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Abstract. The proof theory of multi-agent epistemic logic extended
with operators for distributed knowledge is studied. Distributed knowl-
edge of A within a group G means that A follows from the totality
of what the individual members of G know. There are known axioma-
tizations for epistemic logics with the distributed knowledge operator,
but apparently no cut-free proof system for such logics has yet been
presented. A Gentzen-style contraction-free sequent calculus system for
propositional epistemic logic with operators for distributed knowledge is
given, and a cut-elimination theorem for the system is proved. Examples
of reasoning about distributed knowledge using the calculus are given.

1 Introduction

Distributed knowledge of A within a group G means that A follows from what
the members of G individually know. For instance, A is distributed knowledge in
group G (denoted DGA) consisting of three agents of which the first one knows
B, the second one knows B ⊃ C, and the third one knows B &C ⊃ A. Reasoning
about the combined information possessed by different agents is an important
task in systems in which all information is not available in one central source
but distributed among several agents.

In such situations, epistemic logic [1] is typically used for representing and
reasoning about knowledge. In the literature concerning multi-agent epistemic
logics, e.g. [2, 3], operators for distributed knowledge are often included. However,
these treatments usually concentrate on the model theory of the logics, whereas
the proof-theoretical part is limited to providing Hilbert-style axiomatizations.
Since theorem-proving is difficult in Hilbert-style systems, we shall here study
Gentzen-style sequent calculi as a step towards mechanization of proof search.

One proof-theoretical approach to reasoning about distributed knowledge
is given in [4], but the approach is different because of the use of natural
deduction and of a language which is not epistemic. The development of a
proof system for logic of distributed knowledge has been recently posed by
S. Artemov as an open problem for the system of evidence-based knowledge (see
http://web.cs.gc.cuny.edu/~sartemov/research_problems.html). This pa-
per presents a solution for ordinary multi-agent epistemic logic using the methods
developed in [5, 6].



Techniques for drawing inferences from distributed knowledge may be useful
in several application areas which attempt to combine knowledge of agents, such
as cooperative problem solving, knowledge base merging, and judgement aggre-
gation. In cooperative problem solving it is usually assumed that the agents are
willing to provide any information they have and that all information is certain.
In such situations, it is possible to combine the separate knowledge bases into
one and then derive theorems from the large knowledge base. However, typically
in knowledge base merging the data can contain errors (and is thus not strictly
speaking knowledge). Then combining information from multiple sources may
lead to an inconsistent knowledge base, and special methods have to be used
for dealing with contradictory information (see e.g. [7–9]). That often involves
discarding some information in order to maintain the integrity of the database.

In cases with heterogeneous information sources the knowledge modalities
should not be understood as knowledge proper but rather as beliefs. In open
information systems, and in situations involving strategic considerations, like in
judgement aggregation or voting, agents can even provide false information on
purpose, so it is not possible to infer their real beliefs from what they report,
but the information they provide must be treated as claims, acceptances or just
as messages with propositional content.

The introduction of the knowledge modalities and the modality for dis-
tributed knowledge into the language can be beneficial, because managing the
meta-information concerning the sources of knowledge and their various combi-
nations becomes easier. When the source of information is stored in addition to
the content, also contradictory information can be dealt with: If agent 1 claims
that A is the case and agent 2 claims that not-A is the case, the receiving agent
should decide which piece of information to accept and which one to reject.
However, when such a situation arises there may not be enough information
available that could be used to resolve the conflict. If our logical language is rich
enough to allow also knowledge propositions and the agents are able to reason
about distributed knowledge, incoming information need not be discarded nor is
it necessary to immediately judge some agents unreliable. Instead, we can store
the knowledge claims without violating the integrity constraints, and we can use
the stored information to find out which agents we can trust, possibly later when
we have gathered more information.

Thus, the addition of the knowledge operators to the language makes it
possible for the agents to perform reasoning about the distributed information
possessed by various agents and groups of agents and to detect inconsistencies
between claims made by agents. Also, the possibility to iterate knowledge (and
distributed knowledge) operators allows for more complex reasoning tasks than
reasoning from an integrated knowledge base without iterated modalities. This
kind of reasoning may be used in cooperative information systems to find out
which agents have useful information with respect to the task at hand.

In Section 2, we introduce the logical system and show that it can be used to
derive the axioms given in complete axiomatizations for the logic of distributed
knowledge. In Section 3, we show that the system has the required structural



properties such as admissibility of structural rules, and discuss the relevance of
these result for proof search. In Section 4 we present examples of derivations
in our calculus and discuss possible application areas of our methods. We shall
conclude in Section 5.

2 Logic of distributed knowledge

Our starting point is the modal sequent calculus system G3K [6]. (For a general
introduction to Gentzen-style sequent calculus, see [5].) We replace the modal
operator � with the knowledge operators Ka for individual agents a ∈ G. We
extend the logic with the operatorDG with the intended meaning forDGA that A
is distributed knowledge within the group G (sometimes, for ease of readability,
the subscript G will be omitted when clear from the context).

In [6] the rules for � are determined by the forcing relation of Kripke seman-
tics

x  �A iff ∀y(xRy → y  A)

where x, y range in the set of possible worlds and R is the accessibility relation.
In multi-agent epistemic logic there is an accessibility relation Ra for each agent
a, and validity of KaA is defined by

x  KaA iff ∀y(xRay → y  A).

The right to left direction of the equivalence gives the right rule of Ka, the
opposite, the left rule. We shall use colon ‘:’ to stand for the forcing relation (so
x : A can be read as saying that A holds at world x). In general, sequents of the
form Γ ⇒ ∆ can be understood as saying that the disjunction of the formulas in
the multiset ∆ can be derived from the conjunction of formulas in the multiset
Γ representing the open assumptions. The rules are

xRay, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : KaA
RKa

y : A, x : KaA, xRay, Γ ⇒ ∆

x : KaA, xRay, Γ ⇒ ∆
LKa

Rule RKa has the variable condition that y must not appear in the conclusion.
Distributed knowledge is defined as follows (see e.g. [2]) w.r.t. a Kripke struc-

ture M and a world s

(M, s) |= DGA iff (M, t) |= A for all t such that (s, t) ∈
⋂

a∈G

Ra.

The rules for distributed knowledge are found accordingly

{xRay}a∈G, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : DGA
RDG

y : A, x : DGA, {xRay}a∈G, Γ ⇒ ∆

x : DGA, {xRay}a∈G, Γ ⇒ ∆
LDG

Similarly to rule RKa, also rule RD has the restriction that y must not appear in
the conclusion. The intended meaning of the notation {xRay}a∈G is that what is



inside the curly brackets should be repeated for each agent a ∈ G; for instance,
with a group of two agents 1 and 2, the right rule becomes

xR1y, xR2y, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : D{1,2}A
RD{1,2}

The rules for the calculus are given in Table 1. Observe that initial sequents
are restricted to atomic formulas P . This feature, common to all G3 systems of
sequent calculus, is needed in order to ensure invertibility of the rules and other
structural properties. Note also that no rules for negation nor equivalence are
needed because we take ∼A to be a shorthand for A ⊃ ⊥ and A ⊃⊂ B as a
shorthand for (A ⊃ B) & (B ⊃ A).

Initial sequents:

x : P, Γ ⇒ ∆, x : P

Propositional rules:

x : A, x : B, Γ ⇒ ∆

x : A & B, Γ ⇒ ∆
L&

Γ ⇒ ∆, x : A Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A & B
R&

x : A, Γ ⇒ ∆ x : B, Γ ⇒ ∆

x : A ∨B, Γ ⇒ ∆
L∨

Γ ⇒ ∆, x : A, x : B

Γ ⇒ ∆, x : A ∨B
R∨

Γ ⇒ ∆, x : A x : B, Γ ⇒ ∆

x : A ⊃ B, Γ ⇒ ∆
L⊃

x : A, Γ ⇒ ∆, x : B

Γ ⇒ ∆, x : A ⊃ B
R⊃

x : ⊥, Γ ⇒ ∆
L⊥

Modal rules:

y : A, x : KaA, xRay, Γ ⇒ ∆

x : KaA, xRay, Γ ⇒ ∆
LKa

xRay, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : KaA
RKa

y : A, x : DGA, {xRay}a∈G, Γ ⇒ ∆

x : DGA, {xRay}a∈G, Γ ⇒ ∆
LDG

{xRay}a∈G, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : DGA
RDG

Table 1. System G3KED

In addition to these rules, the properties of the agents’ accessibility relations
can be chosen by adding to the system suitable rules corresponding to desired
properties, as explained in [6]. The common choices in the case of epistemic
logic are reflexivity (which guarantees that the actual world is always taken to be
epistemically possible so that nothing false can be known) and transitivity (which
gives the property of positive introspection: if an agent knows something then she
knows that she knows). These together yield S4, or G3S4 in the terminology
of [6]. In the case of doxastic logic, that is, the logic of belief, reflexivity is
abandoned to allow the possibility of false beliefs. Sometimes also symmetry



(which together with transitivity gives negative introspection: if an agent does
not know something, she knows that she does not know it) is added, in which case
the accessibility relations are equivalence relations and the system is known as
S5 or G3S5. The rules corresponding to reflexivity, transitivity and symmetry
for agent a are, respectively

xRax, Γ ⇒ ∆

Γ ⇒ ∆
Refa

xRaz, xRay, yRaz, Γ ⇒ ∆

xRay, yRaz, Γ ⇒ ∆
Transa

yRax, xRay, Γ ⇒ ∆

xRay, Γ ⇒ ∆
Syma

Observe that the rules have active and principal formulas in the antecedents of
sequents, so they correspond to implication from the atoms in the conclusion to
those in premisses.

Our system is modular in the sense that one need not be committed to a par-
ticular set of properties for the accessibility relations but the results given in this
paper hold for accessibility relations with any combinations of these properties.
Also other properties can be used as explained in [6]. It is also possible to have
several modalities in one system without losing the good structural properties
of the system. For example, knowledge and belief can be treated simultaneously
by adding suitable rules for the belief operators and the doxastic accessibility
relation for each agent. The relationship between modalities may require new
rules, like in this case a rule for ensuring that the doxastic accessibility relation
is included in the epistemic accessibility relation corresponding to the idea that
knowledge entails belief. Temporal modalities can be added in a similar fashion.
In the examples presented in this paper, we shall not combine different informa-
tion attitudes so we can just use one type of modal operator Ka (specific to each
agent a) to stand for whichever modality is appropriate in the situation. Simi-
larly, the operator DG is taken to mean a distributed version of the K-modality,
be it knowledge, belief, or something else.

As shown in [6], the standard axiomatic sequents x : A,Γ ⇒ ∆, x : A,
for arbitrary, not just atomic, A, and the characteristic axioms of the standard
modal logics are derivable in the respective sequent calculus systems, and the
necessitation rule is admissible. These results extend to multi-agent epistemic
logic with knowledge generalization rules for each agent a ∈ G

⇒ x : A

⇒ x : KaA

The addition of distributed knowledge operator requires new axioms. A sound
and complete axiomatization for epistemic logic S5 with distributed knowledge
is provided in [10], [11], and in [3]. The axioms to be added to standard axiom-
atizations of epistemic logics would be the following:

KaA ⊃ DGA, for each agent a ∈ G (1)

and
(DGA &DG(A ⊃ B)) ⊃ DGB. (2)

In order to demonstrate the completeness of our calculus, we first show that
these axioms are derivable.



Proposition 1. KaA ⊃ DGA is derivable for each agent a ∈ G in G3KED.

Proof. For each agent a ∈ G, the derivation goes as follows:

y : A, {xRay}a∈G, x : KaA ⇒ y : A

{xRay}a∈G, x : KaA ⇒ y : A
LKa

x : KaA ⇒ x : DGA
RDG

⇒ x : KaA ⊃ DGA
R⊃

where the uppermost sequent is derivable.

Proposition 2. (DGA &DG(A ⊃ B)) ⊃ DGB is derivable in G3KED.

Proof. The derivation is:

y : A, . . . ⇒ y : B, y : A y : B, . . . ⇒ y : B

y : A ⊃ B, y : A, {xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
L⊃

y : A, {xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
LDG

{xRay}a∈G, x : DGA, x : DG(A ⊃ B) ⇒ y : B
LDG

x : DGA, x : DG(A ⊃ B) ⇒ x : DGB
RDG

x : DGA &DG(A ⊃ B) ⇒ x : DGB
L&

⇒ x : (DGA &DG(A ⊃ B)) ⊃ DGB
R⊃

where the uppermost sequents are derivable.

Completeness with respect to the mentioned Hilbert-style system further
requires closure under modus ponens and under the necessitation rules for epis-
temic operators. These properties are shown in the following section.

In some applications it is useful to be able to reason about shared knowledge,
that is, something that all the agents know. It is straightforward to add to the
calculus an operator E for shared knowledge: Since EGA means that everyone
in group G knows that A, it can be used as a short-hand expression for the
conjunction Ka1A & . . . &Kan

A where G = {a1, . . . , an}. The right and left
rules for shared knowledge are thus not required for the calculus but can be
derived from the Ki rules. These are as follows

{xRaya, Γ ⇒ ∆, ya : A}a∈G

Γ ⇒ ∆, x : EGA
REG

ya : A, x : EGA, xRaya, Γ ⇒ ∆

x : EGA, xRaya, Γ ⇒ ∆
LEG (a∈G)

with the variable condition in REG that no variable ya appears in the conclusion.

3 Structural properties

We shall now proceed with the structural properties of our system. The use of
variables referring to possible worlds requires that we define substitution and
prove a substitution lemma as in [6]. Substitution is defined as follows:



xRay(z/w) ≡ xRay if w 6= x and w 6= y,
xRay(z/x) ≡ zRay if x 6= y,
xRay(z/y) ≡ xRaz if x 6= y,
xRax(z/x) ≡ zRaz,
x : A(z/y) ≡ x : A if x 6= y,
x : A(z/x) ≡ z : A

for all a ∈ G. Extension to multisets is obvious.

Lemma 1 (Substitution lemma). If Γ ⇒ ∆ is derivable in G3KED, then
also Γ (y/x) ⇒ ∆(y/x) is derivable, with the same derivation height.

Proof. The proof is by induction on the height n of the derivation of Γ ⇒ ∆ as
in [6]. If n = 0 and the substitution y/x is not vacuous, the sequent Γ ⇒ ∆ is
either an initial sequent or conclusion of L⊥. In either case Γ (y/x) ⇒ ∆(y/x) is
also an initial sequent of the same form or conclusion of L⊥. Suppose then that
the claim holds for derivations of length n and consider the last rule applied in
the derivation. If the last rule is a propositional rule or a modal rule without
variable conditions, apply the inductive hypothesis to the premisses and then
apply the rule. If the last rule is a rule with a variable condition (RKa or RDG),
we must be careful with the the cases in which either x or y is the eigenvariable
of the rule, because a straightforward substitution may result in a violation of
the restriction. In those cases we must apply the inductive hypothesis to the
premiss and replace the eigenvariable with a fresh variable that does not appear
in the derivation. The details are omitted here but similar cases are considered
in [6, Lemma 4.3].

Theorem 1 (Height-preserving weakening). The rules of weakening

Γ ⇒ ∆
x : A,Γ ⇒ ∆

LW
Γ ⇒ ∆

xRay, Γ ⇒ ∆
LWRa

Γ ⇒ ∆
Γ ⇒ ∆, x : A

RW

are height-preserving admissible in G3KED.

Proof. The proof is by induction on the height of the derivation of the premiss.
The cases with propositional rules and the modal and nonlogical rules without
variable conditions are straightforward. As in [6], if the last step is a rule with
a variable condition (RKa or RD), we need to apply the substitution lemma to
the premisses of the rule in order to avoid a clash with the variables in x : A
or xRay. The conclusion is then obtained by applying the inductive hypothesis
and the rule in question.

Theorem 2. The necessitation rules

⇒ x : A
⇒ x : KaA

⇒ x : A
⇒ x : DGA

are admissible in G3KED.



Proof. Suppose we have a derivation of ⇒ x : A. By the substitution lemma
we obtain a derivation of ⇒ y : A and, by admissibility of weakening, of
xRay ⇒ y : A, and {xRay}a∈G ⇒ y : A. By RKa and RD, respectively, we have
⇒ x : KaA and ⇒ x : DGA.

Theorem 3. The rules of G3KED are height-preserving invertible.

Proof. For the propositional rules, the proof is exactly as the proof of height-
preserving invertibility of the rules of G3c in [5, Theorem 3.1.1]. For the K-rules
and rules for the accessibility relations, the proof is similar to [6, Proposition
4.11]. Invertibility of LDG is immediate because the premiss can be obtained
from the conclusion by (height-preserving) weakening.

Invertibility of RDG is proved by induction on the height n of the derivation
of the conclusion Γ ⇒ ∆, x : DGA. If n = 0, it is an axiom or conclusion of L⊥
and so is the premiss {xRay}a∈G, Γ ⇒ ∆, y : A. If n > 0 and Γ ⇒ ∆, x : DGA is
concluded by a rule other than RKa or RDG (which have a variable condition),
we apply the inductive hypothesis to the premiss(es) and the rule. If the rule is
RKa, we have a derivation ending with

xRaw,Γ ⇒ ∆, x : DGA,w : A

Γ ⇒ ∆, x : DGA, x : KaA
RKa

We can assume that the eigenvariable w is different from y, otherwise we can ap-
ply the substitution lemma. Now the inductive hypothesis applied to the premiss
gives a derivation of the same height ending with

{xRay}a∈G, xRaw,Γ ⇒ ∆, w : A, y : A

{xRay}a∈G, Γ ⇒ ∆, x : KaA, y : A
RKa

The case in which the conclusion was derived using RDG and the principal
formula is in ∆ is similar. In case the principal formula was x : DGA itself,
the premiss is already the sequent we wanted to prove derivable, except for
the possibly different eigenvariable, which can be changed by height-preserving
substitution.

Invertibility of the rules is useful for theoretical purposes because it simplifies
some other proofs but it is crucial for the practical reason that root-first proof
search requires no backtracking mechanism if all the rules are invertible: If we
find out in our current branch of a proof tree that a sequent is not derivable
we can immediately see that the proof search has failed and can be terminated
because, by invertibility, the conclusion cannot be derivable either.

Theorem 4. The rules of contraction

x : A, x : A,Γ ⇒ ∆

x : A,Γ ⇒ ∆
LCtr

xRay, xRay, Γ ⇒ ∆

xRay, Γ ⇒ ∆
LCtrRa

Γ ⇒ ∆, x : A, x : A

Γ ⇒ ∆, x : A
RCtr

are height-preserving admissible in G3KED.



Proof. By simultaneous induction on the height of derivation for left and right
contractions. In the base case, observe that an initial sequent stays initial if
two occurrences of a formula are contracted into one. For the inductive step,
two cases are distinguished: The case with none of the contraction formulas
principal in the last rule, and the case with one principal. In the former, apply
inductive hypothesis to the premiss of the rule, then the rule. In the latter,
apply the matching height-preserving inversion to the premiss(es) of the rule,
the inductive hypothesis, and the rule.

Also admissibility of contraction is useful for the practical reason that it guar-
antees that we need not multiply formulas in sequents during the proof search.
If a sequent can be derived using contraction, it can be derived without using it.
In addition, height-preserving admissibility of contraction permits the restric-
tion of the search space also with respect to other rules: Whenever application
of a rule, root-first, produces a duplication, by height-preserving admissibility
of contraction the conclusion of the rule can be obtained in one step less. The
possible applicable rule can thus be discarded if we reasonably assume that the
derivation we are looking for is a minimal one, i.e. one that does not admit any
local shortening through the elimination of contraction steps.

Theorem 5. The cut rule

Γ ⇒ ∆, C C, Γ ′ ⇒ ∆′

Γ, Γ ′ ⇒ ∆, ∆′ Cut

is admissible in G3KED.

Proof. The proof proceeds by induction on the structure of the cut formula
C with subinduction on the cut-height, that is, the sum of the heights of the
derivations of the premisses. The proof is to a large extent similar to the cut-
elimination proofs in [5] (e.g. Theorem 3.2.3) so we shall consider in detail only
the case in which the cut formula is DGA and is principal in both premisses:

{xRay}a∈G, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : DGA
RD

z : A, x : DGA, {xRaz}a∈G, Γ ′ ⇒ ∆′

x : DGA, {xRaz}a∈G, Γ ′ ⇒ ∆′ LD

Γ, {xRaz}a∈G, Γ ′ ⇒ ∆, ∆′ Cut

Let n be the height of the derivation of the left premiss and m the height of the
second. Then the cut-height is n+1+m+1. This derivation can be transformed
into the following:

{xRay}a∈G, Γ ⇒ ∆, y : A

{xRaz}a∈G, Γ ⇒ ∆, z : A
Subst

{xRay}a∈G, Γ ⇒ ∆, y : A

Γ ⇒ ∆, x : DGA
RD

z : A, x : DGA, {xRaz}a∈G, Γ ′ ⇒ ∆′

z : A, Γ, {xRaz}a∈G, Γ ′ ⇒ ∆, ∆′ Cut

{xRaz}a∈G, Γ, Γ, {xRaz}a∈G, Γ ′ ⇒ ∆, ∆, ∆′ Cut

Γ, {xRaz}a∈G, Γ ′ ⇒ ∆, ∆′ Ctr∗

Note that the height-preserving substitution in the derivation of the left premiss
of the second cut has no effect on Γ or ∆ because, by the variable restriction



of rule RD used in the original derivation, y does not appear free in Γ or ∆.
The derivation has two cuts, the first of which has lower height and the second
smaller size of the cut formula.

As a consequence of admissibility of cut, it follows that our system is closed
under modus ponens, and therefore it is complete with respect to the known
Hilbert-type systems for the logic of distributed knowledge.

In [3], an alternative Hilbert-type system is presented; the system is obtained
by adding to the standard axiomatizations of T, S4, or S5, the rule

A1& . . .&Am ⊃ B

Ka1A1& . . .&KamAm ⊃ DB

where a1, . . . , am are the agents in G. The rule is shown admissible in our system
as follows:

⇒ x : A1& . . .&Am ⊃ B

x : A1, . . . , x : Am ⇒ x : B
L&-Inv ,R⊃-Inv

y : A1, . . . , y : Am ⇒ y : B
Subst

{xRaiy}ai∈G, y : A1, . . . , y : Am, x : Ka1A1, . . . , x : KamAm ⇒ y : B
LW∗

{xRai
y}ai∈G, x : Ka1A1, . . . , x : Kam

Am ⇒ y : B
LKa1 ,...,LKam

x : Ka1A1, . . . , x : Kam
Am ⇒ x : DB

RD

x : Ka1A1& . . .&Kam
Am ⇒ x : DB

L&∗

x : Ka1A1& . . .&Kam
Am ⊃ DB

R⊃

where L&-Inv , R⊃-Inv denote the (admissible) invertibilities of L& and R⊃,
respectively, Subst the admissible rule of substitution, and the asterisk indicates
possibly repeated applications of a rule.

Admissibility of cut is crucial for delimiting the space of proof search, because
it guarantees that no arbitrary new formulas need to be constructed during the
search. However, our system does not enjoy a full subformula property because
some rules remove atoms, but a weak form of subformula property, that is, all
formulas in a derivation are either subformulas of (formulas in) the endsequent
or atomic formulas of the form xRy. By considering minimal derivations, that is,
derivations in which shortenings are not possible, the weak subformula property
can be strengthened by restricting the labels that can appear in the relational
atoms to those in the conclusion or to eigenvariables (subterm property). This
property, together with height-preserving admissibility of contraction, ensures
the consequences of the full subformula property and has been used for estab-
lishing decidability through terminating proof search for the system G3K and
several extensions in [6]. The proofs are involved so we shall not consider the
issue for G3KED here but leave it to future work. However, we do not expect
problems from the addition of the rules for distributed knowledge.



4 Examples

As a simple example of reasoning about distributed knowledge, consider the
case of three agents mentioned in the beginning of the article. Suppose we have
encoded the initial situation to a knowledge base KB so that it consists of the
formulas x : K1B, x : K2(B ⊃ C), x : K3(B &C ⊃ A). We can now ask whether
x : D{1,2,3}A can be derived from the knowledge base. (We shall use D instead of
D{1,2,3} for clarity). Proceeding in a root-first fashion starting from the bottom
we get the following derivation in which the uppermost sequents have the same
formula on both sides of the sequent arrow and are thus clearly derivable:

. . . , y : B, . . . ⇒ y : A, y : B

y : C, y : B . . . ⇒ . . . , y : B y : C . . . ⇒ . . . , y : C

y : C, y : B . . . ⇒ y : A, y : B & C
R&

y : A, y : C, . . . ⇒ y : A

y : C, y : B & C ⊃ A, y : B, . . . ⇒ y : A
L⊃

y : B & C ⊃ A, y : B ⊃ C, y : B, . . . ⇒ y : A
L⊃

y : B ⊃ C, y : B, xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK3

y : B, xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK2

xR1y, xR2y, xR3y, x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ y : A
LK1

x : K1B, x : K2(B ⊃ C), x : K3(B & C ⊃ A) ⇒ x : DA
RD

Next we shall consider the derivation of the birthday case mentioned e.g.
in [12]: In any group it is distributed knowledge whether two agents have the
same birthday. The assumption is, of course, that everyone knows one’s own
birthday. Should these pieces of individual knowledge be combined, it would be
easy to verify whether the birthdays of any two agents are identical. We shall here
consider only a group of two people but the extension would be straightforward.

Take P (i, t) to be the proposition that agent i’s birthday is t and consider
the proposition that it is distributed knowledge in group G whether two agents
in G have the same birthday. This could be expressed as follows:

DG∃i, j, t (P (i, t) & P (j, t) & i 6= j) ∨ DG ∼∃i, j, t (P (i, t) & P (j, t) & i 6= j).

Note that although we have been concerned with propositional epistemic
logic, we shall here use first-order notation for ease of exposition. The example
can be cast in propositional logic as well, for example, by using standard propo-
sitionalization techniques, see e.g. [13, pages 274–275]. To avoid having to use a
large number of propositional symbols, we shall use notation that looks like first-
order notation, but we shall assume that everything is encoded in propositional
logic. We can thus suppose that our knowledge base KB consists of sentences
such as the following: x : P (i, t) ⊃ KiP (i, t) for all agents i and all dates t. In
propositional logic, this would look something like:

Birthday Agent1 January01 ⊃ K1(Birthday Agent1 January01) etc.

KB now encodes the assumptions that each agent, here 1 and 2, knows one’s
own birthday.

Instead of putting the assumptions in KB to the left hand side of the sequent
arrow as in the previous example, we shall here employ the method of converting



axioms to rules as in [14, 5]. Thus, each axiom in KB will be replaced by a
corresponding rule of the form:

x : KiP (i, t), x : P (i, t), Γ ⇒ ∆

x : P (i, t), Γ ⇒ ∆
KBi,t

Observe that the addition of a rule of this form maintains all the structural
properties of the system: Admissibility of contraction is guaranteed by the rep-
etition of the principal formula x : P (i, t) in the premiss. Further, there is no
interference with the process of cut elimination because the principal formula
x : P (i, t) is atomic. Also invertibility of all the rules is for the same reason
unaffected by the addition.

To make the example manageable, we shall prove only the part saying that
if two agents have the same birthday, it will be distributed knowledge that they
have the same birthday. (Proving the other part saying that if their birthdays
differ, they will know that they differ, would require stating in addition that
each agent can only have one birthday.) By making a further simplification and
treating t as a constant here, we can express the claim as follows:

P (1, t) & P (2, t) ⊃ D{1,2}(P (1, t) & P (2, t)).

Without this simplification we would have to use the more complete expression,
that is, a conjunction of all implications of the above kind for all possible values
of t.

We get root-first the following derivation:

y : P (1, t), x : K1P (1, t), xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
Ax

x : K1P (1, t), xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
LK1

xR1y, xR2y, x : P (1, t), x : P (2, t) ⇒ y : P (1, t)
KB1

xR1y, xR2y, x : P (1, t) & P (2, t) ⇒ y : P (1, t)
L& .

.

. (similarly)

xR1y, xR2y, x : P (1, t) & P (2, t) ⇒ y : P (1, t) & P (2, t)
R&

x : P (1, t) & P (2, t) ⇒ x : D{1,2}(P (1, t) & P (2, t))
RD

⇒ x : P (1, t) & P (2, t) ⊃ D{1,2}(P (1, t) & P (2, t))
R⊃

Consider next an example in which agents possess information that put to-
gether leads to a contradiction. Suppose that agent 1 knows that A ⊃ B and
B ⊃ C. She then receives a message from agent 2 claiming that A and a mes-
sage from agent 3 claiming that ∼B &(A ∨ C). Agent 1 stores the information
so her knowledge base KB contains the following formulas: x : K1(A ⊃ B),
x : K1(B ⊃ C), x : K2A, x : K3(∼B &(A ∨ C)). To find out whether all in-
coming information can be safely believed, agent 1 should check whether the
believed contents lead to a contradiction, as it indeed does:



y : A, . . . ⇒ y : ⊥, y : A

y : B, . . . ⇒ y : ⊥, y : B y : ⊥, . . . ⇒ y : ⊥
L⊥

y : B ⊃ ⊥, y : A ∨ C, y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥
L⊃

y : (B ⊃ ⊥) & (A ∨ C), y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥
L&

y : B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥
LK3

y : A ⊃ B, y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥
L⊃

y : A, xR1y, xR2y, xR3y, KB ⇒ y : ⊥
LK1

xR1y, xR2y, xR3y, KB ⇒ y : ⊥
LK2

KB ⇒ x : D{1,2,3}⊥
RD{1,2,3}

Since combining all information leads to contradiction, agent 1 must find a
subset of agents such that contradiction cannot be inferred. In this particular
case she may decide that either 2 or 3 is less reliable than the others, or she
may even decide that her own previous beliefs should be revised in light of the
new information provided by 2 and 3. Supposing that she decides to drop the
information provided by agent 3, she should then check that contradiction cannot
be derived from the combined knowledge of 1 and 2 as follows:

y : A, . . . ⇒ y : ⊥, y : A

y : B, . . . ⇒ y : ⊥, y : B y : C, y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥
y : B ⊃ C, y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥

L⊃

y : B, y : A, xR1y, xR2y, KB ⇒ y : ⊥
LK1

y : A ⊃ B, y : A, xR1y, xR2y, KB ⇒ y : ⊥
L⊃

y : A, xR1y, xR2y, KB ⇒ y : ⊥
LK1

xR1y, xR2y, KB ⇒ y : ⊥
LK2

KB ⇒ x : D{1,2}⊥
RD{1,2}

The uppermost premiss on the right hand side is not derivable: It is possible
to continue the derivation by re-applying the left knowledge rules applied to
formulas in KB or using the reflexivity and symmetry (and later transitivity)
rules for the accessibility relation. After that left knowledge rules can also be
applied with the expression xR1x (or xR2x) to yield x : A, x : B and x : C
on the left hand side. Eventually only duplicates of existing formulas will be
produced and the search can be terminated.

Agent 1 can now conclude that it is safe to reason about distributed knowl-
edge among herself and agent 2 (because not everything can be inferred). Then
she can find out, for instance, that together they can conclude that C holds:

y : A, . . . ⇒ y : C, y : A

y : B, . . . ⇒ y : C, y : B y : C, y : B, y : A, xR1y, xR2y, KB ⇒ y : C

y : B ⊃ C, y : B, y : A, xR1y, xR2y, KB ⇒ y : C
L⊃

y : B, y : A, xR1y, xR2y, KB ⇒ y : C
LK1

y : A ⊃ B, y : A, xR1y, xR2y, KB ⇒ y : C
L⊃

y : A, xR1y, xR2y, KB ⇒ y : C
LK1

xR1y, xR2y, KB ⇒ y : C
LK2

KB ⇒ x : D{1,2}C
RD{1,2}

This is actually the same derivation as the previous one just with ⊥ replaced by
C, but now all the premisses are derivable.



Instead of having decided to trust agent 2, agent 1 could have decided that
agent 3 is more reliable. Then she would have had to check that D{1,3}⊥ cannot
be derived and then use the distributed knowledge between 1 and 3 as the
basis of her reasoning. In general, reasoning and decision-making of an agent
a can be based on the distributed knowledge DTa where Ta ⊆ G is the set of
agents currently held reliable by agent a. The choice of which agents to trust can
later be retracted: If it turns out that some of the agents provide information
that is clearly false, these agents can then be dropped from the subset Ta. The
main point is that storing the source of information as well as the information
content in the databases and using proof methods for reasoning about distributed
knowledge provides a flexible way to deal with possibly erroneous multi-source
information in a controlled fashion.

Note, however, that reasoning about distributed knowledge should not be
seen as an alternative to existing information merging methods but rather as a
tool for recognizing inconsistencies and making inferences from combined knowl-
edge bases. This is because distributed knowledge is defined as whatever follows
from the totality of what a collection of agents know. Thus, distributed knowl-
edge does not directly support the idea of taking just one part of an agent’s
knowledge and reject another part that causes contradictions, as is often done
in belief base merging. Reasoning about distributed knowledge requires either
including everything an agent knows or excluding the agent altogether. Cer-
tainly the approach can be modified by using a more fine-grained conception of
agency: Instead of labelling everything agent a has claimed under Ka we can use,
for instance, occasion-based labels or topic-based labels, as in Ka on Thursday or
KBerlusconi about Prodi. Then only certain parts of an agent’s total knowledge can
be taken into consideration.

Similarly, it is not possible to infer from contradictory reports that their
disjunction must hold, as is done in e.g. [7]. If one witness claims that a seen car
was black and another says it was red, it is often inferred that it must have been
either black or red, but not white, for instance. This inference is not directly
supported in our approach but must be implemented as a meta-level principle:
If it is distributed knowledge within one consistent subset of agents that the car
is black and within another that the car is red, we may want to conclude that it
is either black or red. In a similar fashion meta-level principles are required for
implementing other conflict-resolution methods like accepting a view supported
by a majority of agents.

Consider then another application area, cooperative problem solving, where
it is assumed that all information is correct and the agents work together to
solve theoretical or practical reasoning problems. Then distributed knowledge
can be used to identify the collection of agents needed to provide a solution to
a problem. Suppose, for instance, that the agents are asked to find out whether
B holds. Suppose that we have in our use the following sentences obtained from
agents 1 and 2: K1(A ⊃⊂ B), K2(K3A∨K3 ∼A). We are interested in the truth
of B, and the first agent knows that another proposition, A, is equivalent with B,
and the second agent knows that a third agent knows whether this proposition



A holds. Now agents 1,2 and 3 distributively know whether B holds but, in fact,
after getting from agent 2 information concerning agent 3’s knowledge, agent 2
is not needed anymore, because it is actually distributed knowledge between 1
and 3 alone whether B is the case or not, as can be seen from the derivation
below:

y : A, . . . ⇒ . . . , y : A y : B, . . . ⇒ . . . , y : B

y : A, y : A ⊃ B, y : B ⊃ A, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
L⊃

y : A ⊃ B, y : B ⊃ A, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
LK3

y : A ⊃⊂ B, xR1y, xR3y, x : K3A, . . . ⇒ x : D{1,3} ∼B, y : B
L&

xR1y, xR3y, x : K3A, xR2x, x : K1(A ⊃⊂ B), . . . ⇒ x : D{1,3} ∼B, y : B
LK1

x : K3A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B, x : D{1,3} ∼B
RD{1,3}

x : K3A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
R∨ .

.

.

x : K3A ∨ K3 ∼A, xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
L∨

xR2x, x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
LK2

x : K1(A ⊃⊂ B), x : K2(K3A ∨ K3 ∼A) ⇒ x : D{1,3}B ∨ D{1,3} ∼B
Ref2

The branch marked with dots derives the sequent x : K3 ∼A, xR2x, x :
K1(A ⊃⊂ B), x : K2(K3A∨K3 ∼A) ⇒ x : D{1,3}B∨D{1,3} ∼B, which is slightly
more complicated due to the negation but is derivable as well. In this example,
information provided by a collection of agents was used to find out another
collection capable of providing an answer to the original query. The agents in the
first group do not know the answer (it is not the case that D{1,2}B∨D{1,2} ∼B),
but they know who knows the answer (it is the case that D{1,2}(D{1,3}B ∨
D{1,3} ∼B)). Although, agent 2’s knowledge was crucial for finding out the set
of agents needed to solve the original problem, the actual query can now be given
as a task for agents 1 and 3 to cooperatively solve. Thus, distributed knowledge
gives a way of reasoning about informants and their knowledge without requiring
that the reasoning agent possesses the actual knowledge. It may be enough if
the agent can find out who has the actual knowledge, as is often the case in real
life situations.

5 Conclusions

We have here presented a sequent calculus system for formal reasoning in multi-
agent epistemic logic with operators for distributed knowledge. Our system en-
joys the structural properties that support proof search starting from the con-
clusion to be derived. Because the rules are invertible, there is no need for a
backtracking mechanism, since if the conclusion is derivable also the premisses
are guaranteed to be derivable. Admissibility of the contraction rules guarantees
that rules that only produce duplications of the existing formulas need not be
considered in the proof search. Finally, admissibility of cut is crucial for delim-
iting the space of the proof search, because it guarantees that no arbitrary new
formulas need to be constructed during the search.



References

1. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell University Press (1962)

2. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge, Massachusetts, USA (1995)

3. Meyer, J.J.C., Hoek, W.V.D.: Epistemic Logic for AI and Computer Science.
Cambridge University Press (1995)

4. Ghidini, C., Serafini, L.: A context-based logic for distributed knowledge represen-
tation and reasoning. In: CONTEXT’99, Lecture Notes in Artificial Intelligence
1688. (1999) 159–172

5. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press
(2001)

6. Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34 (2005)
507–544

7. Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE
Transactions on Knowledge and Data Engineering 3 (1991) 208–220

8. Cholvy, L., Garion, C.: Answering queries addressed to several databases according
to a majority merging. Journal of Intelligent Information Systems 22 (2004) 175–
201

9. Cholvy, L.: A modal logic for reasoning with contradictory beliefs which takes
into account the number and the reliability of the sources. In: Proceedings of the
European Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty (ECSQARU), Barcelona, Spain (2005)

10. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54 (1992) 319–379

11. Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? on the properties
of knowledge in distributed systems. Journal of the ACM 39 (1992) 328–376

12. van der Hoek, W.: Logical foundations of agent-based computing. In: Multi-Agent
Systems and Applications : 9th ECCAI Advanced Course ACAI 2001 and Agent
Link’s 3rd European Agent Systems Summer School, EASSS 2001, Prague, Czech
Republic, July 2-13, 2001, Selected Tutorial Papers, Lecture Notes in Artificial
Intelligence 2086. (2001) 50–73

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, Second Edi-
tion. Pearson Education International (2003)

14. Negri, S., von Plato, J.: Cut elimination in the presence of axioms. The Bulletin
of Symbolic Logic 4 (1998) 418–435


