(a,b,v) ' <a  <b
R

M(a,b,v) M(a,bv) ¢'<a <b M(ab,v)
v

7 M
v<b

C

c < v<a ¢ <
7 Trans 7

c <a c<gb

Trans

Both derivations have a loop. Deletion of the part of derivation between the two occur-
rences of the same formula deletes also the assumption M (a,b,v). Thus, in the end there
is no new term v in a transformed loop-free derivation, and therefore no instance of rule
EM. The conclusion now follows by lemma 5.3. QED.

Theorem 5.5 proves the conservativity of existential rules: If an O-atom is derivable from
given atoms in lattice theory, it is derivable without rules EM, EJ. This is the main
theorem of Skolem (1920).

5.3. Decidability of universal formulas: We first reduce the derivability of arbitrary
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atoms to the derivability of O-atoms and then apply the subterm property to conclude
Skolem’s theorem on the decidability of universal formulas.

Lemma 5.6. Derivability in ReLT of an M-atom M (a,b,c) from assumptions T reduces
to the derivability of two O-atoms, and the same for J-atoms.

Proof: Let v be a fresh variable. We show that M (a, b, ¢) is derivable from assumptions
T if and only if v < ¢ and ¢ < v are derivable from M(a,b,v) and T.
If M(a,b,c) is derivable from I', we have

r r
: : r
M(a,b,c) M(a,b,c) iy M (a,b,v) M(a,b,v) LA
M(a,b,v) c<a M cgb : M(a,b,c) v<a M v<b 2
RM RM
c<v v< e

In the other direction, assuming v < ¢ and ¢ < v derivable from M (a,b,v) and T', we have

[M(a,b,0), T [M(a,b,v)],T

[M(a,b,v)] véc cév

SM

Since v was chosen fresh, the variable restriction in rule EM is met. QED.

Theorem 5.7. Derivability of an atom from given atoms. The derivability of an
atom from given atoms in ReLT is decidable.

Proof. By lemma 5.6, we can assume the conclusion to be an O-atom. By the proof of
theorem 5.5, we can assume that there are no existential rules. By the subterm property,
only a bounded number of terms need be used in instances of rules. Therefore the number
of loop-free derivations ending with the atom to be derived is also bounded. QED.

5.4. Further decidable classes of formulas: The standard decidable classes of for-
mulas of pure predicate calculus include the quantifier prefix classes V...V3...3 and
V...V3IV...V, their degenerate cases, etc. The formulation of lattice theory with exis-
tential axioms makes it a theory expressible in the language of pure predicate calculus,
that is, without constants or functions. Consider those prefix classes that have a bounded
Herbrand expansion. By the subterm property, proof search terminates for these classes,
and the following result is obtained:

Theorem 5.8. Standard decidable classes. Let QA be a formula in prenexr form,
with o quantifier prefic Q such that the corresponding Herbrand disjunction is bounded.
Then deriwability of QA in ReLT is decidable.

6. A SINGLE SUCCEDENT CALCULUS WITH MEET AND JOIN

We give briefly a formulation of a rule system in natural deduction style with explicit
meet and join constructions and prove the Whitman conditions.

6.1. Rules in natural deduction style with meet and join: The axioms of lattice
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theory with meet and join lead to the following system of rules, some of which have zero
premisses:

Rules for lattice theory with meet and join

ag<b bge

— R — ="
a<a ef a<c rans
c<a ¢c<b
LAy LA = =— RA
anb < a anb < b c<anb
agc bge
Rv; Rv, — ="V
a<avb b<avd avbgec

These rules are designated by NDLT. Their permutability properties and the subterm
property were established in Negri and von Plato (2002).

Term b in rule Trans is called a middle term. An inspection of the rules shows that
middle terms in Trans are the only terms in premisses that need not be also terms in
a conclusion. Derivation trees have assumptions and instances of zero-premiss rules as
leaves.

Definition 6.1. A derivation tree in NDLT is loop free if it has no branches in which
the same atom occurs more than once and formulas that match the conclusion of a zero-
premiss rule appear only as leaves. A new term in a derivation tree is a term that is
not a term or o subterm in an assumption or the conclusion.

A given derivation can be made loop free by deleting parts between repeated formulas and
above those formulas that can be concluded by zero-premiss rules. The rule of transitivity
can be permuted up relative to most lattice rules, by which the subterm property can be
concluded directly for the rules in natural deduction style:

Theorem 6.2. Subterm property for NDLT. If an atom is derivable from atomic
assumptions in NDLT, it has a derivation with no new terms.

Proof: The proof is similar in its main outlines to the proof of the subterm property for
the calculus ReLT. For details, see Negri and von Plato (2002). QED.

The decision method described after corollary 4.5 applies to the derivability in NDLT
of an atom a < b from a set of atomic assumptions I': First add to I' all instances of zero-
premiss rules with terms subterms in a, b, ', then apply repeatedly the remaining three
rules until a < b appears or no new formulas are produced. The duplication of formulas
in the left rule system corresponds to looping in NDLT.

6.2. The Whitman conditions: Whitman’s solution of the word problem for lattices
in (1941) established the following condition: If anb < cvd is derivable, then one of a < ¢,
a<d, bgc bgdis derivable. We give a decision method for the derivability of atoms
in lattice theory that has this result as an immediate corollary.

We first modify axioms La, Rv slightly, into

a<cDanbge, c<aDcecgavb,

b<eDanbge, c<bDcegavh.
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With ¢ = a and ¢ = b, respectively, the old axioms follow by reflexivity. In the other
direction, if aanb < a and a < ¢, then aab < ¢ follows by transitivity.
The modified axioms convert into the following variant of NDLT:

agce bge agc bge
S~ LAy S " LA — = IV
anb g c anb g e avbge
c<a cgb cg<a cgb
Vi RvVa —_—
c<avb c<avb c<and

To these rules we add the rules of partial order.

Theorem 6.3. The variant of system NDLT, with rule Trans excluded, is complete for
the derivability of atoms a < b.

Proof: We shall prove rule Trans admissible for derivations of atoms a < b, by which
completeness follows. Recall that admissibility requires that if the premisses of Trans are
derivable with the other rules, also its conclusion is derivable by these rules. The proof
is by induction on the sum of the heights of the derivations of the premisses of Trans. If
one of them is obtained by Ref, the other premiss gives the conclusion. If the left premiss
is derived by La; we have a derivation of the form

a<gc
LA

anb e cgd
anb < d

which is transformed into

agd
anb < d

with premisses of Trans of smaller derivation height. A similar conversion applies if the
left premiss is derived by Laa.
If the left premiss is derived by RA, we analyze the derivation of the right premiss. If
the right premiss is derived by a left rule, say LA;, we have the conversion
c<a ¢cgb agd
LA
c<anb anb < d c<a a<d

~
Trans ———— Trans
cgd ~ cgd

If the right premiss is derived by a right rule, then the term aab is found also in the
premiss(es) of the right premiss, and transitivity is permuted up to these premisses. If
the rule used to derive the right premiss is RA, we have

c<a ¢<b anbgd anbge

RA
c<and anb < dne
c<dne

Trans

which is transformed into

cganb anbgd c<anh anbge
Trans Trans
c<d cge

c<dne

RA

All the other conversions are similar to the above ones with La; and Rv: If the left
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premiss is derived by a left rule, transitivity is permuted, and similarly if the right
premiss is derived by a right rule. If the left premiss is derived by a right rule and the
right premiss by a left rule, transitivity with middle term b is replaced by a transitivity
with middle term given by a subterm of b and smaller sum of derivation heights. QED.

Transitivity permutes up until it reaches leaves in the derivation tree and disappears.
With the rule of transitivity left out, a complete system of rules for lattice theory for
the derivation of atoms is still obtained. An inspection of the remaining rules shows that
each premiss has one lattice operation less than the conclusion, so a decision procedure
for the derivability of atomic formulas in lattice theory is obtained: Starting with the
atom to be concluded, match it as a conclusion to each of the rules, then repeat until no
lattice operations are left. If a derivation with reflexivities as leaves is found, the atom is
derivable, otherwise it is not derivable. By the completeness of this method we have in
particular:

Corollary 6.4. Whitman conditions. The atom anb < cvd is derivable only if one of
a<c a<d, bge bgdis derivable.

The result obviously generalizes to arbitrary finite meets and joins instead of the binary
ones.

7. CONCLUDING REMARKS

The form of the lattice axioms is such that it is possible to present derivations in a
“logic-free” manner in a single succedent sequent calculus and its natural deduction style
equivalent. However, if the order relation is linear, it is essential to use a multisuccedent
calculus. With the linearity postulate a < bV b < a added to the axioms of partial order,
a linear lattice is obtained. The corresponding rule to be added to the left rule system
G3LT is:
ag<bl - A bgal - A
r - A

Should A consist of a single formula, the linearity rule would be superfluous, as is shown
by the conservativity results of Negri, von Plato, and Coquand (2001). The analysis of
linear order of that paper can be extended into the case of linear lattices.

There exists an implementation of systems of sequent calculus that supports extension
by axioms, the PESCA system of Aarne Ranta. It automatically translates universal
axioms into rules that are added to a chosen sequent calculus. Formal proofs can be
constructed interactively or by brute force. A description of the system can be found in
Ranta (2001).

Lin
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