Chapter 3:
Sequent calculus for classical logic

There are many formulations of sequent calculi. Historically, Gentzen first
found systems of natural deduction for intuitionistic and classical logic, de-
noted NJ and NK, respectively, but was not able to find a normal form
for derivations in NK. To this purpose, he developed the classical sequent
calculus LK that had sequences of formulas also in the succedent part. In
our notation, such multisuccedent sequents are written I' = A, where
both T' and A are multisets of formulas. Gentzen (1934-35) gives what
is now called the denotational interpretation of multisuccedent sequents:
The conjunction of formulas in I' implies the disjunction of formulas in A.
But the operational interpretation of single succedent sequents I' = C, as
expressing that from assumptions I', conclusion C' can be derived, does
not extend to multiple succedents.

Gentzen’s somewhat later explanation of the multisuccedent calculus is
that it is a natural representation of the division into cases often found
in mathematical proofs (1938, p. 21). Proofs by cases are met in natural
deduction in disjunction elimination, where a common consequence C' of the
two disjuncts A and B is sought, permitting to conclude C from AV B. There
is a generalization of natural deduction into a multiple conclusion calculus
that includes this mode of inference. Gentzen suggests such a multiple
conclusion rule for disjunction (ibid., p. 21):

AV B
A B

Disjunction elimination corresponds to arriving at the same formula C along
both downward branches.

Along these lines, we may read a sequent I' = A as consisting of the
open assumptions I' and the open cases A. Logical rules change and
combine open assumptions and cases: L& replaces the open assumptions
A, B by the open assumption A& B, and there will be a dual multisuccedent
rule RV that changes the open cases A, B into the open case A V B, and so
on. If there is just one case, we have the situation of an ordinary conclusion
from open assumptions. Finally, we can have an empty case representing
impossibility, with nothing on the right of the sequent arrow.

In an axiomatic formulation, classical logic is obtained from intuitionistic
logic by the addition of the principle of excluded third to the logical axioms

51



(Gentzen 1934-35, p. 117). In natural deduction, one adds that derivations
may start from instances of the law A V ~ A (Gentzen, ibid., p. 81).
Alternatively, one may add either the rule NTTA (Gentzen, ibid.) or the rule

of indirect proof (Prawitz 1965, p. 20):
N.A

i

A

In sequent calculus, in the words of Gentzen (p. 80), “the difference is
characterized by the restriction on the succedent,” that is, a calculus for
intuitionistic logic is obtained from the classical calculus LK by restricting
the succedent to be one formula. The essential point here is that the classical

RD rule,
AT =AB

I'=>AADB
becomes
AT=1B
I'=AD>B

An instance of the former is

A=A L
= A,AD L

By the multisuccedent RV rule, the cases A, A D | can be replaced by the
disjunction AV (A D L), a derivation of the law of excluded middle that
gets barred in the intuitionistic calculus.

It is, however, possible to give an operational interpretation to a re-
stricted multisuccedent calculus corresponding precisely to intuitionistic deriv-
ability, as will be shown in Chapter 5. Therefore, it is not the feature of
having a multiset as a succedent that leads to classical logic, but the unre-
stricted RD rule. If only one formula is permitted in the succedent of its
premiss, comma on the right can be interpreted as an intuitionistic disjunc-
tion.

3.1. An invertible classical calculus

We give the rules for a calculus G3cp of classical propositional logic and
show that they are all invertible. Then we describe a variant of the calculus
with negation as a primitive connective.
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(a) The calculus G3cp: Sequents are of the form I' = A where I" and A
are finite multisets, and I' and A can be empty. In contrast to the single
succedent calculus, it is possible to have sequents of form I' = and even
= . One of the admissible structural rules of the multisuccedent calculus
will be right weakening, from which it follows that if [' = is derivable, then
alsoI' = L is derivable.

G3cp
Logical axiom:
PT = AP
Logical rules:
A,B,T=A '=AA ' AB
A&B,T =A™ I = A, A%B
Al'=A BTI'=A I'=AAB
AVB,T= A W T=AAvB™Y
'=AA B,F:>AL ATl'=AB "
AS>BT=A ~ T=AADB -~
L,I‘:>ALL

The logical rules display the perfect duality of left and right rules for con-
junction and disjunction, of which only the duality LV — R& could be ob-
served in the intuitionistic calculus. Here there is only one RV rule, and it
is invertible, and also the LD rule is invertible, with no need to repeat the
principal formula in the left premiss, which has profound consequences for
the structure of derivations, and for proof search.

Theorem 3.1.1: Height-preserving inversion. All rules of G3cp are
invertible, with height-preserving inversion.

Proof: For L&, LV and the second premiss of LD, the proof goes through
as in lemma 2.3.5, with A in place of C'. We proceed from there with a proof
by induction on height of derivation:

If the endsequent is A D B,I' = A with A D B not principal, the last
rule has one or two premisses A D B, I = A’ and A D B, = A", of
derivation height < m, so by inductive hypothesis, I = A’, A and T" =
A" A have derivations of height < n: Now apply the last rule to these
premisses to conclude I' = A, A with height of derivation < n + 1.
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If A D B is principal in the last rule, the premiss I' = A, A has a
derivation of height < n.

We now prove invertibility of the right rules:

IfI' = A, A&B is an axiom or conclusion of L1, then, A& B not being
atomic, also I' = A, A and I" = A, B are axioms or conclusions of L. As-
sume height preserving inversion up to height n, and let -, I' = A, A&B.
There are two cases:

If A&B is not principal in the last rule, it has one or two premisses
I'" = A", A&B and TV = A", A& B, of derivation height < n, so by inductive
hypothesis, -, I = A’ Aand -, IV = A’',B and I, T = A", A and
Fn T = A", B. Now apply the last rule to these premisses to conclude
I'=A,Aand T = A, B with a height of derivation < n + 1.

If A&B is principal in the last rule, the premisses ' == A, A and I =
A, B have derivations of height < n.

IfI' = A, AV B is an axiom or conclusion of L1, then, AV B not being
atomic, also I' = A, A, B is an axiom or conclusion of L 1. Assume height
preserving inversion up to height n, and let F,; I' = A, AV B. There are
again two cases:

If AV B is not principal in the last rule, it has one or two premisses
I'" = A" AVvB and I = A" AV B, of derivation height < n, so by
inductive hypothesis, -, IV = A’, A, B and -, I = A", A, B. Now apply
the last rule to these premisses to conclude I' = A, A, B with a height of
derivation < n + 1.

If AV B is principal in the last rule, the premiss I' = A, A, B has a
derivation of height < n.

IfI' = A,A D B is an axiom or conclusion of L1, then, A D B not
being atomic, also A,I' = A, B is an axiom or conclusion of L. Assume
height preserving inversion up to height n, and let .1 I' = A, A D B. As
above, there are two cases:

If A O B is not principal in the last rule, it has one or two premisses
I = A'A D Band T = A" A D B, of derivation height < n, so by
inductive hypothesis, -, A, ' = A’, B and -, A,T" = A" B. Now apply
the last rule to these premisses to conclude A,I' = A, B with a derivation
of height < n + 1.

If A D B is principal in the last rule, the premiss A,I' = A, B has a
derivation of height < n. QED.

Given a sequent I' = A, each step of a root-first proof search is a reduc-
tion that removes a connective and it follows that proof search terminates.
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The leaves are topsequents of form
Ly, P, Py =>Q1, QL L

where the number of 1’s in the antecedent or succedent as well as m or n
can be 0.

Lemma 3.1.2: The decomposition of a sequent I' = A into topsequents in
G3cp is unique.

Proof: By noting that successive application of any two logical rules in
G3cp commutes. QED.

Root-first proof search gives a method for finding a representation of for-
mulas of propositional logic in a certain normal form: Given a formula C,
apply the decomposition to = C, and after having reduced all connectives,
if among the topsequents produced a sequent has | as a formula in the an-
tecedent, discard the sequent. If it has the same atom in the antecedent and
succedent, discard it. If it has occurrences of L and atoms in the succedent,
delete the L’s. If the succedent is empty or has only occurrences of 1, write
just one . Finally, delete possible repetitions of atoms in antecedent and
succedent. This leaves a finite number of sequents of the following forms,
where any two atoms are distinct:

1. Pl,...,PmﬁQla---aQn’

2. :>Q17"'7QTL5

3. P,....P,=> 1,

4. = 1.
Definition 3.1.3: A basic sequent is a sequent of form Pi,...,P, =
Q1,-..,Qn where any two atoms are distinct, the antecedent is empty if

m = 0 and the succedent is L if n = 0. The trace formula of a basic sequent
18

1. P& ... &P, DQ1V...VQp form,n >0,

2. 1 V...VQy form=0,n>0,

3. ~(P&...&Py) form >0,n =0,

4. 1 for m,n = 0.

Trace formulas are unique up to the order in the disjunctions and conjunc-
tions. By the invertibility of the rules of G3cp, a basic sequent with trace
formula C is derivable if and only if the sequent = C'is derivable. It follows
that a formula is equivalent to the conjunction of its trace formulas:

Theorem 3.1.4: A formula C is equivalent to the conjunction of the trace
formulas of its decomposition into basic sequents.
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Proof: Let the topsequents of the decomposition of = Cbel'y = Aq,..., I, =
A, with the n first giving the trace formulas C1,...,C, and the rest, if
m > n, having L in the antecedent or the same atom in the antecedent and
succedent. We have to show that = C DC Ci1&...&C,, is derivable. We
have a derivation of = C from I'y = A,,...,T',,, = A,, using invertible
rules. By adding the formula C to the antecedent of each sequent in the
derivation, we obtain a derivation of C' = C from C,T'y = A4,...,C, T, =
A, by the same invertible rules. Therefore each step in each root-first path,
from C = C to C,I'; = A,, is admissible. Since C = C is derivable, each
C,T'; = A; is derivable. It follows that for each trace formula, up to n,
the sequent C' = C; is derivable. Therefore, by repeated application of
R&, C = C1&...&C, is derivable, and by RD, = C D Ci1&...&C, is
derivable.

Conversely, starting from the given derivation of = C from topsequents
I'n = A...,.T,, = A, add the formulas C4,...,C, to the antecedent
of each sequent in the derivation, to obtain a derivation of C4,...,C, =
C from new topsequents of form Ci,...,C,,I'; = A,. For i > n, such
sequents are axioms since they have L in the antecedent or the same atom
in the antecedent and succedent. For ¢ < n they are derivable since each
Ci,...,Cy = Cjis derivable. Application of L& and RD to C4,...,C, = C
now gives a derivation of = C1&...&C,, D C. QED.

As a consequence of lemma, 3.1.2, the representation given by the theorem is
unique up to order in the conjunction and the conjunctions and disjunctions
in the trace formulas. Each trace formula P& ... &P, D Q1 V...V @, is
classically equivalent to ~ P V...V ~P,VQ1V...VQn,; the representation is
in effect a variant of the conjunctive normal form of formulas of classical
propositional logic.

(b) Negation as a primitive connective: In Gentzen’s original classical
sequent calculus LK of 1934-35, negation was a primitive, with two rules
that make a negation appear on the left and right part of the conclusion,

respectively:
'=AA AT = A

~AT= A" T=A~A™

Now negation displays the same elegant symmetry of left and right rules as
the other connectives. Five years later, Gentzen commented on this property
of the multisuccedent calculus as follows (1938, p. 25): “The special role of
negation, an annoying exception in the natural deduction calculus, has been
completely removed, in a way approaching magic. I should be permitted to
express myself thus since I was, when putting up the calculus LK for the
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first time, greatly surprised that it had such a property.”
Gentzen’s rules for negation, with the definition ~ A = A D 1, are
admissible in G3cp, the first one by

'=AA L,P:>AiL
A>LT=A °

and the second one by
AT = A

AT = A, LW
——F RD
'=AAD1

where RW is right weakening, to be proved admissible shortly.

3.2. Admissibility of structural rules

We shall prove admissibility of weakening, contraction and cut for the cal-
culus G3cp. There will be two weakening rules, a left one for weakening in
the antecedent and a right one for weakening in the succedent, and similarly
for contraction. The rules are as follows:

I'=A r=sA AaA7P:>A F:>A1AaA

AT=A"Y T=A 4™ ATr=a Y T=na4 %

The proofs of admissibility of left and right weakening are similar to the
proof of height-preserving weakening for G3ip in theorem 2.3.4:

Theorem 3.2.1: Height-preserving weakening. IfF, I' = A, then
Fn A=A If, T = A, thent, I' = A, A.

Proof: The addition of formula A to the antecedent and consequent, respec-
tively, of each sequent in the derivation of I' = A, will produce derivations
of AT=>AandT = A, A. QED.

It follows that if a sequent I' = with an empty succedent is derivable, the
sequent I' = | also is derivable.

Theorem 3.2.2: Height-preserving contraction. If+, C,C,T = A,
then -, C.T = A. If, T = A,C,C, thent, T = A,C.

Proof: The proof of admissibility of left and right contraction is done simul-
taneously, by induction on height of derivation of the premiss. For n = 0, if
the premiss is an axiom or conclusion of L1, the conclusion also is an axiom
or conclusion of L1 whether contraction was applied on the left or right.
For the inductive case, assume height-preserving left and right contraction
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up to derivations of height n. As in the proof of contraction for the single
succedent calculus, theorem 2.4.1, we distinguish two cases: If the contrac-
tion formula is not principal in the last rule applied, we apply the inductive
hypothesis to the premisses and then the rule. If the contraction formula is
principal, we have six subcases according to the last rule applied.

If the last rule is L& or LV, the proof proceeds as in theorem 2.4.1.
If the last rule is R&, the premisses are -, I' = A, A&B,A and -, [ =
A, A& B, B. By height-preserving invertibility, we obtain -, I' = A A, A
and F, ' = A, B, B, and the inductive hypothesis gives -, I' = A, A
and F, I' = A, B. The conclusion 41 I' = A, A&B follows by R&. If
the last rule is RV, the premiss is -, I' = A, AV B, A, B and we apply
height-preserving invertibility to conclude -, T' = A, A, B, A, B, then the
inductive hypothesis twice to obtain -, I' = A, A, B, and last RV.

If the last rule is RD, the premiss is -, A,T' = A, A D B, B and we
apply height-preserving invertibility to conclude -, A, A,' = A, B, B, then
the inductive hypothesis to conclude +, A,T" = A, B and then RD. If LD
was applied, we have the derivation of the premiss of contraction,

ADB,T=A,A B,ADBT=A
ADB,ADB,I'= A

LD

By height-preserving inversion, we have -, I' = A, A, A and +, B, B, =
A. By the inductive hypothesis, we have -, ' = A, A and I, B,T' = A,
and obtain a derivation of A D B,T' = A in at most n + 1 steps. QED.

A proof by separate induction on left and right contraction will not go
through if the last rule is LD or RD.

Theorem 3.2.3: The rule of cut,

'=A,D DI = A
L, = A A

Cut

is admissible in G3cp.
Proof: The proof is organized as that of theorem 2.4.3.

Cut with an axiom or conclusion of L1 as premiss: If at least one of
the premisses of cut is an axiom, we distinguish two cases:

1. The left premiss I' = A, D of cut is an axiom or conclusion of L 1.
There are three subcases:

1.1. The cut formula D is in T'. In this case we derive I', TV = A, A’ from
the right premiss D,I” = A’ by weakening.
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1.2. T and A have a common atom. Then I', T’ = A, A’ is an axiom.
1.3. 1 is a formula in . Then I',TV = A, A’ is a conclusion of L.

2. The right premiss D,I' = A’ is an axiom or conclusion of L_1. There
are four subcases:

2.1. Disin A’. Then I''T" = A, A’ follows from the first premiss by
weakening.

2.2. T and A’ have a common atom. Then I', TV = A, A’ is an axiom.
2.3. LisinI'. Then I',T' = A, A’ is a conclusion of L.

2.4. D = 1. Then either the first premiss is an axiom or conclusion of
L1 and I',;T" = A, A’ follows as in case 1, or I' = A, L has been derived.
There are six cases according to the rule used. These are transformed into
derivations with cuts of lesser cut-height. Since L is never principal in a
rule, and the transformations are special cases of the transformations 3.1-
3.6 below, with D = |, they need not be written out here.

Cut with neither premiss an axiom: We have three cases:

3. Cut formula D is not principal in the left premiss. We have six subcases
according to the rule used to derive the left premiss. For L& and LV, the
transformations are analogous to cases 3.1 and 3.2 of theorem 2.4.3. For
implication, we have

3.3. LD, withT'= A D B,T". The derivation
I'"=ADA BT"=AD

14 L> ! !
ADB,I"=A,D D, T"= A
ADB,T"T"= A A

Cut

is transformed into the derivation

I'"=A,D,A D,F’:>A’Ct B,T" = A,D D,I":>A’Ct
" T'= AN A ¢ B,I".I'= AA ¢
D

ASB,IT"T' = A, A

with two cuts of lower cut-height.
3.4. R&, with A = A& B, A". The derivation
s A"AD I'=A"BD

R&
I'=> A" A&B,D D, T = A’
T,I" = A" A& B, A

Cut
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is transformed into the derivation with two cuts of lower height

= A" A D D,F’:>A’Ct = A" B,D D,I":>A’Ct
T, = A", A A’ ¢ ILT'= A".B,A ¢

T, TV = A", A&B, A/

3.5. RV, with A = AV B,A"”. The derivation
L= A"A,BD
v
I'= A" AvVB,D D, T" = A’
T, T = A" AV B,A

Cut

is transformed into the derivation with a cut of lower cut-height
I's A" AB,D DI = A
LT = A" A B, A R
.= A" AV B,A "

Cut

3.6. RD, with A = A D> B,A". The derivation
rA=A"BD
>
'=A"ADB,D D, T" = A’
I, = A" A> B,A

Cut

is transformed into the derivation with a cut of lower cut-height
A= A"B,D D, I"= A’
LT A= A"B n
-
LT = A", AD> B,A’

Cut

4. Cut formula D is principal in the left premiss only, and the deriva-
tion is transformed in one with a cut of lower cut-height according to deriva-
tion of the right premiss. We have six subcases according to the rule used.
Only the cases of LD and RV are significantly different from the cases of
theorem 2.4.3:

4.8. LD, with A = A D B,A’. The derivation and its transformation are
similar to the previous case 3.3.

4.5. RV, with A = AV B,A"”. The derivation
D.I'= A,B,A
'=A,D D,I":>AvB,A”Ct
I = A, AV B,A" b
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is transformed into the derivation with a cut of lower cut-height
'=A,D DT = A B,A"

,I' > A, 4,B,A"
T,T"= A, AV B, A"

Cut

5. Cut formula D is principal in both premisses, and we have three
subcases, of which conjunction is very similar to case 5.1 of theorem 2.4.3.

5.2. D = AV B, and the derivation

I'=A,AB AT = A" BTI'= A

T=AAVEB Y AVB, =AY
T.T = A, A cut
is transformed into
= AA B AT = A’C
I,T' = A,ALB "B = A
T.T.T = A, A A cut
T = A A 7
with two cuts of lower cut-height.
5.3. D = A D B, and the derivation
AT = A,B I'> ALA BI'= A
T=AASB - ASB, T = A >
T.T = A, A cut

is transformed into the derivation with two cuts of lower cut-heights

I'sAA AT =AB
IT'=>AANB " BT = A
I, = A, AL A
T = AA

Cut

Ctr

QED.
We obtain, just as for the calculus G3ip, the subformula property,

Corollary 3.2.4: Each formula in the derivation of ' = A in G3cp is a
subformula of T, A.
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It follows in particular that the sequent = is not derivable. We concluded
from the admissibility of weakening that if [' = is derivable, then also
I' = 1 is derivable. The converse is now obtained by applying cut to
I'= 1 and L =, thus, an empty succedent behaves like L.

In intuitionistic logic, all connectives are needed, but in classical logic,
negation and one of &,V,D can express the remaining two. How does the
interdefinability of connectives affect proof analysis? Gentzen says that one
could replace some rules by others in classical sequent calculus, but that if
this were done, the cut elimination theorem would not be provable anymore
(1934-35, III. 2.1).

If we consider the D, | fragment of G3cp, the cut elimination theorem
remains valid. Conjunction and disjunction can be defined in terms of im-
plication and falsity, thus, for any formula A there is a translated formula
A* in the fragment classically equivalent to it. Similarly, sequents I' = A
of G3cp have translations I'* = A* derivable in the fragment if and only if
the original sequent is derivable in G3cp. By the admissibility of cut, the
derivation uses only the logical rules for implication and falsity.

Gentzen’s statement about losing the cut elimination theorem is prob-
ably based on considerations of the following kind: According to Hilbert’s
program, logic and mathematics had to be represented as formal manipula-
tions of concrete signs. In propositional logic, the signs are the connec-
tives, atomic formulas, and parentheses. Once these are given, there is no
question of defining one sign by another. But it is permitted to reduce
or change the set of formal axioms and rules by which the signs are ma-
nipulated. Thus, one gets along in propositional logic with just one rule,
modus ponens. The axioms for conjunction and disjunction in Hilbert-style,
in Section 2.5(b) above, could in classical logic be replaced by the axioms
AVB D (~ADB),(~ADB)DAVBand A& B D ~ (B D ~ A),
~(B D ~A) D A&B. If these axioms are added to the fragment of G3cp
in the same way as in Section 2.5(b), as sequents with empty antecedents,
they can only be put to use by the rule of cut, and it is this phenomenon
that Gentzen seems to have had in mind.

Later on Gentzen admitted, however, the possibility of “dispensing with
the sign D in the classical calculus LK by considering A D B as an abbre-
viation for ~ A V B; it is easy to prove that the rules RD and LD can be
replaced by the rules for V and ~” (1934-35, III. 2.41).!

'The text has “NK” (also in the English translation) that is Gentzen’s name for
classical natural deduction, but this must be a misprint since he expressly refers to rules
of sequent calculus.
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3.3. Completeness

The decomposability of formulas in G3cp can be turned into a proof of
completeness of the calculus. For this purpose, we have to define the basic
semantical concepts of classical propositional logic:

Definition 3.3.1: A valuation is a function v from formulas of propositional
logic to the set {0,1} such that
v(l) =
U(A&B) min(v(4),v(B)),
v(AV B) = maz(v(A),v(B)),
v(A D B) = maz(1l —v(A),v(B)).

Observe that, by definition of v, v(A D B) =1 if and only if v(4) < v(B).
Valuations are extended to multisets I' by taking conjunctions A(T') and
disjunctions \/(T') of formulas in I', with A( ) = L and \/( ) = T for the
empty multiset, and by setting

v A(T) = min(v(C)) for formulas C in T,
v \/(I') = maz(v(C)) for formulas C in I'.

Definition 3.3.2: A sequent I' = A is refutable if there is a valuation v
such that v A(T') > vV (A). Sequent I' = A is valid if it is not refutable.

It follows that I' = A is valid if for all valuations v, v A(T') < v V(A).
For proving the soundness of G3cp, we need the following lemma, about
valuations:

Lemma 3.3.3: For a valuation v, min(v(A),v(B)) < v(C) if and only if
v(A) < v(B D O).

Proof: If v(A) = 0 the claim trivially holds. Else min(v(A),v(B)) = v(B),
thus min(v(A),v(B)) < v(C) if and only if v(B) < v(C), if and only if
v(BDC)=1,ie,v(A) <v(BDC). QED.

Corollary 3.3.4: min(v(A D B),v(A)) < v(B).

Proof: Immediate by lemma 3.3.3. QED.

Theorem 3.3.5: Soundness. If a sequent I' = A is derivable in G3cp,
it 4s valid.

Proof: Assume I' = A derivable. We prove by induction on height of
derivation that it is valid. If it is an axiom or conclusion of L1 it is valid
since we always have v A(P,T) < vV(A,P) and v A(L,T) <vV(A).

If the last rule is L&, we have by inductive hypothesis for all valua-
tions v that v A(4, B,T') < vV (4), and v A(A&B,T') < v/ (A) follows by
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v AN(A4&B,T) = v A(4, B,T'). The case for RV is dual to this. For LV, we
have v A(4,T) < vV(A) and v A(B,T') < v\/(A). Then

v A(AV B,T) = maz(v A(4,T),v A(B,T)) <vV(A).
The case of R& is dual to this. If the last rule is LD, suppose
v A(T") < maz(v\/(A),v(A)) and min(v(B),v A(T)) < v V(A).
There are two cases: If v\/(A) = 1, then the conclusion is trivial. If

v\/(A) = 0, then v A(T') < v(A) and min(v(B),v A(T')) < 0. From the
former follows

min(v(4A D B),v A(T")) < min(min(v(A D B),v(A)),v A(T))
and therefore, using corollary 3.3.4,

min(v(A D B),v A(T)) < min(v(B),v A(T')) <0.
If the last rule is RD, we have

min(v(4),v A(T)) < maz(vV(A),v(B))

and there are two cases: If v \/(A) = 1, then the conclusion is trivial. Else we
have min(v(A),v A(T)) < v(B), hence by lemma 3.3.3, v A(T') < v(A D B)
and a fortiori v A(T') < maz(v\/(A),v(4A D B)). QED.

Theorem 3.3.6: Completeness. If a sequent I' = A is valid, it is deriv-
able in G3cp.

Proof: Apply root-first the rules of G3cp to the sequent I' = A, obtaining
leaves that are either axioms, conclusions of L1, or basic sequents. We
prove that if ' = A is valid, then the set of basic sequents is empty, and
therefore I' = A is derivable. Suppose that the set of basic sequents consists
of 'y = Aq,..., T, = A,, with n > 0, and let C; be their corresponding
trace formulas. We have, by theorem 3.1.4, = C ODC C1&...&C), where
Cis A(T') D V(A). Since I' = A is valid, then by definition v(C) = 1
for every valuation v, and since C = C1&...&C),, by soundness v(C) <
v(C1& ... &Cy,), which gives v(C;) = 1 for each C; and every valuation v.
No C; is L, since no valuation validates it. No C; is =(P1& ... &P,,) since
the valuation with v(P;) = 1 for all j < m does not validate it. Finally no
CiisPi&... &P, DQ;V...VQ,or @Q;V...VQ, since it is refuted by the
valuation with v(P;) =1 for all j < m and v(Qy) = 0 for all k£ < r. QED.

Decomposition into basic sequents gives a syntactic decision method for
formulas of classical propositional logic: A formula C is valid if and only if
no top sequent is a basic sequent.
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Notes to Chapter 3:

The logical rules of the calculus G3cp first appear in Ketonen (1944, p.
14), the main results of whom were made known through the long review by
Bernays (1945). Negation is a primitive connective, derivations start with
axioms of form A = A, and only cut is eliminated, the proof being similar
to that of Gentzen. Invertibility is proved by using structural rules.

Direct proofs of invertibility were given by Schiitte (1950) and Curry
(1963). The proofs of admissibility of structural rules we give follow the
method of Dragalin, similarly to the intuitionistic calculus. Normal form via
decomposition through invertible rules and the related completeness theo-
rem are due to Ketonen (1944). He seems to have found his calculus by
making systematic the necessity that anyone trying root-first proof search
experiences, namely, that one has to repeat the contexts of the conclusion
in both premisses of two-premiss rules. In an earlier expository paper, he
gives an example of proof search and states that, due to invertibility of the
propositional rules, the making of derivations consists of purely mechanical
decomposition (1943, pp. 138-139).

The idea of validity as a negative notion, as in definition 3.3.2, was
introduced in Negri and von Plato (1998a).
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