Chapter 1:
From natural deduction to sequent calculus

We first discuss logical languages and rules of inference in general. The rules
of natural deduction are presented, where introduction rules are motivated
by meaning explanations and elimination rules determined by an inversion
principle. A way is found from the rules of natural deduction to those of
sequent calculus. Finally, some of the main characteristics of structural
proof analysis in sequent calculus are described.

1.1. Logical systems

Logical systems consist of a formal language and a system of axioms and
rules for making logical inferences.

(a) Logical languages: Logical languages are usually defined through a set
of inductive clauses for well-formed formulas. The idea is that expressions of
a formal language are special sequences of symbols from a given alphabet, as
generated by the inductive definition. An alternative way of defining formal
languages is through systems of categorial grammars. Such grammars
are well-known for natural languages, and categorial grammars for formal
languages are in use with programming languages, but not so often in logic.

Under the first approach, expressions of a logical language are formulas
defined inductively by two clauses: 1. A statement of what the prime for-
mulas are. These are formulas that contain no other formulas as parts. 2. A
statement of what the compound formulas are. These are built from other
simpler formulas by logical operations and their definition requires reference
to arbitrary formulas and how these can be put together with the symbols
for operations to give new formulas. Given a formula, we can find out how it
was put together from other formulas and a logical operation, where paren-
theses may be needed in order to indicate the composition uniquely. Then
we can find out how the parts were obtained, until we arrive at the prime
formulas. Thus, in the end, all formulas consist of atomic formulas, logical
operations and parentheses.

We shall define the language of propositional logic:

1. The prime formulas are the atomic formulas denoted by
P,Q,R,..., and falsity denoted by L.



2. If A and B are formulas, then the conjunction A& B, dis-
junction AV B and implication A D B are formulas.

For unique readability of formulas, the components should always be put in
parentheses but in practice these are left out if a conjunction or disjunction
is a component of an implication. Often L is counted among the atomic
formulas but this will not work in proof theory. It is best viewed as a zero-
place connective. Negation ~ A and equivalence A DC B are defined as
~A=AD1land ADC B=(ADB)&(B D A).

Expressions of a language should express something, not just be strings
of symbols from an alphabet put correctly together. In logic the thing
expressed is called a proposition. Often, instead of saying “proposition
expressed by formula A” one says simply “proposition A.” There is a long-
standing debate in philosophy on what exactly propositions are. When
emphasis is on logic, and not on what logic in the end of a philosophical
analysis is, one considers expressions in the formal sense and talks about
formulas.

In recent literature, the definition of expressions as sequences of symbols
is referred to as concrete syntax. Often it is useful to look at expressions
from another point of view, that of abstract syntax as in categorial gram-
mar. The basic idea of categorial grammar is that expressions of a language
have a functional structure. For example, the sentence John walks is
obtained by representing the intransitive verb walk as a function from the
category of noun phrases NP to the category of sentences S, in the usual no-
tation for functions, walk : NP — S. John is an element of the category NP
and application of the function walk gives as value walk(John), an element
of the category of sentences S. One further step of linearization is required
to hide the functional structure, to yield the original sentence John walks.
In logic and mathematics, no consideration is given to differences produced
by this last stage, nor to differences in the grammatical construction of sen-
tences. Since Frege, one considers only the logical content of the functional
structure.

We shall briefly look at the definition of propositional logic through a
categorial grammar. There is a basic category of propositions, designated
Prop. The atomic propositions are introduced as parameters P,Q, R, ...
with no structure and with the categorizations

P : Prop, Q : Prop, R: Prop, ...

and similarly for falsity, L : Prop. The connectives are two-place functions
for forming new propositions out of given ones. Application of the function



& to the two arguments A and B gives the proposition & (A, B) as value, and
similarly for V and D. The functional structure is usually hidden by an infix
notation and by the dropping of parentheses, A& B for &(A, B), and so on.
This will create an ambiguity not present in the purely functional notation,
such as A&B D C that could be both &(4,D (B,C)) and D (&(4, B),C).
As mentioned, we follow the convention of writing A&(B D C) for the
former and A& B D C for the latter, and in general, having conjunction and
disjunction bind stronger than implication.

Given an arbitrary proposition A, it is either the constant proposition
1, an atomic proposition, or (the value of) conjunction, disjunction, or
implication. The notation often used in categorial grammar is

A=1|P|A&B|AVB|A>B

Appendix A explains in more detail how logical languages are treated from
the point of view of categorial grammar.

Neither approach, inductive definition of strings of symbols, or genera-
tion of expressions through functional application, reveals what is special
about logical languages. Logical languages of the present day have arisen as
an abstraction from the informal language of mathematics. The first work in
this direction was by Frege who invented the language of predicate logic.
It was meant to be, wrote Frege, “a formula language for pure thought,
modelled upon that of arithmetic.” Later Peano and Russell developed the
symbolism further, with the aim of formalising the language of mathemat-
ics. These pioneers of logic tried to give definitions of what logic is, how it
differs from mathematics, and whether the latter is reducible to the former,
or if it is perhaps the other way around.

From a practical point of view there is a clear understanding of what
logical languages are: The prime logical languages are those of propositional
and predicate logic. Then there are lots of other logical languages more or
less related to these. Logic itself is, from this point of view, what logicians
study and develop. Any general definition of logic and logical languages
should respect this situation.

An essential aspect of logical languages is that they are formal lan-
guages, or can easily be made into such, an aspect made all the more impor-
tant by the development of computer science. There are many connections
between logical languages and programming languages; in fact, logical and
programming languages are brought together in one language in some recent
developments as explained in Appendix B.

(b) Rules of inference: Rules of inference are of the form:“If it is the



case that A and B, then it is the case that C.” Thus, they do not act on
propositions, but on assertions. We obtain an assertion from a proposition
A by adding something to it, namely an assertive mood such as “it is the
case that A.” Frege used the assertion sign - A to indicate this but usually
the distinction between propositions and assertions is left implicit. Rules
seemingly move from given propositions to new ones.

In Hilbert-style systems, also called axiomatic systems, we have a
number of basic forms of assertion, like - A D AVBork A D (B D A).
Each instance of these forms can be asserted, and in the case of propositional
logic there is just one rule of inference, of the form

FADB FA
B

Derivations start with instances of axioms that are decomposed by the rule
until the desired conclusion is found.

In natural deduction systems, there are only rules of inference, plus
assumptions to get derivations started, exemplified by

- Al

FA FB B
- A&B FADB

Instances of the first rule are single-step inferences, and if the premisses have
been derived from some assumptions, the conclusion depends on the same
assumptions. In the second rule instead, where the vertical dots indicate
a derivation of - B from F A, the assumption - A is discharged at the
inference line, as indicated by the square brackets, so that - B above the
inference line depends on - A whereas - A D B below it does not.

In sequent calculus systems, there are no temporary assumptions that
would be discharged, but an explicit listing of the assumptions the derived
assertion depends on. The derivability relation, to which reference was made
in natural deduction by the four vertical dots, is an explicit part of the
formal language and sequent calculus can be seen as a formal theory of the
derivability relation.

Of the three types of systems the first, axiomatic, has some good prop-
erties due to the presence of only one rule of inference. But it is next to
impossible to actually use the axiomatic approach, due to the difficulty of
finding the instances of axioms to start with. Systems of the second type
correspond to the usual way of making inferences in mathematics, with a



good sense of structure. Systems of the third type are the ones that per-
mit the most profound analysis of the structure of proofs, but their actual
use requires some practice. Moreover, the following is possible in natural
deduction and in sequent calculus:

Two systems of rules can be equivalent in the sense that the same
assertions can be derived in them, but the addition of the same
rule to each system can destroy the equivalence.

This lack of modularity will not occur with the axiomatic Hilbert-style sys-
tems.

Once a system of rules of logical inference has been put up it can be
considered from the formal point of view. The assertion sign is left out and
rules of inference are just ways of writing a formula under any formula or
formulas that have the form of the premisses of the rules. In a complete
formalization of logic, also the formation of propositions is presented as
the application of rules of proposition formation. For example, conjunction
formation is application of the rule

A: Prop B: Prop
A&B : Prop

Rules of inference can be formalized in the same way as rules of proposition
formation: They are represented as functions taking as arguments formal
proofs of the premisses and giving as value a formal proof of the conclu-
sion. A hierarchy of functional categories is obtained such that all instances
of rules of proposition formation and of inference come out through func-
tional application. This will lead to constructive type theory and will
be described in more detail in Appendix B.

The viewpoint of proof theory is that logic is the theory of correct demon-
strative inference. Inferences are analyzed into the most basic steps the for-
mal correctness of which can be easily controlled. Moreover, the semantical
justification of inferences can be made compositional, through the justifica-
tion of the individual steps of inference and how they are put together.

Compound inferences are synthesized by composing basic steps of in-
ference. A system of rules of inference is used to give an inductive, formal
definition of the notion of derivation. Derivability then means the existence
of a derivation. The correctness of a given derivation can be mechanically
controlled through its inductive definition, but the finding of derivations
typically is a different matter.



1.2. Natural deduction

Natural deduction embodies the operational or computational meaning of
the logical connectives and quantifiers. The meaning explanations are given
in terms of the immediate grounds for asserting a proposition of corre-
sponding form. There can be other, less direct grounds, but these should
be reducible to the former for a coherent operational semantics to be pos-
sible. The “BHK-conditions” (for Brouwer-Heyting-Kolmogorov) that give
the explanations of logical operations of propositional logic in terms of di-
rect provability of propositions, can be put as follows:

1. A direct proof of the proposition A& B consists of proofs of
the propositions A and B.

2. A direct proof of the proposition A V B consists of a proof of
the proposition A or a proof of the proposition B.

3. A direct proof of the proposition A D B consists of a proof of
the proposition B from the assumption that there is a proof of
the proposition A.

4. A direct proof of the proposition L is impossible.

In the third case it is only assumed that there is a proof of A, but the proof
of the conclusion A D B does not depend on this assumption temporarily
made in order to reduce the proof of B into a proof of A. Proof here is
an informal notion. We shall gradually replace it by the formal notion of
derivability in a given system of rules.

We can now make more precise the idea that rules of inference act on
assertions. Namely, an assertion is warranted if there is a proof available
and therefore, on a formal level, rules of inference act on derivations of
the premisses, to yield as value a derivation of the conclusion. From the
BHK-explanations, we arrive at the following introduction rules:

4]
A B A B B
A&  ave'" ave'? aA-B"

The assertion signs are left out. (There will be another use for the symbol
soon.) In the last rule the auxiliary assumption A is discharged at the
inference, which is indicated by putting it in square brackets. We have as a
special case of implication introduction, with B = L, an introduction rule
for negation. There is no introduction rule for 1.



There will be elimination rules corresponding to the introduction rules.
They have a proposition of one of the three forms, conjunction, disjunction
or implication as a major premiss. There is a general principle that helps
find the elimination rules: We ask what the conditions are, in addition to
assuming the major premiss derived, that are needed to satisfy the following

Inversion principle: Whatever follows from the direct grounds
for deriving a proposition, must follow from that proposition.

For conjunction A& B, the direct grounds are that we have derivations of A
and of B. Given that C follows when A and B are assumed, we thus find
through the inversion principle the elimination rule

(A, B]

A&B C

C &E

The assumptions A and B from which C' was derived, are discharged at the
inference. If in a derivation the premisses A and B of the introduction rule
have been derived and C' has been derived from A and B, the derivation

P [4, B]

A B :

A&BY ¢
C

&E

converts into a derivation of C without the introduction and elimination
rules,

A B
C
Therefore, if &I is followed by &FE, the derivation can be simplified.
For disjunction, we have two cases. Either AV B has been derived from
A, and C is derivable from assumption A, or it has been derived from B

and C is derivable from assumption B. Taking into account that both cases
are possible, we find the elimination rule

4] [B]

AVB C_¢C
C VE




Assume now that A or B has been derived. If it is the former and if C is
derivable from A and C is derivable from B, the derivation

; 4] (B
A

Ave'"

CC Cr

converts into a derivation of C without the introduction and elimination
rules,

A

C

In the latter case of B having been derived, the conversion is into

B
C
Again, an introduction followed by the corresponding elimination can be
removed from the derivation.
The elimination rule for implication is harder to find. The direct ground
for deriving A D B is the existence of a hypothetical derivation of B from

the assumption A. The fact that C can be derived from the existence of
such a derivation, can be expressed by:

If C follows from B, then it already follows from A.
Precisely this is achieved by the elimination rule

[B]

ADB A C‘D
C

E

In addition to the major premiss A D B, there is the minor premiss A in
the DF rule. If B has been derived from A and C from B, the derivation

(4]
: [B]
Lg[ : :
ADB A CDE
C



converts into a derivation of C from A without the introduction and elimi-
nation rules,

A

B

C
Finally we have the zero-place connective L that has no introduction rule.
The immediate grounds for deriving | are empty and we obtain as a limiting
case of the inversion principle the rule of falsity elimination (“ex falso
quodlibet”) that has only the major premiss |:

1

EJ_E

We have still to tell how to get derivations started. This is done by the rule
of assumption that permits us to begin a derivation with any formula. In
a given derivation tree, those formula occurrences are assumptions, or more
precisely, open assumptions, that are neither conclusions nor discharged by
any rule. Discharged assumptions are also called closed assumptions.

The rules &FE and DF are usually written only for the special cases of
C=Aand C = B for &FE, and C = B for DF, as follows:

A&B A&B ADB A
4¢P g Y2 ——p5  °F (SE)

These “special elimination rules” correspond to a more limited inversion
principle, one requiring that elimination rules conclude the immediate grounds
for deriving a proposition instead of arbitrary consequences of these grounds.
The first two rules just conclude the premisses of conjuntion introduction.
The third gives a one-step derivation of B from A. The more limited inver-
sion principle suffices for justifying the special elimination rules but is not
adequate for determining what the elimination rules should be. In particu-
lar, it says nothing about LE.

The special elimination rules have the property that their conclusions are
immediate subformulas of their premisses. With conjunction introduc-
tion, it is the other way around, the premisses are immediate subformulas
of the conclusion. Further, in implication introduction, the formula above
the inference line is an immediate subformula of the conclusion. It can be
shown that derivations with conjunction and implication introduction and



the special elimination rules can be transformed into a normal form. The
transformation is done by detour conversions, the removal of applica-
tions of introduction rules followed by corresponding elimination rules. In
a derivation in normal form, first assumptions are made, then elimination
rules are used, and last introduction rules. This simple picture of normal
derivations, moving by elimination rules from assumptions to immediate
subformulas and then by introductions the other way around, is lost with
the disjunction elimination rule. But we shall show in Chapter 8 that when
all elimination rules are formulated in the general form, a uniform subfor-
mula property for natural deduction derivations follows.

The conjunction and disjunction introduction rules, as well as the special
elimination rules for conjunction and implication (SE), are simple one-step
inferences. The rest of the rules are schematic, with “vertical dots” indi-
cating derivations with assumptions. The behaviour of these assumptions is
controlled by discharge functions: Each assumption gets a number and
the discharge of assumptions is indicated by writing the number next to the
inference line. Further, the discharge is optional, i.e., we can, and indeed
some times must, leave an assumption open even if it could be discharged.

Some examples will illustrate the management of assumptions and point
at some peculiarities of natural deduction derivations. Consider

Example 1:
1.

[A]
ADA

oI,

The rule schemes of natural deduction only display the open assumptions
that are active in the rule, but there may be any number of other assump-
tions. Thus, the conclusion may depend on a whole set I' of assumptions,
which can be indicated by using the notation I' - A. Now the rule of impli-
cation introduction can be written as

'-B
r-{A}-ADB

DI

In words, if there is a derivation of B from the set of open assumptions
T, there is a derivation of A D B from assumptions I' minus {A}. In this
formulation there is a “compulsory” discharge of the assumption A. All
the other rules of natural deduction can be written similarly; We give two
examples:

T4 A+B 'HFAVB AU{A}+-C O©OU{B}+FC
TUAF A&B ¥ TUAUOFC v

E

10



The resulting system of inference, introduced by Gentzen in 1936, is usually
known as “natural deduction in sequent calculus style.” It can be used to
clarify the strange-looking derivation of example 1: The assumption of A is
written as A - A and we have the derivation

AFA

FA>A4-"

The first occurrence of A has the set of assumptions I' = {A}, and so
(dropping for good curly brackets around singleton sets), the conclusion has
the set of assumptions A — A = ().
The next example shows how superfluous assumptions can be added, to
weaken the consequent A of the first example into B D A:
Example 2:
1.
[4]
_BOA"
AD(BDA)

The first inference step is justified by the rule about sets of assumptions:
A — B = A. There is a vacuous discharge of B in the first instance
of DI and discharge of A only takes place at the second instance of DI.
Note that there is a problem here in the case of B = A, for compulsory
discharge dictates that A is discharged at the first inference, the second
becoming a vacuous discharge. The instance of the derivation where B = A
is not a syntactically correct one, therefore the original derivation cannot be
correct, either. Chapter 8 will give a method for handling the discharge of
assumptions, the unique discharge principle, that does not lead to such

oI
oI

problems.
In sequent calculus style, the derivation is
_AFA
AFBDOA o1
FAD(BDA)

The next example gives a derivation that cannot be done with just a
single use of the assumption A:

Example 3:
1.

2.
[AD(ADB)] [4] L
ASB 2P 4]
B
ADB
(AD(ADB))D(ADB)

DE

SIL1.

oI,2.

11



Assumption A had to be made twice and there is correspondingly a multiple
discharge at the first instance of DI where both occurrences of assumption
A are discharged. Note the “nonlocality” of derivations in natural deduc-
tion: To control the correctness of inference steps where assumptions can be
discharged, we have to look higher up along derivation branches. (This will
be crucial later with the variable restrictions in quantifier rules.) In sequent
calculus style, instead, each step of inference is local:

AD(ADB)FAD(ADB) AFA
AS(ADB),AFADB P AFaA
AD(ADB),ArB
AD(ADB)I—ADBDI
F(AD(ADB))D(ADB)

DE

DI

In implication elimination, a rule with two premisses, the assumptions from
the left of the turnstile are collected together. At the second implication
elimination of the derivation, a second occurrence of A in the assumption
part is produced. The trace of this repetition disappears, however, when
assumptions are collected into sets.

The above system of introduction and elimination rules for &, V and
D, together with the rule of assumption by which an assumption can be
introduced at any stage in a derivation, is the system of natural deduction
for minimal propositional logic. If we add to it L E we have a system of
natural deduction rules for intuitionistic propositional logic.

Classical propositional logic is obtained by adding to the rules of intu-
itionistic logic a rule we call the rule of excluded middle, in analogy to
the law of excluded middle characteristic of classical logic in an axiomatic
approach:

Al [~A]
¢ &
C

Both A and ~ A are discharged at the inference. The law of excluded middle,
AV ~ A, is derivable with the rule:

Em

4 . 4
AV~AT AVAAL
AV ~A

12
m

12



The rule of excluded middle is a generalization of the rule of indirect
proof (“reductio ad absurdum”),

[~ A]

j Raa
The properties of the classical rules Em and Raa are presented in Chapter
8.

Rules of natural deduction can be categorized in a way similar to rules of
proposition formation. This is based on the propositions-as-sets principle,
and leads to type systems. We think of a proposition A as being the same
as its set of formal proofs. Each such proof can be called a proof-object
or proof term, to emphasize that this special notion of proof is intended.
Instead of an assertion of form F A we have a : A, a is a proof-object for A.
Rules of inference are categorized as functions operating on proof-objects.

Type-theoretical rules for proof-objects validate the BHK-explanations,
by showing how proof-objects of compound propositions are constructed
from proof-objects of their constituents. For example, the proof of an impli-
cation A D B is a function that converts an arbitrary proof of A into some
proof of B. In earlier times, the explanation of a proof of an implication
A D B was described as “a method that converts proofs of A into proofs of
B,” and this was thought to be circular or at least ill-founded through its
reference to an arbitrary proof of A. But in constructive type theory, the
problem is solved.! The meaning explanations first concern only “canonical
proofs,” that is, the direct proofs of the forms given by the introduction rules.
All other, “non-canonical proofs,” are reduced to the canonical ones through
computation rules that correspond to the conversions in natural deduc-
tion. For this process to be well-founded, it is required that the conversion
from non-canonical to canonical form terminates. These notions have deep
connections to the structural properties of natural deduction derivations.

An exposition of type theory and its relation to natural deduction is
given in Appendix B.

!The explanation was rejected on these grounds by Gddel (1941), for example. The
solution was given, in philosophical terms, by Dummett (1975), and more formally by
Martin-Lof (1975).

13



1.3. From natural deduction to sequent calculus

If our task is to derive A D B, the rule DI reduces the task to one of deriving
B under the assumption A. So we assume A, but if B in turn is of form
C&D, the &I rule shows how the derivation of C&D is reduced to that of C
and D. Thus we have to mentally decompose the goal A O B into subgoals,
but there is no formal way to keep track of the process. It is as if we had to
construct a derivation backwards.

Sequent calculus corrects the lack of guidance of natural deduction.
It has a notation for keeping track of open assumptions, moreover, this is
local: Each formula C' has the open assumptions I' it depends on listed on

the same line, as follows:
'=cC

Sequent calculus is a formal theory of the derivability relation. To make
a difference to writing I' - C, where the turnstile is a meta-level expression,
not part of the syntax as are the formulas, we use the now common symbol
=. InT' = C, the left side I' is called the antecedent and C the succedent.

As mentioned, the rules of natural deduction are schematic and only
show the active formulas, leaving implicit the set of remaining open assump-
tions. For example, the rule of conjunction introduction can be written more
completely as follows, with a derivation of A with open assumptions I' and
a derivation of B with open assumptions A:

LA
A B
A&B ¥

Rule &I gives a derivation of A& B with open assumptions I' U A. With
implication, we have a derivation of B from A and I', and the introduction
rule gives a derivation of A D B from I'. Similarly with E-rules, for example,
disjunction elimination gives a derivation of C from AV B,T', A, 0 if C is
derived from A, A and from B,©. The management of sets of assumptions
was already made explicit in the rules of natural deduction written in se-
quent calculus style. Sequent calculus maintains the introduction rules thus
written, but the treatment of elimination rules is profoundly different.

The rules of sequent calculus are ordered in the same way as those of
natural deduction, with the conclusion at the root. The introduction rules of
natural deduction become right rules of sequent calculus, where a comma

14



replaces set-theoretical union:

r=>A4 A=>B, A,F#BRD r=A4 . =B
I,A= A&B F=ADB I'=AvVB ' T=AVB

RV

Rule RD can also be read “root-first” and in this direction it shows how the
derivation of an implication reduces to its components. By reduction is here
meant that the premiss is derivable just in case the conclusion is.

In Gentzen’s original formulation of 1934-35, the assumptions I', A, ©
were finite sequences, or lists as we would now say.? Gentzen had rules
permitting the exchange of order of formulas in a sequence. But matters are
simplified if we consider assumptions finite multisets, that is, lists with
multiplicity but no order, and we shall do so from now on. Example 3 of
Section 1.2 showed that if assumptions are treated simply as sets, control is
lost over the number of times an assumption is made.

The elimination rules of natural deduction correspond to left rules of
sequent calculus. In &FE, we have a derivation of C from A, B and some
assumptions I'; and we conclude that C follows from A& B and the assump-
tions I'. In sequent calculus, this is written as

A,B,T =C
A4BT= O™
The remaining two left rules are found similarly:

AT=C B,A=C =4 B,A:>CL
AVBT,A=C Y AoBT,A=C

The formula with the connective in a rule is the principal formula of that
rule and its components in the premisses the active formulas. The Greek
letters denote possible additional assumptions that are not active in a rule;
They are called the contexts of the rules.

In natural deduction elimination rules written in sequent calculus style,
a formula disappears from the right, in sequent calculus, the same formula
appears on the left. Inspection of sequent calculus rules shows what the
effect of this change is:

2Use of the word “sequent” as a noun was begun by Kleene. His Introduction to
Metamathematics of 1952 (p. 441) explains the origin of the term as follows: “Gentzen says
‘Sequenz’, which we translate as ‘sequent’, because we have already used ‘sequence’ for
any succession of objects, where the German is ‘Folge’.” This is the standard terminology
now; Kleene’s usage has even been adopted to some other languages. But Mostowski

(1965) for example uses the literal translation “sequence.”

15



Subformula property: All formulas in a sequent calculus derivation are
subformulas of the endsequent of the derivation.

The usual way to find derivations in sequent calculus is a “root-first
proof search.” But in rules with two premisses, we do not know how the
context in the conclusion should be divided between the antecedents of the
premisses. Therefore we do not divide it at all but repeat it fully in both
premisses. The procedure can be motivated as follows: If in the conclusion
assumptions I' are permitted, it cannot harm to make the same assumptions
elsewhere in the derivation. Rules R&, LV and LD can be modified into
'=A I'=RB Al'=C BTI=C '=A BTI'=C

= A&B © AVBT=C ™ ASBT=C

LD

The earlier two-premiss rules had independent contexts, the above rules
instead have shared contexts.? It now follows that given the endsequent
to be derived, once it is decided which formula of the endsequent is principal,
the premisses are uniquely determined.
To show how derivations are found in sequent calculus, we derive the
sequent
= (AD(ADB))D(ADB)

corresponding to example 3 of Section 1.2:

A=A B,A=B
A=A ADB,A=B
AD(ADB),A=B
AD(ADB):>ADBRD
= (AD(ADB))D(ADB)

LD

LD

RD

Both instances of the two-premiss rule LD have the shared context A. This
root-first proof search is not completely deterministic: The last step can
only be RD, but above that, there are choices in the order of application
of rules. Further, proof search need not stop, but we stopped when we
reached sequents with the same formula in the antecedent and succedent.
Namely, the rule of assumption of natural deduction, by which we can start
a derivation with any formula A as assumption, is given in sequent calculus
in the form of a logical axiom:

A=A

3Lately some authors have called these “additive” and “multiplicative” contexts but
these are not so easy to remember
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In the above derivation, proof search ended in one case with a sequent of
form A,I' = A, with a superfluous extra assumption. Its presence was
caused by the repetition of formulas in premisses when shared contexts are
used.

The L F rule of natural deduction gives the zero-premiss sequent calculus
rule

10
Often this rule is also referred to as an axiom, but we want to emphasize its
character as a left rule and do not call it so.

Formally, a sequent calculus derivation is defined inductively: Instances
of axioms are derivations, and if instances of premisses of a rule are con-
clusions of derivations, application of the rule will give a derivation. Thus,
sequent calculus derivations always begin with axioms or L1. But we depart
in two ways from this “official” order of things:

First, note that the logical rules themselves are not derivations, for they
have sequents as premisses that need not be axioms. The combination of
logical rules likewise gives sequent calculus derivations with premisses. Each
logical rule and each combination is correct in the sense that, given deriva-
tions of the premisses, the conclusion of the rule or of the combination
becomes derivable.

Secondly, the usual root-first proof search procedure runs counter to the
inductive generation of sequent calculus derivations. Proof search only suc-
ceeds when these two meet, i.e., when the root-first process reaches axioms
or instances of L.

We now come to the structural rules of sequent calculus. In order to
derive the sequent = A D (B D A) corresponding to example 2 in Section
1.2, we use a rule of weakening introducing an extra assumption in the

antecedent:
I'=<C

A,P:>C’Wk

The rule is sometimes called “thinning.” The derivation of example 2 is

A=A
A B=A
A>BoOA"
=AD(BDA)

Wk

The derivation illustrates the role of weakening: Whenever in a natural
deduction derivation there is a vacuous discharge, there is in a correspond-
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ing sequent calculus derivation an instance of a logical rule with an active
formula that has been introduced in the derivation by weakening.

As noted, our example of proof search in sequent calculus led to a premiss
that was not an axiom of the form A = A, but of the form A,T" = A. These
more general axioms are obtained from A = A by repeated application of
weakening. If instead we permit instances of axioms as well as the L1 rule
to have an arbitrary context I' in the antecedent, there is no need for a rule
of weakening in sequent calculus.

Above we gave a derivation of the sequent corresponding to example 3
of Section 1.2 using rules with shared contexts. We give another derivation,
this time with the earlier rules having independent contexts. A rule of
contraction is now needed:

A AT =>C
AT=C

Ctr

With this rule and axioms of form A = A, the derivation is
A=A B=2B

A=A ADB,A:>BL
AD(ADB),A,A=B

AS5(A5B),A=>B
AD(ADB):>ADBRD
=(AD(ADB))D(ADB)

LD

D

RD

Contrary to the derivation with shared contexts, a duplication of A is
produced on the fourth line from below. The meaning of contraction can
be explained in terms of natural deduction: Whenever there is a multiple
discharge in natural deduction, there is a contraction in a corresponding
sequent calculus derivation.

If assumptions are treated as sets instead of multisets, contraction is in
a way built into the system and cannot be expressed as a distinct rule.

As with weakening, the rule of contraction can be dispensed with, by
the use of rules with shared contexts and some additional modifications.

In Chapter 8 we show in a general way that weakening and contraction
amount to vacuous and multiple discharge, respectively, in natural deduc-
tion, whenever the weakening or contraction formula is active in a derivation.
Without this condition, weakening and contraction are purely formal mat-
ters produced by the separation of discharge of assumptions into independent
structural and logical steps in sequent calculus.

We now come to the last and most important general rule of sequent
calculus: Given two natural deduction derivations I' F A and A,A - C, we
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can join them together into a derivation I'; A I C, through a substitution.
The sequent calculus rule corresponding to this is cut:

's>A AA=C
A=~<C

Cut

Often cut is explained as follows: We break down the derivation of C' from
some assumptions into “lemmas,” intermediate steps that are easier to prove
and that are chained together in the way shown by the cut rule. In Chapter
8 we find a somewhat different explanation of cut: It arises, in terms of
natural deduction, from non-normal instances of elimination rules.

It is possible that the derivations I' - A and A, A F C in a given system
of rules of inference can be brought into a normal form, but the derivation
I'; A F C obtained by cut need not, in general, have any such form.

Weakening, contraction and cut are the usual structural rules of se-
quent calculus. Cut has the effect of making a formula disappear during
a derivation so that it is not a subformula of the conclusion, whereas none
of the other rules does this. If we wanted to determine whether a sequent
I' = C is derivable, using cut we could always try to reduce the task into
I'= A and A,T" = C with a new formula A, with no end.

A main task of structural proof theory is to find systems that do not need
the cut rule, or only use it in some limited way. But note that contraction
can be as “bad” as cut, as concerns a root-first search for a derivation of
a given sequent: Formulas in antecedents can be multiplied with no end if
contraction cannot be dispensed with.

Two main types of sequent calculi arise: Those with independent con-
texts, similar in many respects to calculi of natural deduction, and those
with shared contexts, useful for proof search. Gentzen’s original (1934-35)
calculi for intuitionistic and classical logic had shared contexts for R& and
LV, and independent ones for LD. Further, the left rule for & (as well as
the RV rule in the classical case) was given in the form of two rules

AT =C B,I'=C
A&B,T = C A&B, T = C

that do not support proof search: It need not be the case that A,T' = C
is derivable even if A&B,T" = C is. The single L& rule we use is due to
Ketonen (1944). He also improved the classical RV rule in an analogous way
and found a classical LD rule with shared contexts. With these changes,
the sequent calculus for classical propositional logic is invertible: From
the derivability of a sequent of any of the forms given in the conclusions of
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the logical rules, the derivability of its premisses follows. Starting with the
endsequent, decomposition by invertible rules gives a terminating method
of proof search for classical propositional logic.

For intuitionistic logic, a sequent calculus with shared contexts was found
by Kleene (1952). The rule of cut can be eliminated in calculi with indepen-
dent as well as shared contexts. In calculi of the latter kind, also weakening
and contraction can be eliminated, so that derivations contain logical rules
only. Most of Chapters 2—4 is devoted to the development and study of such
calculi. Calculi with independent contexts are studied in Chapter 5.

1.4. The structure of proofs

Given a system of rules G, we say that a rule with premisses S1,...,5, and
conclusion S is admissible in G if, whenever an instance of Sy,...,S, is
derivable in G, the corresponding instance of S is derivable in G. Structural
proof theory has as its first task the study of admissibility of rules such as
weakening, contraction and cut. Our methods for establishing such results
will be thoroughly elementary: In part we show that the addition of a struc-
tural rule has no effect on derivability (as for weakening), or we give explicit
transformations of derivations using structural rules into ones that do not
use them (as for cut). A major difficulty is to find the correct rules in the
first place. Even if the proof methods are all elementary, the proofs often
depend on the right combination of many details and are much easier to
read than write.

Gentzen spoke about the elimination of cut. A related notion is clo-
sure under cut: If we have a complete system that does not contain cut,
we can conclude that derivable sequents are derivable without cut. But this
is a weaker notion than cut elimination, since one only has the semantical
proof of completeness, not necessarily a process of effectively eliminating
cuts from a given derivation.

If the cut rule has been shown admissible for a system of rules, we see by
inspection of all the rules of inference that no formula disappears in a deriva-
tion. Thus, cut-free derivations have the subformula property: Each formula
in the derivation of a sequent I' = C is a subformula of this endsequent.
Later we shall relax on this a bit, by letting atomic formulas disappear, and
then the subformula property becomes the statement that each formula in
a derivation is a subformula of the endsequent or an atomic formula. Such
a weak subformula principle is still adequate for structural proof-analysis.

Standard applications of cut-elimination include elementary syntactic
proofs of consistency, the disjunction property for intuitionistic systems,
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interpolation theorems, and so on. For the first, assume a system is incon-
sistent, i.e., assume that the sequent = 1 is derivable in it. But each logical
rule adds a logical constant, and the axioms and weakening and contraction
are rules that have formulas in the antecedent. Therefore there cannot be
any derivation of = 1; a cut-free system is consistent. Similarly, assuming
that = AV B is derivable in a system of rules, it can be the case that
the only way by which it can be concluded is by the rules for right dis-
junction. Thus, either = A or = B can be derived, and we say that the
system of rules has the disjunction property. If a system is both cut-free
and contraction-free, it can have the property that the premisses are proper
parts of the conclusion, i.e., at least some formula is reduced to a subfor-
mula. In this case, we have a root-first proof search resulting in a tree that
terminates. If the leaves of the tree thus reached are axioms, we can read
it top-down as a derivation of the endsequent. But to show that a sequent
is underivable, we have to be able to survey all possible derivations. For
example assume that = PV ~ P is derivable in a cut-free intuitionistic
system. Then the last rule is one of the two right disjunction rules, and
either = P or = ~ P is derivable. But no logical rule concludes = P. If
= ~ P were derivable, the last rule would have had to be RD. Again, no
logical rule concludes the premiss P = L.

Above we found a way that led to the rules of sequent calculus from
those of natural deduction. Often the structure of cut-free sequent calculus
derivations is seen more clearly if it is translated back into natural deduction.
This can be made algorithmic, as shown in Chapter 8. Not all sequent
calculus derivations can be translated, but only those that do not have
“useless” weakening or contraction steps. The translation is such that the
order of application of logical rules is reflected in the natural deduction
derivation. The meaning of a cut-free derivation is that all major premisses
of elimination rules turn into assumptions.

The connection between sequent calculus and natural deduction is straight-
forward for single succedent sequent calculi, i.e., those with just one formula
in the succedent to the right of the sequent arrow. But there are also systems
with a whole multiset as succedent. It can be shown that systems of intu-
itionistic logic are obtained from classical multisuccedent systems by some
innocent-looking restrictions on the succedents. In Chapter 5 we show that
the converse is also true, at least for propositional logic: We obtain classical
logic from intuitionistic single succedent sequent calculus by the addition of
a suitable rule corresponding to the classical law of excluded middle.

Most of the research on sequent calculus has been on systems of pure
logic. Considering that the original aim of proof theory was to show the con-
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sistency of mathematics, this is rather unfortunate. It is commonly believed
that there is nothing to be done: That the main tool of structural proof
theory, cut elimination, does not apply if mathematical axioms are added
to the purely logical systems of derivation of sequent calculus. In Chapter
6 we show that these limitations can be overcome. A simple example of the
failure of cut elimination in the presence of axioms is given by Girard (1987,
p. 125): Let the axioms have the forms = A D B and = A. The sequent
= B is derived from these axioms by

A=A B=1B
=ADB A ADB=BHB

= A A=B
=B Cut

LD
Cut

Inspection of sequent calculus rules shows that there is no cut-free derivation
of = B, which leads Girard to conclude that “the Hauptsatz fails for systems
with proper axioms” (ibid.). More generally stated, the cut elimination
theorem does not apply to sequent calculus derivations with premisses.

We shall give a way of adding axioms to sequent calculus in the form
of nonlogical rules of inference, and show that cut elimination need not
be lost by such addition. This depends critically on formulating the rules
of inference in a particular way. It then follows that the resulting systems
of sequent calculus are both contraction- and cut-free. A limitation, not of
the method, but one due to the nature of the matter, is that in constructive
systems there will be some special forms of axioms, notably (P D Q) D R,
that cannot be treated through cut-free rules. For classical systems, our
method works uniformly. Gentzen’s original subformula property is lost, but
typical consequences of that property, such as consistency, or the disjunction
property for constructive systems, usually follow from the weaker subformula
property.

To give an idea of the method, consider again the above example. With
P and @) atomic formulas and C an arbitrary formula, P D @ is turned into
a rule by stipulating that if ) = C, then P = C, and P is turned into a
rule by stipulating that if P = C, then = C:

Q=C P=C
P=C =C

The sequent = @) now has the cut-free derivation
Q=>Q
P=qQ
=Q
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The method of converting axioms into cut-free systems of rules has many
applications in mathematics, for example, it can be used in syntactic proofs
of consistency and mutual independence for axiom systems. If we use clas-
sical logic, we can convert a theorem to be proved into a finite number of
sequents that have no logical structure but only atomic formulas and falsity.
By cut-elimination, their derivation uses only the nonlogical rules, and a
very strong control on structure of derivations is achieved. In typical cases
such as affine geometry, an axiom can be proved underivable from the rest
of an axiom system by showing its underivability by the rules corresponding
to these latter.

The aim of proof theory, as envisaged by Hilbert in 1904, was to give
a consistency proof of arithmetic and analysis, and thereby to resolve the
foundational problems of mathematics for good. There had been earlier
consistency proofs, such as those for non-Euclidean geometries, in which
a model was given for an axiom system. But such proofs are relative,
they assume the consistency of the theory in which the model is given.
Hilbert’s aim instead was an absolute consistency proof, carried through by
elementary means. The results of Godel in 1931 are usually taken to show
such proofs an impossibility as soon as a system contains the principles
of arithmetic. But we shall see in Chapter 6 that when this is not the
case, purely syntactic and elementary consistency proofs can be obtained as
corollaries to cut-elimination.

A whole branch of logical research is devoted to the study of interme-
diate logical systems. These are by definition systems that stand between
intuitionistic and classical logic in deductive power. In Chapter 7, we shall
study the structure of proofs in intermediate logical systems by presenting
them as extensions of the basic intuitionistic calculus. One method of ex-
tension follows the model of extending this calculus by the rule of excluded
middle. Such extension works perfectly for the logical system obeying the
weak law of excluded middle, ~ AV ~~ A. A limit is reached here, too,
for in order to have a subformula property, the characteristic law of an in-
termediate logic is restricted to instances of the law with atomic formulas,
as for the law of excluded middle. If the law for arbitrary formulas cannot
be proved from the law for atoms, there is no good structural proof theory
under this approach. Such is the case for Dummett logic, characterized by
the law (A D B)V (B D A). Another method that has been used, is to start
with the multisuccedent intuitionistic calculus and to relax the intuitionistic
restriction on the RD rule. This approach will lead to a satisfactory system
for Dummett logic.

Our approach to structural proof theory is mainly based on contraction-
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and cut-free sequent calculi. But we also present, in Chapter 5, calculi in
which weakening and contraction are explicit rules and only cut is elimi-
nated. The sequent calculus rules of the previous section are precisely the
propositional and structural rules of the first such calculus, in Section 5.1(a).
Further, we also present a calculus in which there is no explicit weakening or
contraction, but these are built into the logical rules. This calculus, studied
in Section 5.2, can be described as a “sequent calculus in natural deduction
style.” Sequent calculi with independent contexts are useful for relating
derivations in sequent calculus to derivations in natural deduction. The use
of special elimination rules in natural deduction brings problems that only
vanish if the general elimination rules are taken into use. In Chapter 8 we
show that this change will give an isomorphism between sequent calculus
derivations and natural deduction derivations. The analysis of proofs via
natural deduction can often provide insights it would be hard to obtain by
the use of sequent calculus only.
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Notes to Chapter 1:

The definition of languages through categorial grammars, and predicate logic
especially, is treated at length in Ranta’s Type- Theoretical Grammar, 1994.
A discussion of logical systems from the point of view of constructive type
theory is given in Martin-Lof’s Intuitionistic Type Theory, 1984, but see also
Ranta’s book for later developments.

An illuminating discussion of the nature of logical rules and the justifi-
cation of introduction rules in terms of constructive meaning explanations is
given in Martin-Lof (1985). Dummett’s views on these matters are collected
in his Truth & Other Enigmas of 1979.

Our treatment of the elimination rules of natural deduction for propo-
sitional logic differs from the usual one that only recognizes the special
elimination rules, as in Gentzen’s original paper “Untersuchungen iiber das
logische Schliessen” (in two parts, 1934-35) or Prawitz’ influential book Nat-
ural Deduction: A Proof-Theoretical Study of 1965. The change is due to
our formulation of the inversion principle in terms of arbitrary consequences
of the direct grounds of the corresponding introduction rule, instead of just
these direct grounds. The general elimination rule for conjunction is pre-
sented in Schroeder-Heister (1984). The reasons for the more general point
of view will become clear in Chapter 8.

Natural deduction in sequent calculus style is used systematically in
Dummett’s book Elements of Intuitionism of 1977.

Our way of obtaining classical propositional logic from the intuitionistic
one uses the rule of excluded middle. It appears in this form, as a rule for
arbitrary propositions, in Tennant (1978) and Ungar (1992), but the first one
to propose the rule was Gentzen (1936). The rule has not been popular, for
the obvious reason that it does not have the subformula property. Prawitz
(1965) uses the rule of indirect proof and shows that its restriction to atomic
formulas will give a satisfactory normal form and subformula property for
derivations in the V-free fragment of classical propositional logic. We restrict
in Chapter 8 the rule of excluded middle to atomic formulas and show that
this gives a complete system of natural deduction rules and a full normal
form for classical propositional logic. We also show that the rule can be
restricted to atoms of the conclusion, thereby obtaining the full subformula
property.

The long survey article by Prawitz, Ideas and results in proof theory,
1971, offers valuable insights into the development of structural proof theory.
The notes to the chapters of Troelstra and Schwichtenberg’s Basic Proof
Theory, 1996, also contain many historical comments.
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