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Abstract: A proof-theoretical analysis of elementary theories of order relations is
effected through the formulation of order axioms as mathematical rules added to
contraction-free sequent calculus. Among the results obtained are proof-theoretical
formulations of conservativity theorems corresponding to Szpilrajn’s theorem on
the extension of a partial order into a linear one. Decidability of the theories of
partial and linear order for quantifier-free sequents is shown by giving terminating
methods of proof-search.
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1. INTRODUCTION

Previous work (Negri and von Plato 1998) gave a proof-theoretical way of
treating axiomatic systems. The axioms are converted into rules of inference
added to suitable systems of logical rules. The particular logical systems
used were what are known as contraction-free sequent calculi. These cal-
culi have the remarkable feature that none of the standard structural rules,
weakening, contraction, exchange, change of bound variable, or cut, need be
used in derivations. Our previous work showed that mathematical axioms
can be converted into rules that operate on atomic formulas of antecedents
of sequents, with no structural rules. Moreover, these mathematical rules
commute with the rules of classical logic, so that, permuting down the latter,
it suffices to consider derivations with only mathematical rules.

The main advantage of the present approach is that well-developed meth-
ods of proof analysis from sequent calculi for pure logic become applicable
to mathematical theories. Systems of mathematical rules can be found for
all those axiomatic theories that permit of a quantifier-free formulation. In
typical cases such as lattice theory or plane affine geometry, free parameters
and constructions are used in place of II9-axioms. (See Negri and von Plato
2001 for these applications.)

We first present the general form of rules that can be added to contraction-
free sequent calculi as rules that operate on the antecedent parts of sequents.
A new dual form is found with rules that act symmetrically on the succedent
parts. Some theories permit a formulation of the latter type with the extra
restriction that there is just one formula in the succedent, with a greatly
simplified proof analysis.

The main result about order relations is a conservativity theorem relating
partial and linear order. Such conservativity results are proof-theoretical
counterparts to extension results, and we obtain as a corollary a proof-
theoretical version of Szpilrajn’s theorem on the extension of a partial order



into a linear one.

In root-first proof search, mathematical rules instantiate new terms in
premisses. We prove that derivability with the rules of partial and linear
order is decidable by giving a terminating method of proof search. Termi-
nation follows from the subterm property: the new terms instantiated by
mathematical rules can be restricted to terms in the conclusion.

Section 7, by the third author, gives an alternative approach to Szpil-
rajn’s theorem and the decidability of the quantifier-free theory of linear
order.

2. A DUALITY FOR MATHEMATICAL RULES

For the notation and sequent calculus rules, we refer to Negri and von Plato
(1998), §2. Mathematical axioms were there added to classical and intuition-
istic multisuccedent sequent calculi G3¢ and G3im as rules of the form

Ql,Pl,...,Pm,PiA Qn,Pl,...,Pm,FiA
PL.... Pl = A

Rule

Here the Q; are the removed atoms, and the Py, ..., P, the activated atoms.
The left rule-scheme has a dual formulation as a right rule-scheme:

FiA,Ql,...,Qn,Pl FZ}A,QI,---,Qname
PZ}Aana"'aQn

Thus, an axiom of the form P& ...&FP,, D Q1 V ...V @, becomes the
rule: If each of P; follows from I', the cases under I' are Q1,...,Q,. The
atoms @); are repeated in the premisses in order to obtain admissibility of
right contraction. As for the left rule-scheme, if the atoms in a rule have
an instance that makes two atoms in the conclusion identical, the rule with
these atoms contracted into one atom has to be included in the system of
rules. This requirement is called the closure condition.

ule

Theorem 2.1. The structural rules of left and right weakening and contrac-
tion and the rule of cut are admissible in extensions of G3c and G3im with
rules following the right rule-scheme and satisfying the closure condition.

Proof: Dual to the proofs of admissibility in Negri and von Plato (1998).
QED.

In extensions of G3c¢ and G3im with rules following the above schemes,
weakening and contraction are admissible and height preserving, that is,
whenever their premisses are derivable, then also their conclusion is derivable
with equal or smaller height. The elimination of these rules from a derivation
gives actually a subtree of the original derivation tree.

Height-preserving admissibility of structural rules is a key property of
extensions with mathematical rules, because it permits to prove results by



arguments based on minimum-size derivations. These proof methods are
central in the developments of Sections 4-6.

The invertibility of the logical rules of the classical calculus G3c has as
a consequence the separation of derivations into initial parts with mathe-
matical rules followed by a part with logical rules. For this reason we shall
consider only derivations of sequents which are not conclusions of logical
rules, i.e., sequents of the form P,..., P, = Q1,--.,@Qn,L,..., L with
P;,Q; atomic formulas. Logical rules will be conservative over the mathe-
matical ones.

3. HARROP SYSTEMS

We consider theories that can be formulated as systems of mathematical
rules with just one formula as a succedent.

Definition 3.1. The class of Harrop formulas is defined by

1. Atoms P,Q,R,..., and L are Harrop formulas,
2. If A and B are Harrop formulas, then A&B is a Harrop formula,
3. If B is a Harrop formula, then A D B is a Harrop formula.

A Harrop theory is one the axioms of which consist of Harrop formulas. A
left Harrop system is the system of mathematical rules obtained from the
axioms of a Harrop theory by using the left rule-scheme, and similarly for a
right Harrop system. The observation is immediate that the rules of a left
Harrop system have at most one premiss, thus the derivations are linear,
which has the following consequence.

Theorem 3.2. If a sequent I' = A is derivable in a left Harrop system,
then I' = P is derivable for some atom P. If A contains atoms, the atom
P can be chosen from A.

Proof: Consider a derivation D of I' = A. If the topsequent is a logical
axiom P,TV = A, P, with A = A’, P, the succedent can be changed into P.
If the topsequent is a zero-premiss mathematical rule, any atom P can be
put as the succedent and the derivation with the new succedent continued
as with A. QED.

We translate single succedent left rules with no more than one premiss
into single succedent right rules as follows:

QPP T=C =P .. I'sP,
P,...,Ph,T=C ~ r=Q

R

With m = 0 we have as a limiting case a zero-premiss right rule.

If the formula @ is repeated in the succedents of the premisses of the
translated rule, it becomes an instance of the right rule scheme. To con-
clude the admissibility of structural rules for the single succedent formu-



lation without repetition, we note that right contraction in the conclusion
does not arise and that cut permutes up as usual. The rules are interderiv-
able by cuts and contractions: Set C = @) in the left rule, and cuts of the
conclusion P, ..., Py, ' = @ with the premisses of the right rule followed
by left contractions give the conclusion I' => (). In the other direction, apply
the right rule to the premisses Pi,...,P,,I' = P;, 0 < ¢ < m to conclude
Py,...,P,,I' = @, then cut away () with the premiss of the left rule to
obtain the conclusion of the left rule, modulo contractions. Thus we have:

Proposition 3.3. A left Harrop system and its corresponding single succe-
dent right system derive the same single succedent sequents.

In a single succedent rule system for axioms that are not Harrop formu-
las, as in Negri’s (1999) treatment of apartness relations, a disjunction is
needed for expressing the presence of genuine cases, with the consequence
that mathematical rules are mixed with instances of rule RV.

4. PARTIAL ORDER

The axioms of partial order are

PO1.
PO2.

Equality is defined by a=b = a <b & b <a. (Thus, we are working with
what are sometimes called quasiorderings.) It follows that equality is an
equivalence relation. Further, since equality is defined in terms of partial
order, the principle of substitution of equals for the latter is provable.

The axioms of partial order determine by the rule-scheme the mathe-
matical rules Ref and Trans:

<a,

a <
ag<b&bgecdacxge

a<a,l'=A ag<c,a<bbge, = A

Toa a<bb<clD = A o

This system of rules is designated GPO. The closure condition arises when
a = b and b = ¢. Then the premiss of rule Trans in fact becomes

a<a,a<a,a<a,l=>A
The conclusion follows by rule Ref so that the closure condition is satisfied.

We conclude by theorem 4.1 of Negri and von Plato (1998):

Theorem 4.1. The rules of weakening, contraction, and cut are admissible
i GPO. Weakening and contraction are admissible and height preserving.

There are essentially two kinds of derivations in GPO. To see what
they are, we assume that derivations contain no unnecessary detours: a
derivation is of minimum size if no proper subtree of the given derivation



is a derivation. Reasoning as in the proof of theorem 3.2, if ' = A is
derivable, the topsequent has the form P,V = A’ P with A/, P = A, and
we can delete A’ from the topsequent. The two kinds of derivations are:

1. Reflexivity derivations: P in the topsequent is a reflezivity atom of
the form a < a. The conclusion I' = a < a follows from the logical axiom
a < a,I' = a < a with one application of rule Ref:

a<a,l'=axga
'=ax<a

Ref

The context I' is superfluous and can be deleted, thus, the conclusion be-
comes = a < a.

2. Transitivity derivations: The topsequent is of the form a; < a,, I’ =
a1 < ap. The atom aq < a, must be the removed atom in a first step of
transitivity or else the derivation can be shortened: If some other atom
P were removed, with I = P,I"”, the derivation could be shortened by
starting with a; < an,I'” = a1 < a, as topsequent. We note that there
cannot be steps of reflexivity in this derivation: The reflexivity atom would
be principal in a step of transitivity, else it could be removed tout court from
the derivation with a subsequent shortening, thus there would be a step of

the form
a<ba<a,a<hl =a<a,

a<a,a<bl =a<ay

Trans

By height-preserving admissibility of contraction the conclusion of this step
could be obtained already from the premiss, without using transitivity, in
one step less.

Two atoms a; < a9, a9 < a, are activated by the step of Trans removing
a1 < ap so that the topsequent is of the form

1/
a1 < ap,01 < 62,02 < ap, 1" = a1 < ay

In the second step, one of the activated atoms must become the removed
atom, with two new activated atoms, say as < a3, a3 < ay, or else the deriva-
tion can be shortened. The closure of the atom a; < a,, with respect to
the activation relation gives us a chain a1 < ag,a2 < as,...a,—1 < @y in the
topsequent. Deleting the atoms that have not been active in the derivation,
we have a derivation of the form

"
I'",a1 <ag,a2 < as,...an-1<ap = a1 <ay
: Trans

- Trans
a1 £0a2,02 <A43,...0p—1 < Ay = A1 < 0y

in which T consists of the removed atoms a; < a, .. ..



Thus, the two kinds of derivations in GPO amount to concluding a
reflexivity atom a < @ and an ordering a; < a, of the extremes of a chain
a1 €< a2,02 <a3,...,an_1 < ap the atoms of which have been assumed. We
have:

Proposition 4.2. Sequents I' = A derivable in GPO are derivable as left
and right weakenings of reflexivity and transitivity derivations.

Proof search for a sequent I' = A is effected by two controls: Does A
contain a reflexivity atom? Does I' contain a chain from a; to a, with the
atom a1 < ap in A? If so, the sequent I' = A is derivable, otherwise it is
underivable.

Nondegenerate partial order is obtained by adding the axiom
PO3. ~1<0
to PO1 and PO2. The corresponding rule has zero premisses:

1<0.T =A%

Derivations remain linear and theorem 3.2 applies. If the topsequent is
an instance of Ndeg, the atom 1 < 0 is removed by Trans, for it cannot be
removed with Ref. Steps of Trans hide the inconsistent assumption 1 <0,
with the general form of conclusion

1sa1,a1gag,...,an_1<0¢agb

with the chain in the antecedent being the closure of formulas activated by
1< 0 and a < b in the succedent an arbitrary atom.

We also need to have a condition of nontriviality for a partial order, in
order to exclude the case that all derivable atoms are reflexivity atoms. We
therefore add a fourth axiom

PO4. 0«l1.
The corresponding rule is

0<1,I'=A

= A Ntriv

This rule commutes down with instances of Ref and Trans. The only inter-
esting case is a transitivity derivation with a chain from which atoms 0 < 1
have been removed by Nitriv.

5. LINEAR ORDER AND SZPILRAJN’S THEOREM

The theory of linear order is here obtained by adding to partial order the
linearity aziom



LO. agbvbga

The corresponding rule is

a<bIT'=A bga,l'=A
= A

Lin

The closure condition does not arise and we conclude, as in theorem 4.1,
that the structural rules are admissible.

Rule Lin is prima facie a difficult rule. Let us note first that if a = b,
axiom LO gives a < aVa < a and rule Lin has correspondingly two identical
premisses, so reflexivity would follow as a special case of linearity. However,
it is still useful to maintain rule Ref as a separate rule, in order to relate
linear and partial order. The system of rules for linear order is designated
GLO. The following conservativity theorem for single succedent sequents is
the key insight:

Theorem 5.1 If T' = P is deriwable in GLO, it is already derivable in
GPO..

Proof: Consider a derivation with just one instance of Lin, as the last rule,
and assume the derivation to have minimum size. Thus, the premisses of
Linc<d,I' = P and d < ¢,I" = P are derivable in nontrivial partial order.
If P is a reflexivity atom in either topsequent, I' = P is derivable in one
step of Ref. Otherwise, with P = a < b, there will be two transitive closures
of the removed atom a < b in both derivations of the two premisses of Lin,
and let them be a <a1,...a;-1 <band a <by,...b,_1 <b. If c<d is not
an atom in the first chain, it can be deleted and a derivation of I' = P in
partial order obtained, and similarly for d < ¢ in the second chain. Thus, we
have the two chains

agal,.--,ai\C,ng,dgai+1,---am_1<b

a<by,....bj<d,d<c,e<bjyr,...bp_1<b
We form the chain

a<a,...,a4; <c,c<bj,...bp_1<b

and by proposition 4.2, the sequent
a<a,...,a4; <c,c<bji1,...0p_1<b=>axb

is derivable in partial order. (A second construction of a chain is possible;
note also that as a limiting case, one premiss can be a logical axiom). Each
atom in the antecedent is an atom in I'" so also I' => P is derivable in partial
order.

For a derivation with an arbitrary number of instances of Lin, the above
construction is repeated. QED.

The addition of rules Ndeg and Nitriv does not change much in the above
picture. If 1 <0 is an atom removed by Lin, one premiss is an instance of



Ndeg with height of derivation 1 and the other is of the form
a<ay,...,0;<0,0<L,1<aj41,.-.an<b=>axd

The conclusion is instead obtained from the right premiss by rule Nériv in
partial order already. In other cases instances of Ntriv commute last and
the construction of the chain in theorem 5.1 carries over to nondegenerate
nontrivial linear order, so we have:

Theorem 5.2 If " = P is derivable in nondegenerate GLO, it is derivable
in nondegenerate nontrivial GPO already.

Note that a nondegenerate linear order is always nontrivial. Conservativity
theorems can be regarded as the proof-theoretical counterparts of extension
theorems. We observe that from our conservativity result one can obtain an
extension algorithm:

Definition 5.3. An ordering ¥ is inconsistent if I' = 1 < 0 is derivable for
some finite subset I' of X, otherwise it is consistent.

Corollary 5.4. Szpilrajn’s theorem. Given a set X of atoms in a con-
sistent nondegenerate partial ordering, it can be extended to a consistent
nondegenerate linear ordering.

Proof: Let a,b be any two elements in 3 not ordered in ¥. We claim that
either 3, a < b or X,b < a is consistent in GPO. Let us assume the contrary,
i.e., that there exists a finite subset I of ¥ such that both I';a <b=1<0
and I',b<a = 1 <0 are derivable in GPO. Application of rule Lin gives
the conclusion I' = 1 <0 in GLO. By theorem 5.1, I' = 1 < 0 is already
derivable in GPO, contrary to the consistency assumption. Iteration of the
procedure gives the desired extension. QED.

Whereas the proofs of the conservativity theorems 5.1 and 5.2 are construc-
tive, the extension given by corollary 5.4 is not constructive in general, and
effectivity depends on how the set ¥ is given. This is a general phenomenon
when classical set-theoretic extension results are reformulated as construc-
tive proof-theoretical conservativity results. An example is the pointfree
Hahn-Banach theorem of Cederquist, Coquand, and Negri (1998). In the
case of Szpilrajn’s theorem, classical proofs use non-constructive principles
such as Zorn’s lemma.
The set-theoretical notion of partial order is:

1. An arbitrary set D of any cardinality,
2. A function f: D x D — {0, 1} such that
(a) f(z,z) =1,
(b) If f(z,y) =1 and f(y,z) =1, then f(z,2z) = 1.
The order relation is defined by
z<y = f(z,y) = 1.



In a proof-theoretical, formal approach, there is assumed to be a formal
language with individual parameters a,b,c,..., variables x,¥,2,... and a
two-place propositional function g over the terms. There need be no general
definition of how a < b can be proved. We only consider derivability in the
pure theory of partial order, expressed by a sequent I' = A that is the formal
counterpart of the provability relation. Here I' and A are finite (multi)sets
of atomic formulas. Theorems about derivability such as our theorem 5.1
are proof-theoretical algorithms for the effective transformation of formal
derivations.

Computational approaches to order relations assume, as a matter of
course, that the basic order relation is decidable. If this assumption is not
explicit, it is brought in implicitly through the application of the law of
excluded middle. Our proof-theoretical approach does not impose any such
requirement and therefore does not rule out a computational approach to
order relations in continuous sets. The law of excluded middle is avoided
by considering extensions of the intuitionistic calculus G3im instead of the
classical one. It now happens that the rules of implication do not permute
down with mathematical rules if these latter have at least two premisses.
However, in the case of Harrop theories, such as partial order or lattice
theory, logical rules do permute down and derivations with mathematical
rules can be considered in isolation.

6. PROOF SEARCH AND DECIDABILITY OF PARTIAL AND LINEAR
ORDER

For purposes of proof search we look at the properties of derivations with
mathematical rules from the conclusion upwards. A rule such as Ref in the
system of left rules of partial order has the property that the reflexivity
atom and its term is removed. Thus, we could try to find a derivation root
first by Refin as many ways as there are individuals in our set. It turns out,
however, that in many theories the terms appearing in a derivation can be
restricted to terms in the conclusion.

Definition 6.1. Subterm property. A derivation of I' = A in a system
of mathematical rules has the subterm property if all terms in the derivation
are terms in I', A.

Theorem 6.2. A minimum-size deriwation of ' = A in GPO has the
subterm property.

Proof: We observe that rule Trans maintains the subterm property. If rule
Ref was used, we have by Proposition 4.2 a reflexivity derivation and the
reflexivity atom and its term appears in the succedent. QED.

The decision method described after Proposition 4.2 can be put in terms
of terminating proof search: Is there an instance of Ref concluding I' = A



in one step? If not, transitivity is applied root-first until no new atoms are
produced. If the topsequent is a logical axiom, a derivation was found.

To prove the subterm property for the theory of linear order, we formu-
late it as a theory with right rules, with a rule of reflexivity added in order
to contract the duplication arising from linearity when a = b. The rules are

; — R
P:>A,a<b,b<aLm I'=sA,aga o

'=Aa<ca<h I'=Aagebgc
I'=>A,agec

Trans

Term b in rule Trans is called a middle term.

Theorem 6.3. All terms in a minimum-size derivation of I' = A in the
right theory of linear order are terms in I', A.

Proof: We first show that rule Ref need not be considered: If a topsequent
is an instance of Ref, the first step must be a step of Trans removing a
reflexivity atom a < a. The derivation has the form

I'=>Aa<caga, T'=>Aa<cagc
I'=s Ajagec

Trans

The conclusion follows from the right premiss by height-preserving contrac-
tion, contrary to the assumption of a shortest derivation. Thus, proper
derivations start with logical axioms or instances of Lin, followed by in-
stances of Trans.

Let b be a first middle term from top that disappears from the derivation
in a step of transitivity, and we may assume this to be the last step. We
show that the derivation can be shortened. We have the instance

I'=>Aa<cagsh I'=Aagcbge
I'=>A,agec

Trans

If a < b is never activated in the rightmost branch of the derivation leading
to the left premiss, it can be deleted and the derivation shortened. Tracing
up along the right branch from a < b, we find a removed atom d < b, and
we continue tracing the atoms removed in steps of transitivity having the
previously traced atom as an activated atom, until we arrive at an atom
e < b in a topsequent. In the case that e < b is not an atom that makes the
topsequent a logical axiom or an instance of Lin, it is deleted together with
the step of Trans removing it. In the case of a logical axiom, the term b
appears in the antecedent. In the case of Lin, the topsequent is of the form

I'=> Alegbbge

10



and there must be a step removing b < e. Because a right branch was fol-
lowed, there is a step with a removed atom f < b in a left premiss:

1":>A"’,f<e

Tracing f < b up the rightmost branch in the same way as a < b, we find
a topsequent with an atom g < b. Now an argument as for the atom e < b
applies, and at some finite stage we find that such an atom either makes the
topsequent a logical axiom and b appears in the antecedent or it is not needed
in Lin. In the latter case it can be deleted and the derivation shortened.
QED.

Corollary 6.4. The quantifier-free theory of linear order is decidable.

Proof: Application of rule Trans root first without the use of new terms
can produce only a bounded number of distinct atoms in the premisses.
Whenever a duplication is produced, proof search fails by the admissibility
of contraction. QED.

The subterm property is provable also for the left rule system of linear order
but the proof is not easy. We consider the difficulty of the decision problem
for the left rule system. By theorems 5.1 and 5.2, a proper use of the
linearity rule needs derivations of premisses with different atoms rendering
the respective topsequents logical axioms. The simplest example is

a<b=>ag<bbg<a bga=agbbga
=a<bbga

Lin

In general, if there are n+1 distinct atoms in the succedent, a minimum-size
derivation has not more than n instances of linearity on top of which there
are linear sequences of instances of transitivity. In the other direction, if
there are n instances of Lin in a derivation, the succedent contains in the
general case at least n+ 1 atoms or else some step of linearity is superfluous.

The first-order theory of linear order is decidable by a result announced
in Ehrenfeucht (1959). The proof has not been published but it uses model-
theoretic methods. Lauchli and Leonard (1966) prove decidability by show-
ing that the set of nontheorems is recursively enumerable, thus, with no
upper bound on proof search.

The decidability of linear order was posed as a problem in Janiczak
(1953). Kreisel’s (1954) review of this article contains a proof of decidability
based on the standard method of reduction to monadic predicate calculus.
However, Janiczak had died in 1951 and Kreisel’s proof has gone, to our
knowledge, unnoticed in the literature.

11



It has been written that “the decision problem of any formalized theory
is as least as complex as the decision problem of the propositional calculus”
(Rabin 1977, p. 600). By our method, the logical and mathematical parts
of derivations can be completely separated. It seems useful to consider in
isolation the intrinsic complexity of inferences with the postulates of a math-
ematical theory, and to compare such complexities, without the contribution
of logical inferences.

Our corollary 6.4 proves decidability only for the universal fragment. In
what way the general decision problem reduces to that for the universal
fragment is a question we plan to study in a more general work that relates
the decision problem of predicate logic to general properties of systems of
mathematical rules, such as the subterm property.

7. AN ALTERNATIVE APPROACH

The purpose of this section is to give an alternative proof of the proof-
theoretical version of Szpilrajn’s theorem (Theorem 5.1) and of the decid-
ability of the theory of linear order, by using the notion of an entailment
relation of Scott (1974) and some results of Cederquist and Coquand (2000).

An entailment relation is a set S with a binary relation F between finite
subsets of S such that

(I) sks

X'>2X XkY YCVY'
M = C
(M) X' =Y

Xks Y s, XFY
©) XrY

Here we write X,Y for X UY and X, s for X U {s}.
An interpretation of an entailment relation is a map m : S — D from S
into a distributive lattice D such that for every finite X,Y

X FY = Agexm(z) < Vyey m(y)

A distributive lattice L(S) is generated by (S,F) with interpretation my :
S — L(S) if it is universal:
m
S D

y




The following result can be seen as an abstract form of cut-elimination.

Theorem 7.1. Every entailment relation (S,t) generates a distributive
lattice L(S) such that

X FY & Agexmo(z) < Vyey mo(y)

We define now an entailment relation associated to the theory of linear
order. We let S be the set of atomic formulas a < b, and we define X Y
as: there exists a cycle

agy-.-,0p = Qo

where for each 1 < n, we have a; < a;41 € X or a;41 <a; €Y, and at least
one element of Y appears.
Theorem 7.2. The relation - is an entailment relation. Furthermore, it is
the least entailment relation on S such that

e Facga,

e agsbhbbgckacxe,

e Fagbbga.

Proof: The only thing that is not direct is that - satisfies the cut-rule (C).
Let us assume X,a<bF Y and X Fa b, Y. We get two corresponding
cycles. If one of them does not mention a < b it is a witness that X + Y.
If both cycles mention a < b, we can glue them together along the pair a,b
and we get a new cycle that is a witness for X - Y. QED.

To look for such a cycle provides then an algorithm to see if X - Y is
derivable in the theory of linear order. Notice that if Y is a singleton a < b,
to have such a cycle is equivalent to having a = b or a chain

A=00,---,0p_1=0

such that a; < a;41 € X. Hence in this case X Y is derivable without
the linearity axiom, which gives us the proof-theoretic version of Szpilrajn’s
theorem.
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