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Abstract

Geometric theories are presented as contraction- and cut-free sys-
tems of sequent calculi with mathematical rules following a prescribed
rule-scheme that extends the scheme given in Negri and von Plato
(1998). Examples include cut-free calculi for Robinson arithmetic and
real closed fields. As an immediate consequence of cut elimination, it
is shown that if a geometric implication is classically derivable from a
geometric theory then it is intuitionistically derivable.
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§1. Introduction.

In previous work (Negri and von Plato 1998) it has been shown how to extend
sequent calculi with axioms for elementary mathematical theories in such
a way that the structural rules (weakening, contraction, and cut) remain
admissible for these extensions, by the conversion of axioms to suitably
formulated inference rules.

The method of axioms-as-rules permits to convert into cut-free sequent
calculi all classical theories axiomatized by (universal closures of) quantifier-
free axioms and a wide class of intuitionistic theories with quantifier-free
axiomatization, called regular theories.

The method has been applied to predicate logic with equality, theories
of apartness and order, affine geometry, and used for proving conservativity,
independence, and decidability results (cf. Negri 1999, ch. 6 in Negri and
von Plato, Negri, von Plato, and Coquand 2001). Theories such as the
theory of ordered fields and real closed fields have also been treated (cf.



Negri 2001) by eliminating quantifiers already from their axiomatization
through the use of constructions.

In this work we show how to extend the method of axioms-as-rules to
geometric theories, i.e., theories axiomatized by (universal closures of) im-
plications between formulas that do not contain D or V.

We introduce the geometric rule-scheme, a rule-scheme that generalizes
the regular rule-scheme of Negri and von Plato (1998). Addition of the
geometric rule-scheme to the sequent calculi G3c¢c and G3im, respectively,
produces the classical and intuitionistic versions of the given geometric the-
ory.

We show the structural rules admissible for these extensions by a proof
that extends the proof in Negri and von Plato (2001) by the use of a suit-
able substitution lemma in order to handle the restrictions imposed by the
variable condition of the geometric rule-scheme.

Examples of geometric theories are given by Robinson arithmetic, the
theory of constructive plane affine geometry, the theory of ordered fields
and of real closed fields. These examples show the crucial importance of
the choice of basic notions for attaining a geometric axiomatization of a
theory: For instance a geometric axiomatization of affine geometry requires
the notions of apartness, nonincidence, and nonparallelism as primitive in
place of their classical counterparts of equality, incidence and parallelism.

In the last section we apply our method to a general result on geometric
theories. The result states that if a geometric implication is provable classi-
cally in a geometric theory, then it is provable intuitionistically. This result
is proved in topos theory by using a completeness theorem for geometric
theories in Grothendieck topoi and the construction of a suitable Boolean
topos out of a Grothendieck topos.

By our method, the result reduces to a proof-theoretical triviality: A
classical proof of a geometric implication in a geometric theory formulated
as a sequent system with rules is an intuitionistic proof already. If we add
the requirement that the geometric implication does not contain 1 in the
antecedent, then the classical proof is indeed a proof in minimal logic.

§2. Preliminaries

We refer to Negri and von Plato (1998,2001) for the necessary background
on sequent calculus and its extension with nonlogical (alias mathematical)
rules. A brief summary can be found in Section 2 of Negri (2001).

The sequent calculus we shall be using is the contraction- and cut-free
sequent calculus G3. We list below the rules for its classical version G3c
and the modifications for obtaining its intuitionistic version G3im. Here
the letter “m” stands for multi-succedent.



G3c

Axiom:
PT'= AP

Logical rules:

ABT=A 'rsAA T'=> A,B
A&B,T = A" T = A, A%B
AT=A BTI=A '=AAB
AVBT=A T=>AAVBY
r-AA4 BL=4A, AT=AB
A>BTI=A T=AA>B
L,F:ALL
A(t/z),VzA,T = A T'= A, A(y/z)
VzA T = A " T=Avzd
A(y/z),I = A I'= A,3zA, A(t/z)
JwA,T = A 7 T= A, 34
G3im
ADB,T= A B,F=>AL AT =B "
AS>BT=A > T=AADB =
I'=A4
(y/z)
= A VA

In the axiom, P is an arbitrary atomic formula. Greek upper case I', A
stand for arbitrary multisets of formulas. The restriction in RV is that y
must not occur free in I, (A, for G3c only), VzA. The restriction in L3 is
that y must not occur free in 92z A, ", A. We may summarize these conditions
by the requirement that y must not occur free in the conclusion of the two
rules.

All the structural rules (weakening, contraction and cut) are admissi-
ble in G3c¢ and in G3im. The calculi are thus complete for classical and
intuitionistic first order logic, respectively.

§3. Geometric theories as systems with rules

We recall that a formula in the language of (many-sorted) first-order logic
is called geometric if it does not contain D or V. A geometric implication is
a sentence of the form

Vz(A D B)



where A and B are geometric formulas. A geometric theory is a theory
axiomatized by geometric implications.

As observed in Palmgren (1998), any geometric implication can be re-
duced to a conjunction of formulas of the form

VE(Pl& &Py DAy My V..V HynMn) GA

where all the P; are atomic formulas and all the M; are conjunctions of
atomic formulas and the variables y; are not free in the P;. We shall call a
formula of type G A a geometric ariom. Let M; be Q;, & ... &ijj where @,
are atomic formulas. With a slight abuse of notation, we shall use the vector
notation for multisets of formulas (instead of lists) and write P for the mul-
tiset Py,..., Py, and @j for Qj,,. .. ,ijj. A replacement Qj(yj/wj) denotes
the replacement in each of the Q;,, that is, @, (y;/z;), .- - ,ijj (yj/z;).
The rule-scheme corresponding to the geometric axiom GA is

Ql(yl/xl)aﬁa]ﬁ:}A @n(yn/wn)aﬁa]ﬁ:}A
PI'=A

GRS

where the variables z; are called the replaced variables of the scheme, and
the (lists of) variables y; the proper variables (for better readability we shall
leave out the vector notation for lists of variables). The scheme has the
condition that the proper variables are not free in P,T, A. We shall call a
rule-scheme of the above form a geometric rule-scheme, GRS for short.

As explained in Negri and von Plato (1998), the principal formulas
Py,..., P, of the scheme must be repeated in the antecedent of each premiss
for proving the rule of contraction admissible. We also note the following:
It can happen that a substitution in the atoms of a rule produces duplica-
tions among the formulas P;. Then in order to ensure that contraction is
admissible in the system, we need to add the contracted rule, that is, we
must make sure that the following condition is satisfied:

Closure condition: Given a system with geometric rules, if it has a rule
with an instance of form

al(yl/.’ﬂl),Pl,...,Pm_Q,P,P,F#A an(yn/wn),Pl,...,Pm_g,P,P,F:>A
Pl,...,Pm_g,P,P,FﬁA

then also the rule

Ql(yl/xl),Pl,...,Pm,Q,P,F#A @n(y"/.’tn),Pl,...,Pm,Q,P,F=>A
Pr...Pn o PT=A

has to be included in the system.

The condition is unproblematic, since the number of rules to be added to a
given system of nonlogical rules is finite.



Let T be a geometric theory and let G3¢T (G3imT) be the Gentzen
system obtained by adding to G3¢(G3im) the geometric rule-schemes cor-
responding to the geometric axioms of 7', together with the rules arising
from the closure condition.

A geometric axiom = A (represented as a sequent with empty antecedent)
is derivable from the corresponding geometric rule-scheme as follows, where
a suffix * denotes repeated steps of a rule, and where the premisses clearly
are derivable by R&:

Q1(y1/21), P = M1(y1/z1),.- - -, Mn (yn/zn) . Qn(yn/zn), P = Mi(y1/21),- -, M (yn/zn) .
— p— R3 — — R3
Qq(y1/®1), P = Jz1 Mq,..., Az My, Qn(yn/xn), P = Jz1Mq,..., dzp My, cns

R
P = dz1Mq,..., dzpn My
= Rv*
P = 3dxz1M; V...V 3z, M,
L&™*

P1&...&Pm = 321 My V ...V 3z, Mp
= P1&...&Ppm D Az My V ...V Ay, M,
= VZ(P1& ...&Pm O 3z My ...V 3zn Mn)

RD
RY

Conversely, a geometric rule is derivable from the corresponding geomet-
ric axiom = A4 in G3im+ contr+cut as shown below. In the derivation of
the left premiss of cut, inverses of rules are used: These are admissible (and
height-preserving) steps in G3im. Observe that the variable restriction in
GRS now comes into use in the steps of L3:

= VE(P1&. . &Pm D Jo1 My V...V 32, Mp) Qi/e) P T A Qulyn/en), T = A
I - —
= Pi&.. &Pm D o1 ML V...V o, Y Mi(y1/21), P,T = & Mn(yn/2n), P.T = A
RDI - = _ —
Pr&. . &Pm =30 M1 V. V3enMa = v 321 M1,P, T = A . FoaMp,P,T=A
— nw — Lv
P= 3z1 My V...V Iza M, 3o My V... V3Iza My, B, T = A
p— cut
P,P,T = A
——— contr*
P,I' = A

Remark: It is clear by the above derivation that the geometric rule-scheme
hides a cut on the formula Jx1M; V...V Iz, M,. The substituted variables
z; are bound variables in the virtual cut formula, so it will be convenient
to regard the substituted variables of the scheme as bound variables and to
assume that in a derivation the sets of free and bound variables are disjoint.

In order to show that the systems G3¢T and G3imT are complete with
respect to the classical and intuitionistic geometric theory T, respectively,
we need to extend the results on Negri and von Plato (1998) to systems with
geometric rule-scheme.

§4. Admissibility of structural rules

The proofs of (height-preserving) admissibility of structural rules for exten-
sions of sequent calculi with mathematical rules are obtained by induction
on the height of derivation. Typically, the rule to be shown admissible is
shown to permute up with the rules of the system, until it reaches the axioms
which are closed under the rule.



For instance, in order to show that left weakening

I'=> A

Ar= A"

is admissible in G3cT and in G3imT, we consider the last step in the
derivation of its premiss, apply inductively weakening to the premiss(es)
I'; = A; of the last step, and obtain A,T'; = A; and then the rule that had
been used as last step, thus obtaining A, = A. However, if the last rule is
a geometric rule-scheme and the weakening formula A contains some of its
variables, the variable condition is no longer satisfied after weakening with
A.

The following lemma takes care of the constraints imposed by the vari-
able condition in the geometric rule scheme in such inductive proofs:

Lemma 1. Given a derivation of T = A in G3c¢T (G3imT, resp.), with
z a free variable in ', A and a term t free for x in ', A not containing
any of the variables of the geometric rules in the derivation, we can find a
derivation of T'(t/z) = A(t/z) in G3cT (G3imT, resp.) with the same
height.

Proof: By induction on the height of the given derivation. For the logical
rules the proof is contained in Lemma 4.1.2 of Negri and von Plato (2001), so
we need to consider only the cases arising from the addition of the geometric
rule-scheme. Suppose the last rule in the derivation of I' = A is GRS, with
premisses
Qz(yz/xz)’ P, = A

for i = 1,...,n. Since the @, are atomic, the term ¢ is free for z in these
premisses, thus by induction hypothesis we get derivations of

Qi(yi/zi)(t/=), P(t/),T'(t/z) = A(t/x)

Since z is a free variable in T', A, by the remark at the end of the previous
section we have z # z;, and since the y; are not free in P,I", A we have
z # y;. Moreover t does not contain any of the x; by hypothesis. Therefore
the two substitutions in @, are independent and we have Q;(y;/x;)(t/z) =
Qi(t/z)(y;/x;). Since t does not contain any of the y;, the y; are not free
in P(t/x),T"(t/z) = A(t/z), so we can apply the geometric rule-scheme to
the premisses

Qi(t/z)(yi/i), P(t/z),T"(t/z) = A(t/)
and get P(t/z),I"(t/z) = A(t/z), ie., T'(t/z) = A(t/z). O

Theorem 2. The rules of weakening

I'=> A I'=> A

AT=A" T=A 4"



are admissible and height preserving in G3cT and in G3imT.

Proof: By induction on the height of the derivation of the premiss, as in
Negri and von Plato (1998). In case the last step is a geometric rule-scheme
and A contains some of its variables, the substitution lemma is applied to the
premisses of the geometric rule-scheme in order to have new free variables
not clashing with those in A. The conclusion is then obtained by applying
the inductive hypothesis and the geometric rule-scheme. O

The proof of admissibility of the contraction rules for G3¢T and G3imT
requires the use of inversion lemmas for all those rules that do not copy the
principal formula into their premisses. We observe that all the inversion
lemmas for the propositional rules that hold for G3c and G3im hold for
their geometric extension as well, since the geometric rule-scheme has only
atomic formulas as principal and active formulas. For the inversions of L3
and RV we need to add a condition on the variable in order to avoid clashes
with the proper variables of the geometric rules in the derivation.

Let , T' = A denote a derivation of the sequent I' = A in G3cT, with
derivation height bounded by n. We have:

Lemma 3.

(i) If b, 32A, T = A and y is not among the variables of the geometric rules
in the derivation, then -, A(y/x),T = A.

(ii)) If F, T = A,VzA and y is not among the variables of the geometric
rules in the derivation, then Fp, T' = A, A(y/x).

Proof: (i) By induction on n. If n = 0, then 3zA,T" = A is either a logical
axiom, or a conclusion of L1, or conclusion of a zero-premiss geometric rule.
In each case also A(y/z),' = A is a logical axiom, or a conclusion of L1,
or conclusion of a zero-premiss geometric rule, thus o A(y/z),[' = A.

If n > 0 and 3z A is principal in the last rule, the premiss gives a deriva-
tion of A(z/z),I' = A, where z is not free in I', A. By Lemma 1, using the re-
placement y/z, we obtain a derivation of the same height of A(y/z),T" = A.
If 3z A is not principal in the last rule, we argue as in lemma 4.2.3 of Negri
and von Plato (2001) in the case the last rule is a logical rule. If the last
rule is a geometric rule, with I' = P, T and premisses

Gl(yl/xl)aﬁa Ele,FI = Aa s a@n(yn/xn)aﬁ, El'TAaFI = A

by the assumption that free and bound variables are disjoint and by induc-
tive hypothesis we get derivations of the sequents

Ql(yl/xl)aﬁaA(y/x)aP, = Aa s ,Qn(yn/xn),ﬁ,A(y/w),I" = A

Since y is none of the y;, we can apply the geometric rule-scheme to these
premisses and obtain a derivation of P, A(y/z),I" = A.
(ii) Similar to (i). O



We remark that a similar statement holds for G3imT, with (ii) modified
to an empty context A.
By Lemma 1, we are allowed to assume the following;:

Disjointness condition. In a derivation in G3cT (G3imT) the sets of
proper variables of the geometric rules are pairwise disjoint.

Theorem 4. The rules of contraction

A AT = A '=AAA
AT=A " T=na,4 %

are admissible and height-preserving in G3cT and in G3imT.

Proof: For left contraction, the proof is by induction on the height of the
derivation of the premiss. If it is an axiom, the conclusion is also an axiom.
If the last rule is a propositional rule, then A,I' = A follows as in theorem
3.2 of Negri and von Plato (1998). If it is LV, we apply the induction
hypothesis to the premiss of the rule, and then the rule, and similarly if
it is L3 with A not principal in it. If it is L3 with A = 3z B and premiss
B(y/z),3zB,T = A, by the variable condition on the geometric rule-scheme
and the Remark in Section 2, y is not a variable in any geometric rule in the
derivation, so we can apply the inversion lemma for L3 instantiated to y and
obtain a derivation of B(y/z), B(y/z),I' = A. By the induction hypothesis
we get B(y/z),I' = A and by L3, 3zB,T' = A.

If the last rule is a geometric rule, we distinguish three cases: 1. No
occurrence of A is principal in the scheme. 2. One occurrence of A is
principal, the other is not. 3. Both occurrences of A are principal.

The first case is handled by a straightforward induction. The second
case by the repetition of the principal formulas F; into the premisses of the
geometric rule-scheme. Finally, the third case is taken care of by the closure
condition.

The proof of admissibility of right contraction in G3¢T and G3imT does
not present any additional difficulty with respect to the proof of admissibility
in G3c and G3im since in the geometric rule-scheme the succedent in both
the premisses and the conclusion is an arbitrary multiset A. So in case
the last rule in a derivation of ' = A, A, A is a geometric rule, one simply
proceeds by applying the inductive hypothesis to the premisses, and then
the rule. O

We are now in the position to prove the admissibility of cut for our
rule systems for geometric theories. We remark that the proof has the
same structure as the proof of admissibility of cut for elementary theories
(theorem 6.2.3 in Negri and von Plato 2001), with an additional use of the
substitution lemma in order to meet the variable restriction in the geometric
rule-scheme.



Theorem 5. The cut rule
'=AA AT = A’
T = AA

Cut

is admissible in G3cT and in G3imT.

Proof: By induction on the length of A with subinduction on the sum
of the heights of the derivations of I' = A, A and A,I" = A’. We need
to consider only the cases arising from the addition of the geometric rule-
scheme. The other cases are treated in the corresponding proof for G3¢ and
G3im (theorems 4.2.10 and 5.3.6 in Negri and von Plato 2001).

1. If the left premiss is a zero-premiss geometric rule, then also the conclu-
sion is a zero-premiss geometric rule, since these have an arbitrary context
as succedent.

2. If the right premiss is a zero-premiss geometric rule with A not principal
in it, the conclusion is a zero-premiss geometric rule for the same reason as
in case 1.

3. If the right premiss is a zero-premiss geometric rule with A principal
in it, A is atomic and we consider the left premiss. The case that it is a
geometric zero-premiss rule is covered by 1. If it is a logical axiom with A
not principal, the conclusion is a logical axiom; else I' contains the atom
A and the conclusion follows from the right premiss by weakening. In the
remaining cases we consider the last rule in the derivation of I' = A, A.
Since A is atomic, A is not principal in the rule. Let us consider the case of
a geometric rule (the others being dealt with similarly, except RD and RV
which are covered in 4). The derivation ends with

al(yl/xl)aﬁa = AaA v Gn(yn/xn)aﬁa = AaA GRS
PI"=AA AT = A
P.I.T" = A, A

cut

The cut cannot simply be permuted to the premisses of GRS because IV, A’
may bring in free variables clashing with the proper variables y; and thus
preventing the application of GRS after the cuts. Instead, we first apply the
substitution lemma to the right premiss of cut and replace all the variables y;
(if any) by fresh variables w;, and denote the substitution by w/y. Observe
that by the variable condition in GRS, the substitution does not affect the
cut formula A. We obtain the sequent

AT (w/y) = Al(w/y)
and n cuts with the n premisses of GRS give the n sequents

Qi (yz/xz)aﬁa F,(w/y)a = Aa A,(w/y)



for ¢ = 4,...n. By applying GRS to these n premisses we get
P.T(w/y),T" = A, A (w/y)

and the derivation is continued as before with the substitution w/y per-
formed globally. Observe that by the disjointness condition the substitution
does not affect the active formulas of other geometric rules in the derivation.
The cut has thus been replaced by n cuts with left premiss with derivation
of lower height and right premiss of same height.

Let us now consider the cases in which neither premiss is an axiom.

4. A is not principal in the left premiss. These are dealt with as above,
with cut permuted upwards to the premisses of the last rule used in the
derivation of the left premiss (with suitable variable substitution in order to
match the variable restrictions in the cases of quantifier rules and geometric
rule-scheme), except, in G3imT, for RD and RV. By the intuitionistic
restriction in this rule, A does not appear in the premiss, and the conclusion
is obtained without cut by RD (RV, resp.) and weakening.

5. A is principal in the left premiss only. Then A has to be a compound
formula. Therefore, if the last rule of the right premiss is a geometric rule, A
cannot be principal in the rule, because only atomic formulas are principal
in geometric rules. In this case cut is permuted to the premisses of the right
premiss, with appropriate substitution of free variables as in 3, in case the
right premiss is a GRS. If the right rule is a logical one with A not principal
in it, the usual reductions are applied.

6. A is principal in both premisses. This case can only involve logical rules,
and is dealt with as in the usual proof for pure logic. O

Due to the substitutions of free variables, the cut-elimination for deriva-
tions of sequents that do not consists only of closed formulas is modulo fresh
renaming of free variables.

§5. Examples of geometric theories

(a). A simple example of a geometric theory is Robinson arithmetic. The
language has one constant 0, the unary successor function s, and two binary
functions + and -. There is one relation =, and atomic formulas are of the
form a = b, for arbitrary terms a and b. The axioms are the following:

1. 7 s(z) =0
2.8(x)=s(yy Dz=y
3. z=0V3Iy z=s(y)
4. z24+0==2

5. z+s(y) = s(z +v)
6. 2:0=0

10



7. z-s(y)=z-y+x
The classically equivalent axiomatization with 3. replaced by
3. nz=0D3yz=s(y)

is not geometric because it has an implication (z = 0 D) in the antecedent
of an implication.

(b). The theory of nondegenerate ordered fields has a language with two
constants 0 and 1, two functions + and -, and one relation <, and the
following axioms in which equality is defined by a =b=a <b & b a:

I. Axioms for nondegenerate linear order

W=
] 8 8 8
— /AN NN
N e 8

Vy<x
&&y<zdx<z

0

II. Axioms for ordered additive group

(z+y)+z=z+(y+2)
rt+y=y+zx
z+0==zx

Jyx+y=0
rT<YyYDrx+z<y+z

© 00 ~J O Ot

III. Axioms for multiplication

10. (z-y)-z=2z-(y-2)
1l.z-y=y-y

12. z-1=2

13. z=0VvV3iyz-y=1

4. z-(y+2)=z-y+z-2
15 <y & 0<zDx-2<y 2

The classically equivalent axiomatization with
3. wz=0D>3yz-y=1

in place of 13. is not geometric.

The theory of real closed fields is obtained by adding the axioms stating
the existence of square roots and zeroes of polynomials of odd degree

16. 0czDIyz=y-vy
17. agp11 =0V 3z a2n+1-:C2"+1+a2n-a:2"+...a1-a:—l—aoZO

11



The classically equivalent axiomatization with 17 replaced by
17. = agny1 =0D 3z agpyy - 2?4 ag, 2 +...a1 2 +ap =0

is not geometric.

In Negri (2001) the theories of ordered fields and real closed fields, based
on a single relation of strict linear order < as primitive, are presented by
means of a quantifier-free axiomatization. The V3-axioms expressing the
existence of inverses, square roots, and zeroes of polynomials cannot be
expressed as geometric axioms by the use of < alone as basic relation. Thus
they are replaced by constructions where conditions (like being apart from
zero for the inverse) are encoded in the calculus as meta-level rules of well-
formedness of terms containing these constructions. The axiomatization
thus obtained is geometric and quantifier-free, hence regular.

(c). As last, we give an example of a many-sorted theory, which also shows
the crucial importance of the choice of basic notions for having geometric
axiomatizations. A quantifier-free axiomatization of constructive affine ge-
ometry, based on the primitive notions of distinct points, a # b, distinct lines,
[ # m, convergent lines, [ jf m, and of a point outside a line, a ¢ [, is given
in 6.6.(e) of Negri and von Plato (2001). The theory has two constructions:
of a line In(a,b) connecting distinct points a and b, and of a point pt(l,m)
obtained by the intersection of two nonparallel lines [ and m.

One can add to the theory an axiom stating the existence of three non-
collinear points,

JzIyIz(z 2y & 2 ¢ In(z,y))

and the extension is still a geometric theory. However, if the axiomatization
is based instead on the primitive notions of equality between points and
between lines, of parallelism of lines, and of incidence of a point with a line,
the axiom expressing the existence of three non-collinear points is

JrIyz(—z =y & -z e ln(z,y))

and the theory obtained is no longer geometric.
§6. Barr’s theorem

As an application of the proof-theoretical method of this paper, we give a
proof of a conservativity result for geometric theories.

Barr’s theorem is a well known result from topos theory with an im-
portant consequence for first order theories (with which it is sometimes
identified), stating that if a geometric implication is classically derivable
in a geometric theory, then it is intuitionistically derivable. This result is
proved in topos theory using a completeness theorem for geometric theories
in Grothendieck topoi and a construction—the proper Barr’s theorem—of a

12



Boolean topos out of a Grothendieck topos (cf. Bell 1988, and Johnstone
1977 or Mac Lane and Moerdijk 1992 for a proof in topos theory).

Palmgren (1998) indicates a proof-theoretical proof of Barr’s theorem by
showing that geometric implications are stable under the Dragalin-Friedman
translation. A proof for the special case of the empty geometric theory is
suggested in Troelstra and van Dalen, 1988 (exercise 2.6.14) by means of
Kripke models.

Using cut-free systems for geometric theories, Barr’s theorem reduces to
a proof-theoretical triviality:

Theorem 6. Let T be a geometric theory, and let A be a geometric impli-
cation. If G3¢T F = A, then G3imT - = A.

Proof: Let A be VZ(B D C), and consider a proof of A in G3cT. Since B
and C' do not contain D or V, the derivation of A consists of geometric rules,
rules for 3, a step of RD and steps of RV. The geometric rules can occur in
any order between the logical rules, however, among the logical rules, R D
and RY come last. The geometric rules have the same succedent in both the
premisses and the conclusion, therefore the rules RD and RV are applied to
single-succedent sequents. It follows that the given proof must be a proof in
G3imT already. O

We recall that minimal logic is the logic obtained from intuitionistic
logic by removing the rule of ez falso quodlibet. In G3-calculi, the identity
axiom scheme is restricted to atomic formulas, thus in order to obtain a G3
calculus for minimal logic the rule L E is removed, but its instance | Az,
1,I' = A, 1 is added (usually this is just an instance of the unrestricted
identity axiom). Let G3mm be the multi-succedent calculus for minimal
logic thus obtained.

If we assume that 1 does not appear in the antecedent of a geometric
implication (though it may appear in the succedent, in the form of an empty
disjunction), a (classical) proof of a geometric implication in a geometric
theory never uses the rule LFE, neither can it start with logical axioms of
the form 1,I" = A, 1. Under this hypothesis, Theorem 6 can thus be
strengthened to

Corollary 7. Let T be a geometric theory, and let A be a geometric
implication not containing L in the antecedent. If G3cT + = A, then
G3mmT-1 Az F = A.

§7. Concluding remarks

As explained in Section 6.3 of Negri and von Plato (2001), there are other ap-
proaches to extension by axioms, besides systems with mathematical rules.
For quantifier-free regular theories, as those considered in Negri and von
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Plato (1998), one can add “mathematical basic sequents” of the form

Pl,...,Pm:>Q1,...,Qn

with which derivations can start. Cuts in a derivation are then reduced by
the generalized Hauptsatz to cuts on atoms.

For geometric theories the axioms cannot be reduced to their atomic
components, and the basic sequents to be added have the form

p,...,P, = dz1My,...,3z, M,

where M; are conjunctions of atoms. It can then be shown that cuts can
be reduced to cuts on the formulas P; and 3z;M;. As remarked by Thomas
Strahm, this partial cut-elimination result would suffice for a proof of Barr’s
theorem of the kind we have given here.

However, the proof of partial cut-elimination requires permutation of
cuts: In a typical critical case, a cut on Jdz; M}, the premisses of which are a
mathematical axiom and a step of L3, is followed by a cut on an arbitrary
formula A. The cut on 3z;M; cannot be further reduced, and the cut on A
cannot simply be permuted above it, since it may bring in variables clashing
with the free variable in the premiss of L3. So a substitution lemma of
the kind we have employed in our proof comes into play. When all details
have been spelled out, the proof of the partial cut-elimination theorem is
not simpler than the full cut-elimination.

After this article was finished we were informed by Michel Coste of a
previous proof of Barr’s theorem as a consequence of partial cut-elimination:
In Coste and Coste (1975) coherent theories are defined as theories with
equality and geometric axioms. A sequent calculus is employed that is a
variant of Gentzen’s original classical calculus LK, but with sequents as sets,
thus without explicit contraction rule. Non-logical axioms have the form of
sequents I' = A, where I'; A contain only &, V, 3 as logical connectives and
quantifiers. A restricted calculus for coherent theories has no rules for D, V.
By a partial cut-elimination theorem (the cuts that are eliminated are those
on non-geometric formulas) the authors prove that the restricted calculus
for coherent theories proves the same coherent sequents as the classical one.

The theories of real closed fields and formally real fields, together with
some other geometric theories, have been treated in the work of Coste, Lom-
bardi, and Roy (2001) by what they call the method of dynamical proof :
such proofs provide a uniform method to deal with geometric theories, which
is related to cut-free sequent calculus. In contrast to sequent calculi, how-
ever, dynamical proofs do not presuppose any choice of logic (classical or
intuitionistic), since they act upon atomic formulas and L only, exactly like
proofs of basic sequents in (cut-free) systems with mathematical rules.
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