CHAPTER 6:
STRUCTURAL PROOF ANALYSIS OF AXIOMATIC THEORIES

In this chapter, we give a method of adding axioms to sequent calculus, in
the form of nonlogical rules of inference. When formulated in a suitable way,
cut elimination will not be lost by such addition. By converting axioms into
rules, it becomes possible to prove properties of systems by induction on the
height of derivations.

The method of extension by nonlogical rules works uniformly for systems
based on classical logic. For constructive systems, there will be some special
forms of axioms, notably (P D @) D R, that cannot be treated through
cut-free rules.

In the conversion of axiom systems into systems with nonlogical rules, the
multisuccedent calculi G3im and G3c are most useful. All structural rules
will be admissible in extensions of these calculi, which has profound conse-
quences for the structure of derivations. The first application is a cut-free
system of predicate logic with equality. In earlier systems, cut was reduced
to cuts on atomic formulas in instances of the equality axioms, but by the
method of this chapter, there will be no cuts anywhere. Other applications
of the structural proof analysis of mathematical theories include elemen-
tary theories of equality and apartness, order and lattices, and elementary
geometry.

6.1. FROM AXIOMS TO RULES

When classical logic is used, all free-variable axioms (purely universal ax-
ioms) can be turned into rules of inference permitting cut elimination. The
constructive case is more complicated, and we shall deal with it first.

(a) The representation of axioms as rules: We shall be using the
intuitionistic multisuccedent sequent calculus G3ipm of Section 5.3. In
adding nonlogical rules representing axioms, we follow

Principle 6.1.1. In nonlogical rules, the premisses and conclusion are
sequents that have atoms as active and principal formulas in the antecedent,
and an arbitrary context in the succedent.

The most general scheme corresponding to this principle, with shared con-
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texts, is
Q. T=A ... @, I'=A

P,....P..T,=A

Reg

where I', A are arbitrary multisets and Pi,..., Py, Q1,...,Q, are fixed
atoms, and the number of premisses n can be zero.

Once we have shown structural rules admissible, we can conclude that a
rule admitting several atoms in the antecedents of the premisses reduces to
as many rules with one atom, for example, the rule

Ql,QQ,FiA R,P:>A
PT=A

reduces to the two rules

Q,,I'=A RT=A @, '=A RT=A
PT = A PT=A

The second and third rule follow from the first by weakening of the left
premiss. In the other direction, weakening R,I" = A to R,Q2,T = A we
obtain the conclusion P, @2, I' = A from @1, Q2,I" = A by the second rule,
and weakening again R,T' = A to R, P, = A, we obtain by the third rule
P, P,T' = A which contracts to P,I' = A. This argument generalizes, so we
do not need to consider premisses with several atoms.

The full rule-scheme corresponds to the formula P& ... &P, D Q1 V
...V @n. In order to see better what forms of axioms the rule-scheme
covers, we write out a few cases, together with their corresponding axiomatic
statements in Hilbert-style calculus. Omitting the contexts, the rules for
axioms of the forms Q&R, QV R and P D (Q are

Q#A’RﬁA Q=A R=A Q=A
= A = A = A P=A

The rules for axioms of the forms @, ~P and ~ (P, &P») are:

Q=A
= A P=A P,P,= A

We recall the definition of regular sequents and their trace formulas from
Section 3.1: A sequent is regular if it is of the form

P,...,Pp=>0Q1,...,Qn, L,..., L
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where the number of 1’s, m and n can be 0, and P, # Q; for all 4, .
Regular sequents are grouped into four types, each with a corresponding
trace formula

1. P&... &P, D @Q1V...vVQ, if m>0,n>0,
2. Q1V...VQ, if m=0,n>0,

3. ~(P&...&P,) if m>0,n=0,

4. 1 if m=0,n=0.

Regular sequents are precisely the sequents that correspond to rules (lat.
“regulae”) following our rule-scheme. In terms of the rule-scheme, the for-
mation of trace formulas corresponds to the deletion of all but one of several
identical premisses in a rule when any of the @); are identical and contract-
ing repetitions in the antecedent of the conclusion when any of the P; are
identical.

Given a sequent = A, we can perform a root-first decomposition by
means of the rules of G3ipm. If the decomposition terminates, we reach
leaves that are either axioms or conclusions of L1 or regular sequents.
Among such leaves, we distinguish those that are reached from = A by
“invertible paths,” ones that never pass via a noninvertible rule of G3ipm:

Definition 6.1.2: In a terminating decomposition of a sequent = A in
G3ipm, if a topsequent is reached without passing through the left premiss
of LD or via an instance of R D with nonempty context A in its conclusion,
it is an invertible leaf, and in the contrary case it is a noninvertible leaf.

We now define the class of regular formulas:

Definition 6.1.3. A formula A is regular if it has a decomposition that
leads to invertible leaves that are either logical axioms or regular sequents
and noninvertible leaves that are logical axioms.

We observe that the invertible leaves in a decomposition of = A are inde-
pendent of the order of decomposition chosen, since any two rules among L&,
R&, LV, RV, and RD with empty right context A, commute with each other
and each of them commutes with the right premiss of LD. This uniqueness
justifies the following

Definition 6.1.4. For a regular formula A, its regular decomposition is the
set {A1,..., A}, where the A; are the formula traces of the regular sequents

among the invertible leaves of A. The regular normal form of a regular
formula A is A1& ... &Ay.

Note that the regular decomposition of a regular formula A is unique, and
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A is equivalent to its regular normal form. Thus, regular formulas are those
that permit a constructive version of a conjunctive normal form, one where
each conjunct is an implication of form P& ... &P, D Q1V...VQ,, instead
of the classically equivalent disjunctive form ~ P V...V ~ P, VQ1V...VQy.
The class of formulas constructively equivalent to usual conjunctive normal
form is strictly smaller than the class of formulas having regular normal
form. The following proposition shows some closure properties of the latter
class of formulas:

Proposition 6.1.5.

(i) If A has no D, then A is regular,
(ii) If A, B are regular, then A& B is regular,
(iii) If A has no D and B is regular, then A D B is regular.

Proof: (i) By invertibility of the rules for & and V. (ii) Obvious. (iii) Start-
ing with RD, a decomposition of = A D B has invertible leaves of the form

Py,...,P,,T' = A, where Py,..., P, are atoms (from the decomposition
of A) and I = A is either a logical axiom or a regular sequent. Thus also
Py,...,P,, I = A is either a logical axiom or a regular sequent. QED.

From the two cases of noninvertible rules we see that typical formulas that
need not be regular are disjunctions that contain an implication, and impli-
cations that contain an implication in the antecedent. But sometimes even
these are regular, such as the formula (P D Q) D (P D R).

In the next section we show that the class of regular formulas consists
precisely of the formulas the corresponding rules of which commute with the
cut rule. The reason for adopting principle 6.1.1 will then be clear.

(b) Extension of classical systems with nonlogical rules: For the
extension of classical systems, we use the classical multisuccedent sequent
calculus G3c in which all structural rules are built in. All propositional rules
of G3c are invertible, but instead of analysing regularity of formulas through
decomposability as in Section 3.1, we can use the existence of conjunctive
normal form in classical propositional logic: each formula is equivalent to a
conjunction of disjunctions of atoms and negations of atoms. Each conjunct
can be converted into the classically equivalent form P& ... &P, D Q1 V
...V @, which is representable as a rule of inference. As special cases we can
have m = 0 or n = 0 as in the four types of trace formulas. We therefore
have

Proposition 6.1.6. All classical quantifier-free axioms can be represented
by formulas in regular normal form.
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Thus, to every classical quantifier-free theory, there is a corresponding se-
quent calculus with structural rules admissible.

(¢) Conversion of axiom systems into systems with rules: Conver-
sion of a Hilbert-style axiomatic system into a Gentzen-style sequent system
proceeds, after quantifier-elimination, by first finding the regular decompo-
sition of each axiom, and then converting each conjunct into a corresponding
rule following principle 6.1.1. Right contraction is unproblematic due to the
arbitrary context A in the succedents of the rule scheme. In order to han-
dle left contraction, we have to augment this scheme. So assume we have
a derivation of A, A,T' = A, and assume the last rule is nonlogical. Then
the derivation of A, A,T" = A can be of three different forms. First, neither
occurrence of A is principal in the rule; second, one is principal; third, both
are principal. The first case is handled by a straightforward induction, and
the second case by the method, familiar from the work of Kleene and exem-
plified by the LD rule of G3ip, of repeating the principal formulas of the
conclusion in the premisses. Thus, the general rule-scheme becomes

Q. P,....Pp,'=>A ... QunP,....P,,[=> A
PL...PoT=A

Reg

Here Pi,..., P, in the conclusion are principal in the rule, and Pi,..., P,
and @1, ..., Qn in the premisses are active in the rule. Repetitions in the pre-
misses will make left contractions commute with rules following the scheme.
For the remaining case, with both occurrences of formula A principal in
the last rule, consider the situation with a Hilbert-style axiomatization. We
have some axiom, say ~ (a < b & b < a) in the theory of strict linear order,
and substitution of b with a produces ~ (a < a & a < a) that we routinely
abbreviate to ~ a < a, irreflexivity of strict linear order. This is in fact a
contraction. For systems with rules, the case where a substitution produces
two identical formulas that are both principal in a nonlogical rule, is taken
care of by the

Closure condition 6.1.7. Given a system with nonlogical rules, if it has
a rule where a substitution instance in the atoms produces a rule of form

Ql,Pl,...,Pm_Q,P,P,PiA Qn,Pl,...,Pm_Q,P,P,PiAR
Pl,...,Pm_Q,P,P,PiA

€g

then it also has to contain the rule

Q1. P,....Ph o, PT=>=A ... QuP,....,P o, PT=A
Pl,...,Pm,Q,P,FiA

Reg
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The condition is unproblematic, since the number of rules to be added to a
given system of nonlogical rules is bounded. Often the closure condition is
superfluous; For example, the rule expressing irreflexivity in the constructive
theory of strict linear order is derivable from the other rules, as will be shown
in Section 6.6.

6.2. ADMISSIBILITY OF STRUCTURAL RULES

In this section we shall prove the admissibility of the structural rules of weak-
ening, contraction and cut for extensions of logical systems with nonlogical
rules of inference. We shall deal in detail with constructive systems, and
just note that the proofs go through for classical systems with inessential
modifications.

We shall denote by G3im* any extension of the system G3im with
rules following our general rule-scheme and satisfying the closure condition.
Starting from the proof of admissibility of structural rules for G3im in
Section 5.1, we then prove admissibility of the structural rules for G3im*.

Theorem 6.2.1. The rules of weakening

'=A
AT=A

I'= A

W A A"

w

are admissible and height-preserving in G3im*.

Proof: For left weakening, since the two axioms and all rules have an
arbitrary context in the antecedent, adding the weakening formula to the
antecedent of each sequent will give a derivation of A,I' = A. For right
weakening, adding the weakening formula to the succedents of all sequents

that are not followed by an instance of the RD or RV rule will give a deriva-
tion of ' = A, A. QED.

The proof of admissibility of the contraction rules and the cut rule for
G3im requires the use of inversion lemmas. We observe that all the inversion
lemmas of Section 5.1, holding for G3im, hold for G3im* as well. This is
achieved by having only atomic formulas as principal in nonlogical rules, a
property guaranteed by the restriction given in principle 6.1.1.

Theorem 6.2.2. The rules of contraction

A AT = A F=AAA
AT=A " T=A4

are admissible and height-preserving in G3im*.
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Proof: For left contraction, the proof is by induction on the height of the
derivation of the premiss. If it is an axiom, the conclusion also is an axiom.

If A is not principal in the last rule (either logical or nonlogical), apply
inductive hypothesis to the premisses and then the rule.

If A is principal and the last rule is logical, for L& and LV apply height-
preserving invertibility, inductive hypothesis and then the rule. For LD
apply inductive hypothesis to the left premiss, invertibility and inductive
hypothesis to the right premiss, and then the rule. If the last rule is LV,
apply the inductive hypothesis to its premiss, and LV. If the last rule is L3,
apply height preserving invertibility of L3, the inductive hypothesis and L3.

If the last rule is nonlogical, A is an atomic formula P and there are two
cases. In the first case one occurrence of A belongs to the context, another
is principal in the rule, say A = P, (= P). The derivation ends with

Ql,Pl,...,mel,P,P,PI = A ... Qn,Pl,...,mel,P,P,FI =>AR
Pl,...,Pm_l,P,P,F’ = A

eg

and we obtain

Qlan"'amela-Papa]-—‘l :>Alnd Qnapla"'apmflapapa]-—‘,:>A1nd
Qlapl,"',Pm—laPaPIjA Qnapla"'apm—laparléAR

Pl,...,mel,P,FliA

eg
In the second case both occurrences of A are principal in the rule, say
A= P, 1 =P, = P, thus the derivation ends with

Ql,Pl,...,Pm_Q,P,P,P’ = A ... Qn,Pl,...,Pm_Q,P,P,P’ = A
Pl,...,Pm_Q,P,P,F’ = A

Reg

and we obtain

Ql,Pl,...,Pm_Q,P,P,PI = Alnd Qn,Pl,...,Pm_Q,P,P,F, = AInd
Ql,Pl,...,Pm,Q,P,FliA Qn,Pl,...,Pm,Q,P,PliAR

Pl,...,Pm_g,P,FI:>A

€9

with the last rule given by closure condition 6.1.7.

The proof of admissibility of right contraction in G3im* does not present
any additional difficulty with respect to the proof of admissibility in G3im
since in nonlogical rules the succedent in both the premisses and the con-
clusion is an arbitrary multiset A. So in case the last rule in a derivation
of ' = A, A, A is a nonlogical rule, one simply proceeds by applying the
inductive hypothesis to the premisses, and then the rule. QED.
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Theorem 6.2.3. The cut rule
'=AA AT = A’
T = AA!

Cut

18 admissible in G3im*.

Proof: The proof is by induction on the length of A with subinduction
on the sum of the heights of the derivations of I' = A, A and A, IV =
A’. We consider here in detail only the cases arising from the addition of
nonlogical rules. The other cases are treated in the corresponding proof for
the intuitionistic multisuccedent calculus G3im, theorem 5.3.6.

1. If the left premiss is a nonlogical axiom, then also the conclusion is
a nonlogical axiom, since nonlogical axioms have an arbitrary context as
succedent.

2. If the right premiss is a nonlogical axiom with A not principal in it, the
conclusion is a nonlogical axiom for the same reason as in 1.

3. If the right premiss is a nonlogical axiom with A principal in it, A is
atomic and we consider the left premiss. The case that it is a nonlogical
axiom is covered by 1. If it is a logical axiom with A not principal, the
conclusion is a logical axiom; else I" contains the atom A and the conclusion
follows from the right premiss by weakening. In the remaining cases we
consider the last rule in the derivation of I' = A, A. Since A is atomic, A is
not principal in the rule. Let us consider the case of a nonlogical rule (the
others being dealt with similarly, except RD and RY which are covered in
4). We transform the derivation, where P, stands for P, ..., Py,

Ql’Pm’PH = A,A te QnaPmaP” = A,A
P, I"=AA
Py, I, T" = A, A

Re,
TAT s A

Cut

into
Q1,Pn,T"=AA AT = A’C . Qn, P, "= A A AT = A’C .
Q1, P, T, T" = A, A’ o Qu. P, I, T" = A A !

P, ['.T" = A, A

€g

where the cut has been replaced by n cuts with left premiss with derivation
of lower height.
Let us now consider the cases in which neither premiss is an axiom.

4. A is not principal in the left premiss. These are dealt with as above,
with cut permuted upwards to the premisses of the last rule used in the
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derivation of the left premiss (with suitable variable renaming in order to
match the variable restrictions in the cases of quantifier rules), except for
RD and RY. By the intuitionistic restriction in this rule, A does not appear
in the premiss, and the conclusion is obtained without cut by RD (RV, resp.)
and weakening.

5. A is principal in the left premiss only. Then A has to be a compound
formula. Therefore, if the last rule of the right premiss is a nonlogical rule,
A cannot be principal in the rule, because only atomic formulas are principal
in nonlogical rules. In this case cut is permuted to the premisses of the right
premiss. If the right rule is a logical one with A not principal in it, the usual
reductions are applied.

6. A is principal in both premisses. This case can only involve logical rules,
and is dealt with as in the usual proof for pure logic. QED.

The conversions used in the proof of admissibility of cut show why it is
necessary to formulate the nonlogical rules so that they have an arbitrary
context in the succedent, both in the premisses and in the conclusion. Be-
sides, as already observed, active and principal formulas have to be atomic
and appear in the antecedent. Thus nonlogical rules have the form of left
rules.

Theorem 6.2.4. The rules of weakening, contraction and cut are admissible
in G3c*.
Proof: The proof is an extension of the results for the purely logical calculus

in Sections 3.2 and 4.2. The new cases are analogous to the intuitionistic
case. QED.

6.3. FOUR APPROACHES TO EXTENSION BY AXIOMS

We found in Section 1.4 that the addition of axioms A into sequent calculus
in the form of sequents = A by which derivations can start, will lead to
failure of cut elimination. Another way of adding axioms, used by Gentzen
(1938, sec. 1.4) already, is to add “mathematical basic sequents” which are
(substitution instances of) sequents

Pl,---,PméQla---,Qn-

Here P;,(@Q; are atomic formulas (typically containing free parameters) or
1. By Gentzen’s “Hauptsatz,” the use of the cut rule can be pushed into
such basic sequents. A third way of adding axioms, first found in Gentzen’s
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consistency proof of elementary arithmetic in his (1934-35, sec. IV.3), is
to treat axioms as a context I', and to relativize all theorems into I', thus
proving results of form I' = C'. Now the sequent calculus derivations have no
non-logical premisses, and cut elimination applies. A fourth way of adding
axioms is the one of this chapter.

We shall specify formally the four different ways of extending logical
sequent systems by axioms, and then establish their equivalence. Below,
let D be a finite set of regular formulas. We define sequent systems of four
kinds:

Definition 6.3.1:

(a) An A-system for D is a sequent system with axioms, G3ipm+LW+RW+
LC+RCH+Cut+AD, where AD is the set of sequents = D obtained from
elements D in D. Derivability of a sequent I' = A in an A-system where
sequents from AD may appear as premisses (briefly, derivability in AD) is
denoted by Fap I' = A.

(b) A B-system for D is a sequent system with basic sequents, G3ipm+LW+
RW+LC+RC+Cut+BD, where BD is the set of reqular sequents 1-8 of def-
inition 6.1.2 that correspond to elements of D. Derivability of a sequent
I' = A in a B-system, where sequents from BD may appear as premisses, is
denoted by Fpp I' = A.

(¢) A C-system for D is a sequent system with a context. Derivability of
a sequent I' = A in a C-system, where instances of formulas in CD are
always permitted in the antecedent, is denoted by Fop I' = A. We can also
write it as derivability in G3ipm, that is to say as g3 [',© = A, where ©
is the multiset of instances of formulas in D used in the derivation.

(d) An R-system for D is a sequent system with rules, G3ipm+RD, where
RD is the set of rules of inference given by the reqular decomposition of the
formulas in D. Deriwability of a sequent T' = A in an R-system, where rules
from RD are permitted, is denoted by Frp I' = A.

Theorem 6.3.2: F4p I' = A ‘lﬁ Fepp I' = A ‘lﬁ Fep T' = A ‘lﬁ
|—R'DP:>A.

Proof: Axioms and basic sequents are interderivable by cuts, so A- and B-
systems are equivalent. We show equivalence of R-systems with A-systems
and C-systems. If a regular formula has to be considered, we take it to
be the split formula P D @ V R, as other formulas convertible to rules are
special cases or inessential generalizations of it.
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1. Equivalence of R- and A-systems: The rule

Q,P=A RP=A
P=A

Split

can be derived in the A-system with axiom = P D @} V R by means of cuts
and contractions:

POQVR,P=P QVR,P=QVR Q,P=>A R, P=A

P>QVR,P=QVR b2 OVR,P=>A W
=>P>OQVR POQVR,PP=A Cut
PP= A Cut
P=A Le

In the other direction, = P D @)V R is provable in the R-system with Split.

QP=QR ~ RP=QR
Q,P=>QVR R,P:>QVRS”
P=QVR 7

S PoOQVR™

2. Egquivalence of C- and R-systems: Assume I' = A was derived in the
R-system with Split, and show I' = A can be derived in the (C-system
with P D @V R. We assume that Split is the last rule in the derivation, and
therefore I' = P,I”. By induction, F¢p Q, P,T" = A andt¢op R, P,T' = A,
thus there are instances Aj,..., A, and A],..., A}, of the schemes in CD
such that

Fas QP T, A1,...,Am=A and Fgz R PT A, ... A = A

Structural rules can be used, and we have, in G3ipm, a derivation starting
with weakening of the A; and A} into a common context Af,..., A} of

instances from CD:

QPT AL A= A R,P,I",A’l,...,A;léALW
QPRI A, Al = A R, P, AY, . Al = A

Lv
PO QVR,PIAY, ... A = P QVE P Af, AL A
D

PD>QVR,PTAY, .. Al = A
Since the split formula and the AY, ..., A} are in CD, we have shown F¢cp
b 1> » 4k ’

I'= A.
In the other direction, assume Fop I' = A. Suppose for simplicity that
only one axiom occurs in the context, i.e., that Fg3 P D Q VR, ' = A. We
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have the derivation in G3ipm+RD+Cut,

Q,P= Q,R R,P= Q.R
0,P=0QOVR™Y RP=QVR™
P=QVR Spit

—P5QVR™ POQVRT = A

'=A ¢

ut

By admissibility of cut in G3ipm*, the conclusion follows QED.

Derivations in A- and B-systems can have premisses, and therefore cut must
be assumed, whereas C- and R-systems are cut-free. The strength of R-
systems is that they permit proofs by induction on rules used in a derivation.
This leads to some surprisingly simple, purely syntactic proofs of properties
of elementary axiom systems.

6.4. PROPERTIES OF CUT-FREE DERIVATIONS

The properties of sequent systems representing axiomatic systems are based
on the subformula principle for systems with nonlogical rules:

Theorem 6.4.1. IfT = A is derivable in G3im* or G3c*, then all
formulas in the derivation are either subformulas of the endsequent or atomic
formulas.

Proof: Only nonlogical rules can make formulas disappear in a derivation,
and all such formulas are atomic. QED.

The subformula principle is weaker than that for purely logical systems,
but sufficient for structural proof-analysis. Some general consequences are
obtained: Consider a theory having as axioms a finite set D of regular for-
mulas. Define D to be inconsistent if = L is derivable in the corresponding
extension, and consistent if it is not inconsistent. For a theory D, incon-
sistency surfaces with the axioms through regular decomposition, with no
consideration of the logical rules:

Theorem 6.4.2. Let D be inconsistent. Then

(i) All rules in the derivation of = L are nonlogical,
(ii) All sequents in the derivation have L as succedent,
(iii) Each branch in the derivation begins with a nonlogical rule of form

P,....,P,=>1
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(iv) The last step in the derivation is a rule of form

Qi=>L ... Q=1
=1

Proof: (i) By theorem 6.4.1, no logical constants except L can occur in the
derivation. (ii) If the conclusion of a nonlogical rule has A as succedent, the
premisses of the rule also have. Since the endsequent is = L, (ii) follows.
(iii) By (ii) and by L not being atomic, no derivation begins with P,T" = P.
Since only atoms can disappear from antecedents in a nonlogical rule, no
derivation begins with 1,I' = L. This leaves only zero-premiss nonlogical
rules. (iv) By observing that the endsequent has an empty antecedent.
QED.

It follows that if an axiom system is inconsistent, its formula traces contain
negations, and atoms or disjunctions. Therefore, if there are neither atoms
nor disjunctions, the axiom system is consistent, and similarly if there are
no negations.

By our method, the logical structure in axioms as they are usually ex-
pressed, is converted into combinatorial properties of derivation trees, and
completely separated from steps of logical inference. This is especially clear
in the classical quantifier-free case, where theorems to be proved can be con-
verted into a finite number of regular sequents I' = A. By the subformula
principle, derivations of these sequents use only the nonlogical rules and ax-
ioms of the corresponding sequent calculus, with the succedent remaining
the same throughout all derivations. It becomes possible to use proof theory
for syntactic proofs of mutual independence of axiom systems, as follows.
Let the axiom to be proved independent be expressed by the logic-free se-
quent ' = A. When the rule corresponding to the axiom is left out from
the system of nonlogical rules, underivability of I' = A is usually very easily
seen. Examples will be given in the last section of this chapter.

6.5. PREDICATE LOGIC WITH EQUALITY

Axiomatic presentations of predicate logic with equality assume a primitive
relation a = b with the axiom of reflexivity, a = a, and the replacement
scheme, a =b&A(a/z) D A(b/z). In sequent calculus, the usual way of
treating equality is to add regular sequents with which derivations can start
(as in Troelstra and Schwichtenberg 1996, p. 98). These sequents are of
form = a=a and a =b,P(a/z) = P(b/z), with P atomic, and Gentzen’s
“extended Hauptsatz” says that cuts can be reduced to cuts on these equality
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axioms. For example, symmetry of equality is derived by letting P be z = a.
Then the second axiom gives a =b,a =a = b=a, and a cut with the first
axiom = a=a gives a=b = b=a. But there is no cut-free derivation
of symmetry. Note also that in this approach, the rules of weakening and
contraction must be assumed, and only then can cuts be reduced to cuts on
axioms. (Weakening could be made admissible by letting arbitrary contexts
appear on both sides of the regular sequents, but contraction not.)

By our method, cuts on equality axioms are avoided. We first restrict
the replacement scheme to atomic predicates P, @, R, ... and then convert
the axioms into rules,

a=aT = A P(b/z),a =b,P(a/z),T = A

Repl
T=a a=bPlajz),L = A& 7

There is a separate replacement rule for each predicate P, and a = b, P(a/x)
are repeated in the premiss to obtain admissibility of contraction. By the
restriction to atomic predicates, both forms of rules follow the rule-scheme.
A case of duplication is produced in the conclusion of the replacement rule
in case P is x = b. The replacement rule concludes a = b,a =b,I' = A from
the premiss b=b,a =b,a =b,I' = A. We note that the rule where both
duplications are contracted is an instance of the reflexivity rule so that the
closure condition is satisfied. We therefore have, both for G3im and G3c,
the

Theorem 6.5.1. The rules of weakening, contraction and cut are admissible
in predicate logic with equality.

Next we have to show the replacement rule admissible for arbitrary predi-
cates.

Lemma 6.5.2. The replacement aziom a = b, A(a/z) = A(b/x) is derivable
for arbitrary A.

Proof: The proof is by induction on length of A. If A = | the sequent
is an axiom, and if A is an atom it follows from the replacement rule. If
A = B&C or A = BV C, we apply inductive hypothesis to B and C' and

146



then left and right rules. If A = B D C, we have the derivation

b=a,B(b/z) = B(a/z)
b=a,a=b,a=a,B(b/z) = B(a/z)
a=b,a=a,B(b/z) = B(a/x) Fef
a="b,B(b/z) = B(a/z) w a="5,C(af/z) = C(b/x)
a=b,B(a/z) D C(a/x),B(b/x) = B(a/x) a="b,C(a/z),B(b/z) = C(b/x)
a=>b,B(a/z) D Cla/z),B(/z) = C(b/x)
a="b,B(a/z) D C(a/x) = B(b/z) D C(b/x)

w,wW
Repl

w
LD

If A = VyB, the sequent a =b,VyB(a/x) = VYyB(b/x) is derived from
a=>b,B(a/z) = B(b/x) by applying first LV and then RY. Finally, the
sequent a = b,JyB(a/z) = JyB(b/z) is derived by applying first R3 and
then L3. QED.

Theorem 6.5.3. The replacement rule

A(b/z),a =b,A(a/z),T = A
a=>b,A(a/z), = A

Repl

18 admissible for arbitrary predicates A.

Proof: By the lemma, a = b, A(a/z) = A(b/z) is derivable. A cut with the
premiss of the replacement rule and contractions lead to a = b, A(a/z),I" =
A. Therefore, by admissibility of contraction and cut in the calculus of

predicate logic with equality, admissibility of the replacement rule follows.
QED.

Our cut- and contraction-free calculus is equivalent to the usual calculi:
the sequents = a =a and a = b, P(a/x) = P(b/z) follow at once from the
reflexivity rule and the replacement rule. In the other direction, the two
rules are easily derived from = a =a and a = b, P(a/z) = P(b/x) using cut
and contraction. But the formulation of equality axioms as rules permits
proofs by induction on height of derivation. The conservativity of predicate
logic with equality over predicate logic illustrates such proofs. In a cut-free
derivation of a sequent I' = A that contains no equalities, the last nonlogical
rule must be Ref. To prove the conservativity, we show that instances of
this rule can be eliminated from the derivation. Above we noticed that
the rule of replacement has an instance with a duplication, but that the
closure condition is satisfied since the instance where both duplications are
contracted is an instance of reflexivity. For the proof of conservativity, the
closure condition will be satisfied by adding directly the contracted instance
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of Repl as a rule Repl*:

b=ba=bT= A
a-bT=A

Repl*

Lemma 6.5.4: If ' = A has no equalities and is derivable in G3c+Ref+
Repl+Repl*, no sequents in its derivation have equalities in the succedent.

Proof: Assume there is an equality in a succedent. Only a logical rule can
move it, but then it is a subformula of the endsequent. QED.

Lemma 6.5.5: If ' = A has no equalities and is derivable in G3c+Ref+
Repl+Repl* it is derivable in G3c+Repl+Repl*.

Proof: It is enough to show that a topmost instance of Ref can be eliminated
from a given derivation. The proof is by induction on the height of derivation
of a topmost instance

a=aT" = A

= A’ fief

If the premiss is an axiom also the conclusion is, since by lemma 6.5.4 the
succedent A’ contains no equality, and the same if it is a conclusion of L.
If the premiss has been concluded by a one-premiss logical rule R we have

a:a,F":>A"R
a=aT" = Al

"= A’ el
and this is transformed into
a=a,T"= A"
I‘\Il :> AII Ref
"= A/

There is by the inductive hypothesis a derivation of I’ = A" without rule
Ref. If a two-premiss logical rule has been applied, the case is similar.
If the premiss has been concluded by Repl there are two cases, according

to whether a = a is or is not principal. In the latter case the derivation is,
with IV = P(b/z),T"

P(c/z),a=a,b=c,P(b/z),I" = A
a=a,b=c,P(b/z),T" = A’
b=c,P(b/z),T" = A’

Repl
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By permuting the two rules, the inductive hypothesis can be applied. If
a = a is principal, the derivation is, with IV = P(a/z),T"
P(a/z),a =a,P(a/z),T" = A’
a=a,P(a/z),T" = A
P(a/z),T" = A'

Repl

By height-preserving contraction, there is a derivation of a = a, P(a/z),T" =
A’ so that the premiss of Ref is obtained by a derivation with lower height.
The inductive hypothesis applies, giving a derivation of IV = A’ without
rule Ref.

Last, if the premiss of Ref has been concluded by Repl* with a = a not
principal the derivation is

c=ca=a,b=c, "= A’
a=ab=cT' = A
b_c, I = A/

Repl*

Ref

The rules are permuted and the inductive hypothesis applied. If a =a is
principal the derivation is

a=a,a=aT" = A
a=aTI" = Al
= A’

Repl*
Ref

and we apply height-preserving contraction and the inductive hypothesis.
QED.

Theorem 6.5.6: If T' = A is deriwable in G3c+Ref+Repl+Repl* and if
', A contain no equality, then T' = A is derivable in G3c.

Proof: By lemma 6.5.5, there is a derivation without rule Ref. Since the
endsequent has no equality, Repl and Repl* cannot have been used in this
derivation. QED.

Note that if cuts on atoms had not been eliminated, the proof would not
go through. Also, if the closure condition were satisfied by considering the
contracted rule to be an instance of Ref, elimination of contraction could
introduce new instances of Ref above the Ref to be eliminated in lemma
6.5.5.

6.6. APPLICATION TO AXIOMATIC SYSTEMS

All classical systems permitting quantifier-elimination, and most intuition-
istic ones, can be converted into systems of cut-free nonlogical rules of infer-

149



ence. In the previous section, we gave the first application, predicate logic
with equality. In Section 5.4, we showed how to turn the logical axiom of
excluded middle for atomic formulas into a sequent calculus rule. Also the
calculus G3ip+Gem-at can be seen as an intuitionistic calculus to which a
rule corresponding to the decidability of atomic formulas has been added,
and from this point of view, it is more natural to consider the law of excluded
middle a nonlogical rather than a logical axiom.

We shall first give as a general result for theories with purely univer-
sal axioms a version of Herbrand’s theorem. Then specific examples
from elementary intuitionistic axiomatics are given: Theories of equality,
apartness and order, as well as algebraic theories with operations, such as
lattices and Heyting algebras, are representable as cut-free intuitionistic sys-
tems. On the other hand, the intuitionistic theory of negative equality does
not admit of a good structural proof theory under the present approach:
This theory has a primitive relation a # b and the two axioms ~a # a and
~a+#c& ~b+#cD ~a+#bexpressing reflexivity and transitivity of negative
equality.

As a further application of the methods of this chapter, we give a struc-
tural proof theory of classical plane affine geometry, with a proof of the in-
dependence of Euclid’s fifth postulate obtained by proof-theoretical means.
Another application of the fact that logical rules can be dispensed with is
proof search. We can start root-first from a logic-free sequent I' = A to
be derived: The succedent will be the same throughout in derivations with
nonlogical rules, and in typical cases very few nonlogical rules match the
sequent to be derived.

(a) Herbrand’s theorem for universal theories: Let T be a theory with
a finite number of purely universal axioms and classical logic. We turn the
theory T into a system of nonlogical rules by first removing the quantifiers
from each axiom, then converting the remaining part into nonlogical rules.
The resulting system will be denoted G3cT.

Theorem 6.6.1: Herbrand’s theorem: If the sequent = Vx3y; ... JyiA4,
with A quantifier-free, is derivable in G3¢T, then there are terms i;; with
1< n,j <k such that

n

\/ A(til/yla cee atlk/yk)

=1
is derivable in G3cT.

Proof: Suppose, to narrow things down, that k¥ = 1. Then the derivation

150



of = VzdyA ends with

= A(z/z,t1/y), Iy A(z/z)
= JyA(z/x)
= VzdyA

If the derivation continues, root first, with a propositional inference the
next premiss is I'y = A, 3yA(z/z) where I'1, A; consist of subformulas of
A(z/z,t1/y). (For the sake of simplicity, only a one-premiss rule is consid-
ered.) Otherwise R3 was applied and the premiss is

= A(z/z,t1/y), A(z/z,t2/y), FyA(z/z)

The derivation can continue up from the second alternative in the same way,

producing possible derivations where R is applied and instances of the for-

mula JyA(z/x) multiplied, but since the derivation cannot grow indefinitely

at some stage a conclusion must come from an inference that is not R3.
Every sequent in the derivation is of the form

I'= A, A(z/z, tm/Yy), -, A2/ tmia [y), Iy A2/ @)

where I, A consist of subformulas of A(z/z,t;/y), with i < m. In partic-
ular, the formula 3yA(z/z) can only occur in the succedent. Consider the
topsequents of the derivation. If they are axioms or conclusions of L1 they
remain so after deletion of the formula JyA(z/z). If they are conclusions
of zero premiss nonlogical rules, they remain so after the deletion since the
right context in these rules is arbitrary. After deletion, every topsequent in
the derivation is of the form

L= A A(z/z,tn/Y), - Alz) 2, tmet |Y)

Making the propositional and nonlogical inferences as before, but without
the formula JyA(z/z) in the succedent, produces a derivation of

= A(Z/matl/y)a e ’A(Z/a:’tmfl/y)vA(z/wvtm/y)v e ,A(z/a:,tn/y)

and repeated application of rule RV now leads to the conclusion. QED.

In the end of Section 4.3(a) we anticipated a simple form of Herbrand’s the-
orem for classical predicate logic, as a result corresponding to the existence
property of intuitionistic predicate logic: Dropping the universal theory from
theorem 6.6.1, there are no nonlogical rules to consider and we obtain the
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Corollary 6.6.2: If = 3z A is derivable in G3c, there are terms t1,...,t,
such that = A(t1/z) V...V A(t,/z) is derivable.

(b) Theories of equality and apartness: The axioms of an apartness
relation were introduced in Section 2.1. We shall turn first the equality
axioms and then the apartness axioms into systems of cut-free rules.

1. The theory of equality has one basic relation a = b obeying the
axioms

EQL. a=a,
EQ2. a=b&a=cDb=c

Symmetry of equality follows by substituting a for ¢ in EQ2. Note that the
formulation is slightly different from the transitivity of equality as given in
Section 2.1 where we had a =c & b=c D a =0. The change is dictated
by the form of the replacement axiom of Section 6.5: Now transitivity is
directly an instance of the replacement axiom, with A equal to z = c.
Addition of the rules
a=a,I'= A b=c,a=b,a=c,I'=> A

ef Trans

'=A a=ba=c'=A

where a = b, a = ¢ are repeated in the premiss of rule Trans, gives a calculus
G3im+Ref+Trans the rules of which follow the rule-scheme. As noted in
Section 6.5, a duplication in Trans is produced in case b is identical to ¢, but
the corresponding contracted rule is an instance of rule Ref. The closure
condition is satisfied and the structural rules admissible.

2. The theory of decidable equality is given by the above axioms EQ1
and EQ2 and

DEQ. a-bV ~a=b

The corresponding rule is an instance of a multisuccedent version the scheme

Gem-at:
a=b'=A ~a=bT=A

I'= A

Deq

Admissibility of structural rules for this rule is proved similarly to the single
succedent version in Section 5.4. For the language of equality, we have
G3im+Gem-at = G3im+Deq, a cut-free calculus. Proof of admissibility of
structural rules is modular for the rules Ref, Trans and Degq, and it follows
that the intuitionistic theory of decidable equality, which is the same as the
classical theory of equality, is cut-free.
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3. The theory of apartness has the basic relation a # b (a and b are
apart, a and b are distinct), with the axioms

AP1l. ~a #a,

AP2. a#bDa#c V b#c

The rules are

az2c,a#b'=A b#c,a#b = A

frref aZbT = A

_ Split
a#al=A

The first, premissless rule represents ~a # a by licensing any inference from
a # a, the second has repetition of a # b in the premisses. Both rules fol-
low the rule-scheme, the closure condition does not arise because there is
only one principal formula, and therefore structural rules are admissible in
G3im+Irref4Split.

4. Decidability of apartness is expressed by the axiom
DAP. a#bV ~a#b,
and the corresponding rule is

a2b T =A ~azbIT=A
'=A

Dap

As before, it follows that the calculus G3im+Irref+Split+Dap is cut-free.

5. The intuitionistic theory of negative equality is obtained from the
axioms of apartness, with the second axiom replaced by its constructively
weaker contraposition:

NEQl. ~a#a,
NEQ2. ~az#c& ~b#cD ~azb.

It is not possible to extend G3im into a cut-free theory of negative equality
by the present methods. If a classical calculus such as G3c or G3i+Gem-at
is used, a cut-free system is obtained since NEQ2 becomes equivalent to
AP2.

The elementary theories in 1.—4. can also be given in a single succedent
formulation based on extension of the calculus G3i, as in Negri (1999). As
a consequence of the admissibility of structural rules in such extensions, we
have the following result for the theory of apartness:

Corollary 6.6.3: Disjunction property for the theory of apartness.
If = AV B is derivable in the single succedent calculus for the theory of
apartness, either = A or = B is derivable.
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Proof: Consider the last rule in the derivation. The rules for apartness
cannot conclude a sequent with an empty antecedent and therefore the last
rule must be rule RV of G3i. QED.

Let us compare the result to the treatment of axiom systems as a context,
the third of the approaches described in Section 6.3. Each derivation uses
a finite number of instances of the universal closures of the two axioms of
apartness, say I'. The assumption becomes that I' == A V B is derivable in
G3i. Whenever I' contains an instance of the “split” axiom it has a formula
with a disjunction in the consequent of an implication. Therefore, I' does
not consist of Harrop formulas only (definition 2.5.3), so that corollary 6.6.3
gives a proper extension of the disjunction property under hypotheses that
are Harrop formulas, theorem 2.5.4.

(¢) Theories of order: We first consider a constructive version of linear
order, and next partial order. The latter is then extended in 6.6.(d) by the
addition of lattice operations and their axioms.

1. Constructive linear order: We have a set with a strict order
relation with the two axioms:

LOl. ~(a<b&b<a),
LO2. a<bDa<c V c<b.

Contraposition of the second axiom expresses transitivity of weak linear
order. Two rules, denoted by Asym and Split, are uniquely determined from
the axioms. Both rules follow the rule scheme, and the first one has an
instance with a duplication, produced when a and b are identical:

Asym
a<a,a<a,l=A

The contracted sequent a < a,I’ = A is derived by

Asym

Asym
a<a,a<al = A a<a,a<a,F:>ASl_t
pli

a<a,l'=A

We observe that the contracted rule is only admissible, rather than being
a rule of the system. This makes no difference unless height-preserving
admissibility of contraction is required. It is not needed for admissibility of
cut.

2. Partial order: We have a set with an order relation satisfying the
two axioms

POl. a<a,
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PO2. agb&bgecDdacxe

Equality is defined by a =b = a <b & b < a. It follows that equality is an
equivalence relation. Further, since equality is defined in terms of partial
order, the principle of substitution of equals for the latter is provable. The
axioms of partial order determine by the rule-scheme two rules, the one cor-
responding to transitivity producing a duplication in case a =b and b = c.
The rule where both the premiss and conclusion are contracted, is an in-
stance of the rule corresponding to reflexivity, and therefore the structural
rules are admissible. The rules corresponding to the two axioms are denoted
by Ref and Trans:

ag<a, = A ag<ca<bbge, = A

Toa a<bb<cl = A

Derivations of a regular sequent I' = A in the theory of partial order begin
with logical axioms, followed by applications of the above rules. As is seen
from the rules, these derivations have the following peculiar form: They
are all linear and each step consists in the deletion of one atom from the
antecedent. If classical logic is used, by invertibility of all its rules, every
derivation consists of derivations of regular sequents followed by application
of logical rules only.

3. Nondegenerate partial order: We add to the axioms of partial
order two constant 0,1 satisfying the axiom of nondegeneracy ~ 1 0.
The corresponding rule has zero premisses:

——— Nond
1<0,0 = A %

Partial order is conservative over nondegenerate partial order:

Theorem 6.6.4: If T = A is derivable in the theory of nondegenerate
partial order and Ty A are quantifier-free and do not contain 0,1, then I’ =
A is deriwable in the theory of partial order.

Proof: We prove that if a derivation of I' = A contains atoms with 0 or 1
the atoms are instances of reflexivity, of the form 0 < 0 or 1 < 1. So suppose
the derivation contains an atom with 0 or 1 and not of the above form. Its
downmost occurrence can only disappear by an application of rule Trans

a<ca<bbge = A
ag<bbge,I'=A

Trans

where a < ¢ contains 0 or 1 and is not an instance of reflexivity. If a = 0, i.e.,
a is syntactically equal to 0, then a < b in the conclusion must be an instance
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of reflexivity and we have b = 0, therefore also ¢ = 0. But then a < ¢ is an
instance of reflexivity contrary to assumption. The same conclusion follows
ifa=lorc=0o0rc=1.

By the above, the derivation does not contain instances of 1 <0 and
therefore no instances of rule Nondeg. QED.

(d) Lattice theory: We add to partial order the two lattice constructions
and their axioms:

Lattice operations and axioms:

anb  the meet of a and b, avb the join of a and b,
anb<a (Mtl), a <avb (Jnl),

anb b (Mtr), b<avb (Jnr),
c<a&cgbDegandb (Unimt), a<c& b<cDavb<c (Unin).

All of the axioms follow the rule scheme, and we shall use the above identi-
fiers as names of the nonlogical rules of lattice theory:

anb<a, ' = A a<avh,I' = A
r=A M T r=a M
anb < b,I' = A b<avh,I'= A
T=a " r=A ™
c<anb,c<a,e<b,'=A  avb<ca<ecbge, I'=A
c<a,c<b,I'= A Unamt a<ebge, I'= A Unign

The uniqueness rules for the meet and join constructions can have instances
with a duplication in the premiss and conclusion:
c<ana,c<a,c<a,l' = A
c<a,c<a,l'=>A

Unimt

and similarly for join. The rule where ¢ < a is contracted in both the premiss
and conclusion can be added to the system to meet the closure condition.
If height-preserving contraction is not required, the contracted rule can be
proved admissible: Using admissibility of left weakening, admissibility of the
rule obtained from Unimt is proved as follows, starting with the contracted
premiss ¢ < ana,c < a, ' = A:

cgana,c<a,l' = A o
c<ana,c<a,a <ana,l’ = A
Trans
c<a,a<ana, ' = A
LW,LW
c<a,a<ana,a<a,a<a,l = A
c<a,a<a,a<a,l = A
c<a,I'=> A

Unimt
Ref,Ref
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All structural rules are admissible in the proof-theoretical formulation of
lattice theory.

As a consequence of having an equality relation defined through partial
order, substitution of equals in the meet and join operations,

b=cDanb=anc b=cDavb=ave

need not be postulated but can instead be derived. For example, we have
anb < a by Mtl and anb < ¢ by Mtl, b < ¢ and Trans, so anb < anc follows by
Unimt.

Lattice theory is conservative over partial order:

Theorem 6.6.5: If I' = A is derivable in lattice theory and ', A are
quantifier-free and do not contain lattice operations, then I' = A is derivable
in the theory of partial order.

Proof: We can assume that I' = A is a regular sequent. Its derivation is
a linear sequence starting with a logical axiom, followed by applications of
nonlogical rules of lattice theory. The succedent is always A, whereas each
step of inference removes one atom from the antecedent. Let a < ¢ be the
atom active in the top sequent a < ¢, IV = A’,a <c where A’',a <c = A.
If in the derivation there is an instance of rule Ref with a < ¢ pr1nc1pa1 in
it, then a =c and a < ¢,I"’ = A is a logical axiom from Whlch I' = A fol-
lows by Ref. Since a < ¢ has no lattice operations it can otherwise disappear
only in an instance of rule Trans. We must thus have in the topsequent
the atoms a < b,b < < ¢, with a chain a < b,b < ¢ of two atoms, and the
atom a < ¢ removed further down in an instance of Trans. If both a < b and
b < c are in the endsequent of the whole derivation, then I' = a < b, b c, T
and I' = A follows from the logical axiom a < <bbge,T" = A by
Trans. Else a <b or b<c is not in I'. If, say, a b dlasappears by Trans,
with active formulas a < d and d < b, then the topsequent contains the
atoms a <d,d<b,b<c,a< <b. Two applications of rule Trans leave
the chain of three atoms a < d d < b, b < c. Proceeding in this way we trace
all the atoms that dlsappear through rule Trans and mark all the formu-
las in the topsequent that are active in the derivation up to that point.
If some of them disappear through Ref they are simply removed from the
derivation. We thus obtain a derivation containing a sequent with a chain

< bo,bg < by, ..., by < ¢ such that none of the atoms in the chain disappear
through Ref or Trans. Therefore each b; belongs to atoms that disappear
because of lattice rules and each atom b; < b;11 must contain a lattice oper-
ation.
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Next we give transformations of the given derivation of I' = A that each
reduce the number of atoms containing lattice operations in the antecedent
of the topsequent and disappearing through lattice rules. Repeating the
transformations we obtain a derivation where no atoms containing lattice
operations and disappearing through lattice rules are present, thus a deriva-
tion where only rules of partial order are applied.

We claim that in the chain a < by, by < b1, - .., b, < ¢ there is a contiguous
pair of atoms that disappear through rules Unimt, Mt or Jn, Unijn: Start
with a < by. If the outermost lattice operation of by is A, the atom a < by
has to disappear through Unimt (remember that a does not contain meet or
join). Then by < by either disappears through Jn, Unimt or Mt. In the last
case we are done, else we continue analyzing by < by. If the first case had
occured, by < by can disappear through Unijn or Jn or Unimdt, if the second,
it can disappear through Jn or Unimt or Mt. In the last case we have the
conclusion.

Let by be the first of the b; that does not contain lattice operations. (If
there are none, consider the last term ¢ in the chain.) We continue until we
have that by_o < b1 disappears through Jn or Unimt. But then by 1 < by
disappears through Unijn or Mt respectively, since by, does not contain lattice
operations. We prove the result in a similar fashion if the outermost lattice
operation of by is v.

Let two contiguous atoms b < dae and dnae < d disappear through Unimt,
Mt. Fot Unimt to be applicable, the topsequent has to contain the atoms
b <d and b < e. Then replace the two atoms b < drae and dre < d with the
single atom b < d, and continue the derivation as before except for removing
the instances of Trans where the two atoms were active and the two steps
Unimt, Mt. In this way the number of atoms containing lattice operations
is decreased. If there are two contiguous atoms that diasppear through Jn,
Unign, let them to be b < bvd, bvd < e. Then replace them with the atom
b < e that is found in the topsequent and remove the steps where the two
atoms were active. Again, this proof transformation decreases the number
of atoms containing lattice operations. QED.

(e) Affine geometry: We have two sets of basic objects, points denoted
by a,b,c,... and lines denoted by I, m,n, . ... In order to eliminate all logical
structure from the nonlogical rules, we use a somewhat unusual set of basic
concepts, written as follows:

a#b, aandb are distinct points,
l#m, [ and m are distinct lines,
lym, [ and m are convergent lines,
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A(a,l), point a is outside line [.

The usual concepts of equal points, equal lines, parallel lines and incidence
of a point with a line, are obtained as negations from the above. These are
written as a = b, [ = m, [ || m and I(a,l), respectively.

The axioms, with names added, are as follows:

I Axioms for apartness relations:
~a#a (Irref), a#bDa#cVb#c (Split),
~l#lL (Irref), 1#mDIl#nVm#n (Split),
~iyl o (Irref), LymDIlynVmyn (Split).

These three basic relations are apartness relations and their negations equiv-
alence relations.

Next we have three constructions, two of which have conditions: the
connecting line In(a,b) that can be formed if a # b has been proved, the
intersection point pt(l,m) where similarly [ j m is required to be proved,
and the parallel line par(l,a) that can be applied without any conditions,
uniformly in [ and a.

Constructed objects obey incidence and parallelism properties expressed
by the next group of axioms

IT Axioms of incidence and parallelism:
a#b>DI(a,ln(a,b)) (Inc), a#bDI(bin(a,b)) (Inc),
Lym D I(pt(l,m),l) (Inc), Lym D I(pt(l,m),m) (Inc),
I(a,par(l,a)) (Inc),

[ par(l,a) (Par).

Uniqueness of connecting lines, intersection points and parallel lines is guar-
anteed by

ITI Uniqueness axioms:
a#zb&l+m D A(a,l)V A(b1)V Ala,m) V A(b,m) (Uni),
l#m D A(a,l) V A(a,m) VIfm (Unipar).
The contrapositions of these two principles express usual uniqueness prop-

erties.
Last, we have

IV Substitution axioms:
Afa,l) Da#bV A(b,l) (Subst),
A(a,l) DIl #mV A(a,m) (Subst),
lymDIl#nVmyn (Subst),
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Again, the contrapositions of these three axioms give the usual substitution
principles.

The above axiom system is equivalent to standard systems, such as
Artin’s (1957) axioms. These state the existence and uniqueness of connect-
ing lines and parallel lines, and existence and properties of intersection points
are obtained through a defined notion of parallels. As is typical in such an in-
formal discourse, the principles corresponding to our groups I and IV are left
implicit. There is a further axiom stating the existence of at least three non-
collinear points, but as explained in von Plato (1995), we do not use such ex-
istential axioms, say (3z : Pt)(3y : Pt)z #y and (Vz : Ln)(Jy : Pt)A(y, ).
The same effect is achieved by systematically considering only geometric sit-
uations containing the assumptions a : Pt,b: Pt,a # b,c: Pt, A(c,In(a,b)).

An axiom such as a # b D I(a,ln(a,b)) hides a structure going beyond
first-order logic. Contrary to appearence, it does not consist of two inde-
pendent formulas a # b and I(a,In(a,b)) and a connective, for the latter is
a well-formed formula only if a # b has been proved. (For a detailed expla-
nation of this structure, dependent typing, see Section 3 of Appendix B.)
As an example of conditions for well-formed formulas, from our axioms a
“triangle axiom”

A(e,ln(a,b)) D A(b,In(c, a))

can be derived, but the conditions a # b and ¢ # a are required for this to be
well-formed. Here we can actually prove more, the lemma

a#b& A(c,ln(a,b)) Dc+#a

Assume for this a # b and A(c,In(a,b)). By the first substitution axiom,
A(e,ln(a,b)) gives ¢ # a V A(a,ln(a,b)). By incidence axioms, I(a,In(a,b)),

so that ¢ # a follows. By the second substitution axiom, A(c,In(a,b)) gives
In(a,b) #in(c,a) V A(c,In(c,a)), so that In(a,b) #In(c,a) follows. By the
uniqueness axiom, a # band In(a, b) # In(c,a)) give A(a,In(a,b))VA(b,In(a,b))V
A(a,ln(c,a)) V A(b,In(c,a)), so the incidence axioms lead to the conclusion
A(b,In(c,a)).

Examples of conditions can be found in mathematics whenever first-order
logic is insufficient. A familiar case is field theory, where results involving in-
verses £,y !,... can only be expressed after the conditions z # 0,y # 0, ...
have been established.

In a more formal treatment of conditions, they can be made into pro-
gressive contexts in the sense of type theory (see Martin-Lof 1984 and von
Plato 1995). Such contexts can be arbitrarily complex, even if the formulas
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in them should all be atomic. For example, the formula In(pt(l,m),a) #1
presupposes that pt(l,m) # a which in turn presupposes that [ jf m.

The reason for having basic concepts different from the traditional ones
is not only that the “apartness” style concepts suit a constructive axiomati-
zation. There is a reason for the choice of these concepts in classical theories
also: Namely, if the conditions a # b and [ ) m were defined as a = b D 1 and
[||m D L, the natural logic-free expression of the incidence axioms would
be lost.

All of the axioms of plane affine geometry can be converted into nonlog-
ical rules, moreover, closure condition 6.1.7 will not lead to any new rules.
We conclude that the structural rules are admissible in the rule system for
plane affine geometry.

We first derive a form of Euclid’s fifth postulate from the geometrical
rules: Given a point a outside a line [, no point is incident with both [ and
the parallel to [ through point a. Axiomatically, we may express this by the
formula

A(a,l) D ~(I(b,1)&I(b,par(l,a)))

The sequent
Aa,l) = A(b,1), A(b, par(l,a))

is classically equivalent to the previous one and expresses the same principle
as a logic-free multisuccedent sequent. To derive this sequent, we note that
by admissibility of structural rules, all rules in its derivation are nonlogical,
and therefore the succedent is always the same, A(b,[), A(b,par(l,a)). Fur-
ther, no conditions will appear. With these prescriptions, root-first proof-
search is very nearly deterministic. Inspecting the sequent to be derived,
the last step has to be a substitution rule, where the second premiss is im-
mediately derived. In order to fit the derivations in, the principal formulas
are not repeated in the premisses, and the second formula in the succedent
is abbreviated by A = A(b,par(l,a)).

Inc

l#par(l,a) = A(b,1),A A(a,par(l,a)) = A(b,1), A
A(a,l) = A(b,1), A

Subst

The first premiss can be derived by the uniqueness of parallels, and now the
rest is obvious:

Ab,D) = A(b1), A A= A1), A [gpar(l,a) = Ab,1), A "

I #par(l,a) = A(b,1), A

Unipar
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We shall show that when the rule of uniqueness of parallels is left out, the
sequent
A(a,l) = A(b,1), A(b, par(l, a))

is not derivable by the rules of affine geometry. We know already that if
there is such a derivation, it must end with one of the two first substitution
rules. If it is the first rule, we have

a#b= A(b,1),A A(bl) = A(bl),A
Aa,l) = A(b,1), A

Subst

Then the first premiss must be derivable. It is not an axiom, and unless
a =b, it does not follow by Irref. Split only repeats the problem, leading
to an infinite regress. This leaves only the second substitution rule, and we

have
l+m= A(b,1),A A(a,m)= A(b1),A

Aa,l) = A(b,1), A

Subst

As in the first case, rules for apartness relations will not lead to the first
premiss. Otherwise it could only be derived by uniqueness of parallels, but
that is not available. By theorem 6.3.2, derivability in the system of rules is
equivalent to derivability with axioms, and we conclude the

Theorem 6.6.6: The uniqueness axiom for parallel lines is independent of
the other axioms of plane affine geometry.

In case of theorems with quantifiers, assuming classical logic, a theorem
to be proved is first converted into prenex form, then the propositional ma-
trix into the variant of conjunctive normal form used above. Each conjunct
corresponds to a regular sequent, without logical structure, and the overall
structure of the derivation is as follows: First the regular sequents are de-
rived by nonlogical rules only, then the conjuncts by L&, RV and RD. Now
R& collects all these into the propositional matrix, and right quantifier rules
lead into the theorem. The nonlogical rules typically contain function con-
stants resulting from quantifier elimination. In the constructive case, these
methods apply to formulas in the prenex-fragment admitting a propositional
part in regular normal form.

An example may illustrate the above structure of derivations: Consider
the formula expressing that for any two points, if they are distinct, there is
a line on which the points are incident,

VaVy(z +y D Fz(I(z, 2)&I(y, 2))).
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In prenex normal form, with the propositional matrix in the implicational
variant of conjunctive normal form, this is equivalent to

VaVy3z((z # y&A(z,z) D L)&(z # y&A(y,z) D L1)).

In a quantifier-free approach, we have instead the connecting line construc-
tion with incidence properties expressed by rules in a quantifier-free form:

a0, Ala,in(a,b)),T = A" azb A In(a,b),T = A"

We have the following derivation:

z # vy, Az, In(z,y)) = e z #y, Ay, In(z,y)) = T
z #y &A(z,In(z,y)) = L b z #y &A(y,In(z,y)) = L b
=z #y &A(z,In(z,y)) D L fi2 =z #y &A(y,In(z,y)) D L
= (z 2y &A(z,In(z,y)) D L) &(z #y &A(y,In(z,y)) D 1)
= Az2((z 2y &A(z,2) D L) &(z 2y &A(y,z) D 1))
= VaVyIz((z £y &A(z,2) D L) &z 2y &A(y,z) D 1))

RD

RY,RY

Derivations with nonlogical rules and all but two of the logical rules of
multisuccedent sequent calculi, RD and RV, do not show whether a system
is classical or constructive. The difference only appears if classical logic is
needed in the conversion of axioms into rules.

NoTES TO CHAPTER 6

Most of the materials of this chapter come from Negri (1999) and Negri and
von Plato (1998). The former work contains a single succedent approach to
extension of contraction- and cut-free calculi with nonlogical rules. These
calculi are used for a proof-theoretical analysis of derivations in theories of
apartness and order, leading to conservativity results which have not been
treated here. The latter work uses a multisuccedent approach. The examples
in subsections (b) and (c) of Section 6.6 are treated in detail in Negri (1999).
The proof-theoretic treatment of constructive linear order in subsection (c)
is extended in Negri (1999a) to a theory of constructive ordered fields and
real closed fields. The geometrical example in subsection (e) comes from
von Plato (1998b).

Our proof of theorem 6.6.1 was suggested by the proof in Buss (1998),
section 2.5.1.

In Section 6.4, we mentioned some previous attempts at extending cut
elimination to axiomatic systems. The work of Uesu (1984) contains the
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correct way of presenting atomic axioms as rules of inference. As to the use
of conjunctive normal form in sequent calculus, we owe it to Ketonen’s thesis
of 1944, in which the invertible sequent calculus for classical propositional
logic was discovered.
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