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Abstract: Previous work gave a method of converting mathematical axioms into
rules that extend the logical rules of Gentzen’s sequent calculus. The method reveals
a perfect duality between classical and constructive basic notions, such as equality
and apartness, and between the respective rules for these notions. Derivations with
the mathematical rules of a constructive theory are specular duals of corresponding
classical derivations. The class of geometric theories is among those convertible into
rules, through the use of variable conditions, and the duality defines a new class
of “co-geometric” theories. Examples of such theories are projective and affine
geometry with the standard basic notions of equality and incidence.

The rules of classical sequent calculus are invertible, which has for quantifier-free
theories the effect that logical rules in derivations can be permuted to apply after the
mathematical rules. In the case of mathematical rules involving variable conditions,
this separation of logic does not always hold, because quantifier rules may fail to
permute down. A sufficient condition for the permutability of mathematical rules is
determined and applied to give an extension of Herbrand’s theorem from universal
to geometric and co-geometric theories.

1. INTRODUCTION

A constructive approach to the real numbers uses the apartness of two real
numbers as a basic relation. The axioms for this relation, written a # b, are
as follows:

APl. ~a #a,
AP2. a2bDa#cVb#ec.

Substituting a for ¢ in AP2, we get a #b D a # a V b # a, so that symmetry
of apartness follows by AP1. Equality is a defined notion:

EQDEF a-b= ~a#b.

By AP1, equality is reflexive. By the contraposition of symmetry of apart-
ness, we have also symmetry of equality. By AP2 and symmetry of apartness,
we have a #b D a # ¢V ¢ £ b, so contraposition gives transitivity of equality.

If instead of the constructively motivated notion of apartness we take
equality as a basic notion, with its standards properties of reflexivity, sym-
metry, and transitivity, apartness can be defined by

APDEF a#b=~a=>.

Irreflexivity and symmetry of apartness follow. For the “splitting” prop-
erty of an apartness a # b into two cases a # ¢V b # ¢, the contraposition of



transitivity of equality gives
~a=bD~(a=c&c=Dh)

To distribute negation inside the conjunction, classical logic is needed.

The above game with classical and constructive notions can be carried
further. In von Plato (1995), the basic relations of constructive elementary
geometry were treated. (Incidentally, apartness relations were used in geom-
etry already in Heyting’s doctoral dissertation of 1925, see Heyting 1927.)
The parallelism of two lines is a classical basic relation, and its constructive
counterpart is the “convergence” of two lines | and m, written [ jfm. The
axioms are as for the apartness relation above.

The intuition with constructive basic notions is that the classical notions
such as equality are “infinitely precise,” whereas apartness, if it obtains, can
be verified by a finite computation. Something of this intuition can be
seen already in Brouwer’s first ideas on the topic of apartness relations of
1924, where it is required that the set of objects considered be continuous.
This was certainly the intention with Brouwer’s constructive real numbers
and with Heyting’s constructive synthetic geometry. A set is defined as
discrete if it has a decidable equality relation, otherwise it is continuous.
The constructive interpretation of the law of excluded middle for equality,
a=bV ~a = b, is precisely that the basic set of objects is discrete. With such
sets, it makes no difference which relations are used as basic, the constructive
or classical ones, as the axioms are interderivable. (Incidentally, we have here
an argument against the creation of a special “intuitionistic notation,” such
as a#b, parallel to the standard classical one. Such extra symbolism turns
out redundant in the discrete case. All we need is to slash the standard
symbols for relations.)

In a contribution to the previous Venice conference of 1999, von Plato
(2001), the constructivization of elementary axiomatics was extended to
lattice theory. It then seemed that proofs that use apartness relations would
be harder to find than corresponding classical proofs (see especially theorem
7.1 and the discussion on p. 196.) It has turned out, however, that there is
an automatic bridge between classical and constructive notions and proofs.
The matter is best seen on a formal level if for the representation of proofs
Gentzen’s sequent calculus is used. The method we shall apply was found
in connection with a proof-theoretical investigation of apartness relations
Negri (1999), and generalized to theories with universal axioms in Negri
and von Plato (1998) (a later paper that appeared earlier). The duality of
classical and constructive notions and proofs was used first in a study of
order relations, in Negri, von Plato, and Coquand (2004).



2. FROM MATHEMATICAL AXIOMS TO MATHEMATICAL RULES

Sequents are expressions of the form I' — A in which I" and A are finite
lists of formulas with order disregarded (i.e., finite multisets). The reading
is that A gives the possible (open) cases that are derivable under the (open)
assumptions I'. In logical symbolism, with &I" the conjunction of formulas
in " and VA the disjunction of formulas in A, the sequent I' — A expresses
the derivablity of the formula &I"' D VA.

The logical rules of sequent calculus show how assumptions in the left,
antecedent part, and cases in the right, succedent part of a sequent can be
modified by the logical operations. We show only the rules for the connec-
tives:

A B, I' - A r-+AA I'—»AB

ALB,T = A T — A, ALB

Al A B, T'—- A r—+AAB
AVBT A W TSAAvB™

r - AA B,F—)AL AT —- A B
A>BTSA " TSAADB®

I - AA AT — A

~AT 5 A T = A~A™

Table 1. The logical rules of classical sequent calculus.

We observe that the rule pairs L& — RV, LV —R&, and L ~ —R ~ display
a left-right mirror image duality.

The most remarkable property of these rules of classical logic is their
invertibility: If a sequent of any of the forms given in a conclusion of a rule
is derivable, the sequents we find in the corresponding premisses are also
derivable. The other way, from the premisses to the conclusion is licensed by
the rules themselves. Therefore, given a sequent I' — A, we can decompose
its formulas and get simpler sequents that together are equiderivable with
the given sequent, until we arrive at topsequents of a derivation tree in
which there is nothing to decompose left. If each of these leaves is an initial
sequent, one that has a common atomic formula (atom) on both sides of the
arrow, the endsequent I' — A is derivable by the rules given in Table 1,
otherwise it is underivable.

Many axiom systems consist of universal formulas or, equivalently, of
formulas of propositional logic with free parameters in the atoms. Each such
formula is (at least classically) equivalent to a finite number of implications
of the form



P&...&Pn D Q1V...VQn  (2.1)

with P;,Q; atoms and m,n > 0. Special cases are m = 0, with (2.1)
reduced to Q1 V...V Qy, and n = 0, with (2.1) reduced to ~ (P& ... &P,,).
Formula (2.1) can be converted into a sequent calculus rule in two ways: One
is based on the idea that if each of the Q;, together with other assumptions
I', is sufficient to derive a number of cases A, as expressed formally by
the sequent @Q;,I" — A, then the P; together are sufficient. We have the
schematic rule

Q. =-A ... @Qnl—>A
P,...,P, T = A

L-rule

(2.2)

A dual scheme says that if each of the P; follows as a case from some as-
sumptions I', then the @, follow as cases:

r—-AprP ... F—)A,PmR z
L > AQ,...,Qn T (2.3)

The rules that act on the left, or antecedent, part of sequents are best seen
in a root-first order. Assume given a system of such left rules and assume
that I' — A contains only atoms. Now try matching I' — A as a conclusion
to the rules. Whenever there is a match, we have premisses that each get
one additional atom in the antecedent. Thus, in the end, we obtain the
deductive closure of I' relative to the rules, with branchings into several
possible closures each time there is more than one premiss. The succedent
A remains untouched by the rules.

One special case merits attention, namely that of n = 1. We can then
limit the rules to have just one formula in the succedent. A sequent I' — P
is derivable if and only if P belongs to the deductive closure of I' relative to
the rules.

Two more details need to be added before we can make an overall state-
ment:

1. The formulas Pi,..., P, in the assumption part of the conclusion of
scheme (2.2) have to be repeated in each of the premisses, and dually for
Q1,...,Qp in scheme (2.3). The intuitive justification is that if Pi,..., Py,
are among the assumptions in the endsequent, they can be permitted as
assumptions anywhere else, and dually for Q1,..., Q.

2. It can happen that instantiation of free parameters in atoms produces
a duplication (two identical atoms in the conclusion of a rule instance), say

P,...,P,P,...,Pp,T = A

By condition 1, each premiss has the duplication. We now require that the
rule with the duplication P, P contracted into a single P is added to the



system of rules. For each axiom system, there is only a bounded number of
possible cases of contracted rules to be added, very often none at all.

Detailed explanations of the need for conditions 1 and 2 can be found in
Negri and von Plato (1998, 2001).

Let us assume given a system Ax with a finite number of axioms of the
form (2.1). Let HAx be the axiomatic system Ax together with a standard
axiomatic system of classical logic. Let G3* be Gentzen’s system G3 of
Table 1 extended with the (left or right) sequent calculus rules and their
contracted forms as determined by the axioms Ax. We have:

Theorem 1. The system G3* is complete, i.e., T' — A is derivable in G3*
if and only if &I' D VA is derivable in HAx.

A proof can be found in Negri and von Plato (1998, 2001). It is easily seen,
by the invertibility of the logical rules of G3, that instances of logical rules
permute down relative to the mathematical rules.

3. DERIVATIONS IN LEFT AND RIGHT RULE SYSTEMS

We shall show the duality of classical and constructive notions and proofs
through examples that are easily seen to be representative of the general
situation. Consider the theory of apartness. Its two axioms convert into the
system of left rules

a#zc,azb ' > A b#cazxbl — A

frref aZbT — A

_— Split
a#al — A

Symmetry of apartness is expressed by the sequent — a#b D b#a and
has the derivation

a;éa,a;éb—)b;éamef bzxa,a#b—>b#a
Split
azb—>b+a S
—a#bDb+#a (3.1)

Now take rules Irref and Split and move all atoms to the other side by rule
R ~ of classical sequent calculus. Next write a =b for ~ a 2 b, etc. The
result can be written as the two rules for equality

et I' > Aa=ba=c I‘—)A,a:b,b:cETr
I‘—)A,a:ae I' > Aja=5b

Here ETr stands for “Euclidean transitivity,” from the way transitivity is
expressed by Euclid.

With our example derivation, switch atoms on the left and right sides of
the arrow, erase the slashes, and change the rule names to get

b:a—)a:b,a:aRef b=a—>a=bb=a
ETr

b=a—a=5b
—b-ada-b" (3.2)




The sequents in the mathematical part of derivation (3.2) are perfect mirror
images of those in derivation (3.1).
Next we convert the two axioms of an apartness relation into a system
of right rules:
I' > Aa+a I' > Aja#c,b£c,a+b

Spli
r—A frref ' > Aja#c,a+b it

The symmetry of apartness now has the derivation

azb—>b#a,a#a,a#b

Split
a;éb—}b;ﬁa,a;éalrmf
a£b—>b+a S
—a#bDb#a (3.3)

The mirror image left rules for equality are

a:a,F—)ARf a:b,a:c,b:c,I‘—)AETr
r—A i a=c,b=c,' =+ A

Symmetry is derived by the mirror image of derivation (3.3):

a=ba=a,b=a—>a=">

a=a,b=a—>a="» Btr
Ref
b=a—>a=>b B>
—b=aDa=>b (3.4)

There are thus two kinds of systems of rules of equality, and the same for
apartness. Euclidean equality has axioms that are Harrop formulas, i.e.,
have no disjunctions in their positive parts. As a consequence, derivations
with the two rules of this theory are linear, with just one premiss. Also the
mirror image right theory of apartness has linear derivations. It could be
called a “co-Harrop” theory, with axioms that have no conjunctions in their
negative parts. (See Negri and von Plato 2001 for the notions of Harrop
formula and theory, and positive and negative parts of formulas.)

The above examples of rules and derivations are fully representative of
the general situation: We can take the left rule scheme (2.2) and convert it
into a right rule scheme (2.3) in exactly the same way as in the examples,
with a change in the basic notions from constructive to classical or the other
way around. The question remains what, if anything, is gained by the con-
structivization of classical elementary axiomatic theories; Combinatorially,
for each derivation in a constructive system of rules, there is a dual classical
derivation and vice versa.



4. GEOMETRIC AND CO-GEOMETRIC AXIOMS AND RULES

It is possible to extend the left and right rule schemes (2.2) and (2.3) by
allowing in their active formulas the occurrence of free variables subject to
a variable condition, and thus to express the role of quantifiers in a “logic

free” way.
The left rule scheme takes the form
@l(yl/wl)aﬁa r—LAa ... @n(yn/xn)a?a r—A GRS
P.T — A (4.1)
where @j and P indicate the multisets of atomic formulas Qjry--- ijj and
Py, ..., Py, respectively, and the eigenvariables yi,...,y, of the premisses

satisfy the condition of not having free occurrence in the conclusion of the
scheme. This variable condition is the same as for the rules RV and L3 of
first-order logic.

A rule scheme of the form (4.1) expresses as a rule an axiom, called a
geometric aziom, of the form

VZ(Pi&... &Py O 51 My V ...V 3z, M)

where M; is the conjunction of the multiset @j, Qj&. .. &ijj' Finite con-
junctions of geometric axioms lead to the class of formulas, called geometric
implications, that are sentences of the form

Vz(A D B)

where A and B are formulas not containing D or V.

The geometric rule scheme, introduced in Negri (2003), permits the ex-
tension of structural proof analysis from the first-order system G3c to geo-
metric theories, that is, theories axiomatized by geometric implications. In
particular, this method permits to present geometric theories as contraction-
and cut-free sequent systems and to obtain what is undoubtedly the sim-
plest possible proof of Barr’s theorem: If a geometric implication is provable
classically in a geometric theory, then it is provable intuitionistically. The
proof of this conservativity result consists in noting that a classical cut-free
proof of a geometric implication is already an intuitionistic proof in sequent
systems with rules for geometric theories.

We observe that Barr’s theorem is not a characterization of the intuition-
istic fragment of geometric theories, because we can go beyond geometric
implications and maintain the conservativity result. First, following Dra-
galin’s suggestion (cf. sec. 3.7.3 in Troelstra and Schwichtenberg 2000) we
can modify the intuitionistic left rule for implication by admitting a multi-
succedent conclusion in the left premiss

ADBT' - AA BT - A
ADB,I —» A

LD



Rule LD of the classical calculus (without A D B in the left premiss) is
then admissible in the modified intuitionistic calculus, thus the difference
between the intuitionistic and classical sequent systems is confined to RD
and RV. An operational definition of formulas for which the conservativity
of classical derivations holds can be given: If a formula is derivable clas-
sically in a geometric theory and the derivation contains no steps of RD
and RY with a nonempty context in the premiss, then the derivation is an
intuitionistic derivation. However, this is an empty characterization, stating
nothing but that “an intuitionistic derivation is an intuitionistic derivation.”
A characterization in terms of the form of the formulas alone, not of their
derivations, would be desirable. There are classes of formulas, such as ge-
ometric implications, the form of which forces the derivation to be of the
stated kind. The same is true, for example, if the formula does not con-
tain in its positive part implications or universally quantified formulas as
components of a disjunction. Even so, there are still formulas outside the
mentioned classes for which the conservativity holds.

Examples of geometric theories include the theory of real-closed fields,
Robinson arithmetic, and constructive affine geometry as given in 6.6 (e) of
Negri and von Plato (2001).

In order to obtain a geometric axiomatization some care is needed when
formulating the axioms: For instance, the axiom stating the existence of
inverses on nonzero elements in the theory of fields,

is not geometric as it contains an implication the antecedent of which is an
implication (z = 0 DL1), but it can be replaced by the geometric axiom

r=0vVdyz-y=1

that can be given as a rule following the geometric rule scheme

z=0T—>A z-y=1,T = A _ |
TS A L-inv

with the variable condition y not free in I', A.
Alternatively, we can take inequality # as the primitive relation and turn
L-inv into the following right rule with the same variable condition on y,

F—>Az#0 T'=>Ax-y#1 _ .
T S A R-inv

corresponding to the axiom ~ Vy(x #0 & -y # 1).
All the other axioms for fields and real-closed fields can be given in terms
of right rules for the primitive relation of inequality.



A similar transformation can be done with the axioms of constructive
affine geometry. These axioms, presented in 6.6.(e) of Negri and von Plato
(2001), are based on the primitive notions of distinct points, a # b, distinct
lines, [ # m, convergent lines, [  m, and of a point outside a line, a ¢ [, and
on the constructions of a line In(a, b) connecting two distinct points a and b,
and of a point pt(l,m) obtained as the intersection of two convergent lines
[ and m.

We observed in Negri (2003) that the extension with the axiom stating
the existence of three non-collinear points,

IrFyFz(z 2y & 2z ¢ In(z,y))

maintains the theory geometric as the axiom corresponds to the following
instance of the geometric rule scheme

$¢y72¢l(xay)7r — A
' - A

with the variable condition z,y, z not free in T", A.

If the axiomatization is instead based on the primitive relation of equality
of points, equality of lines, parallelism of lines, and incidence a point with a
line, the axiom becomes

JzIyIz(~ =y & ~ zeln(z,y))

which is no longer a geometric implication. Thus, as concluded in Negri
(2003), “classical geometry is not a geometric theory.” However, the axiom
can be given in the form of the right rule, with the condition z,y, z not free
inT, A,
> Az=y,zel(z,y)
r—-A

by which
~VrVyVz(z =y V z e In(x, y))

is derivable. All the other axioms can also be uniformly presented as right
rules for the primitive relations a = b, I =m, [ || m, and a € [.
The above examples illustrate a general result:

Theorem 2. Let T be a geometric theory based on the primitive relations
R;, with rules following the geometric rule scheme GRS, and let T’ be the
theory obtained by formulating the azioms in terms of the dual relations
R.. Then a contraction- and cut-free system for the theory T'is obtained by
turning all the instances of GRS into the form

r'— Aaﬁlaall(yl/xl) R A,?I,@;(yn/xn)
r AP

co-GRS



where the apices indicate the atoms transformed in terms of the dual relations
R;.

We can ask what kinds of axioms are captured by the scheme co-GRS.
Clearly, the scheme is interderivable with an axiom of the form

Vz(Vz 1 Mi& ... &Yz, M) D PV ...V P) co-GA

! — !/ !/
where M; = Q3 V...V Q;, .

It is easy to verify that ]any formula of the form
VZ(A D B)

with A and B formulas not containing O or 3, can be brought to a canonical
form consisting of conjunctions of formulas of the form given by co-GA.
Formulas A, B not containing D or 3 will be called co-geometric and the
implication A D B a co-geometric implication. A theory axiomatized by
co-geometric implications will be called a co-geometric theory. Classical
projective and affine geometry with the axiom of non-collinearity included
constitute examples of co-geometric theories.

The above examples have shown how the duality between geometric and
co-geometric theories can be used for changing the primitive notions in the
sequent formulation of a theory. Meta-theoretical results can be imported
from one theory to its dual by exploiting the symmetry of their associated
sequent calculi.

In Negri and von Plato (2001) an extension of Herbrand’s theorem to
universal theories is presented. We recall the statement:

Theorem 3. Herbrand’s theorem for universal theories. Let T be a
theory with a finite number of purely universal axioms and let G3cT be the
sequent system obtained by turning the theory into a system of mathematical
rules. If the sequent — VxIyi ...y, A, with A quantifier free, is derivable
in G3cT, then there are terms t;; with i < n,j < k such that

n
— \/ A(til/yl’ e 7tlk/yk)
i=1
18 derivable in G3cT.

Clearly, the theorem does not extend to geometric theories. In fact, if Iz P
is an axiom of the theory T, then — JxP is derivable in G3cT but there is
no finite disjunction such that — P(t1) V...V P(t,) is derivable in G3cT.

The crucial ingredient in the proof of Herbrand’s theorem is the pos-
sibility to assume a derivation in which the quantifier rules come last. In
first-order logic and in universal theories, this is unproblematic. With math-
ematical rules involving variable conditions, like the geometric or the co-
geometric rule scheme, the quantifier rules cannot in general be permuted

10



last in a derivation. Suppose we have a derivation containing the steps

Ql(yl/xl)aﬁar — A,H:L‘A,A(t/x)
@1(y1/$1),ﬁ,r — A,dzA Qn(yn/:vn),ﬁ,F — A,dzA
P, —» A, 3zA

GRS

If the term t contains the variable y;, the permutation of R3 to below GRS
fails because the variable condition for a correct application of GRS would
no longer be satisfied. This is the exact structural reason for the failure of
Herbrand’s theorem for existential theories. We can nevertheless impose an
additional hypothesis that makes the permutation possible. The hypothesis
ensures that a fresh variable substitution limited to the atoms Q) is possible.

Lemma 4. Let T be a geometric theory and let G3c'T be the sequent system
obtained by turning the theory into a system of left nonlogical rules. Suppose
that the sequent Q;(vyi/z;),P,I' — A, A(t/x) is derivable in G3cT, that

yi s not f_ree in I', A, and that no atom Q; occurs positively in A. Then
Q;(z/z;), P,T' — A, A(t/x) is derivable for an arbitrary fresh variable z.

Proof: Consider the initial sequents in a derivation of the given sequent. By
the assumptions that y; does not occur free in A and that no atom among
the @, is in the positive part of A, it follows that the principal atoms of the
axioms are not among the @;. Thus, after the substitution of the variable y;
with a fresh variable z in the atoms Q;(y;/z;), the leaves of the tree remain
initial sequents, and the logical steps remain correct because the atoms in
Q; are never principal in logical rules. Since z is a fresh variable, also the
instances of the geometric rule scheme remain correct, thus the sustitution
produces a derivation of Q;(z/z;), P,T' — A, A(t/x) in G3¢T. QED

By the lemma, under the additional hypothesis of non-occurrence of the
atoms @; in positive parts of A, we can assume a derivation where the
mathematical rules come first, followed by propositional rules, followed by a
linear part consisting of quantifier rules. The rest of the proof of Herbrand’s
theorem is then a routine matter. Thus we have:

Theorem 5. Herbrand’s theorem for geometric theories. Let T be a
geometric theory and let G3cT be the sequent system obtained by turning the
theory into a system of nonlogical rules following the geometric rule scheme
GRS. If the sequent — VzIyi...JyrA, with A quantifier-free, is derivable
in G3¢T and no atom Q; occurs positively in A, then there are terms ti; with
1 <n,j <k such that

n

— v A(til/yl’ cee 7tlk/yk)
=1

1s derivable in G3cT.

11



By exploiting the symmetry between a left and a right rule system we obtain
the corresponding results for co-geometric theories.

Lemma 6. Let T be a co-geometric theory and let G3cT be the sequent
system obtained by turning the theory into a system of right nonlogical
rules. Suppose the sequent T — A,Q,(yi/x;), P, A(t/x) is derivable in
G3cT, y; is not free in T, A, and no atom Q; occurs negatively in A. Then
I = A,Q;(z/x;), P, A(t/x) is derivable for an arbitrary fresh variable z.

Theorem 7. Herbrand’s theorem for co-geometric theories. Let T
be a co-geometric theory and let G3cT be the sequent system obtained by
turning the theory into a system of right nonlogical rules following the co-
geometric rule scheme co-GRS. If the sequent — Vz3Iy;...3JyiA, with A
quantifier-free, is derivable in G3cT and no atom Q; occurs negatively in A,
then there are terms ti; with ¢+ < n,j < k such that

n

— \/ Alti, /1, ti Jur)

=1

18 derivable in G3cT.

5. DUALITY OF DEPENDENT TYPES AND DEGENERATE CASES

The axiomatization of elementary geometry with constructive basic notions
leads in a natural way to dependent typing: A formula with a constructed
line in(a,b), such as the incidence axiom a ¢ In(a,b), is well-formed only if
the condition of non-degeneracy a # b is satisfied. In a first-order formu-
lation, incidence axioms with conditions of nondegeneracy can be given as
implications, as in von Plato (1995). For projective geometry, we have

a#bD ~ag¢ln(a,b), a#bD~b¢ln(a,b),

and similarly for intersection points. The corresponding left rule for the first
axiom is the zero-premiss rule

arbagln(ab),l — A

By the duality of left and right rules, we have for the classical notions of
equality and incidence the rule

T = Aa—bacln(ab) ™

Thus, the incidence axioms for connecting lines in a classical formulation

are
a=bVacln(a,b), a=bVbeln(a,b),

12



and similarly for the rest of the incidence axioms. The degenerate cases a = b
in these axioms are the classical duals of dependent typings in constructive
geometry. The phenomenon is quite general; similar observations could be
made about the condition for the inverse operation.

The use of constructions is strictly necessary for the conversion of math-
ematical axioms into systems of cut-free rules, be it a system based on clas-
sical or constructive notions. To see this, we formulate elementary geometry
as a relational theory with existential axioms in place of construtions, as in

VaVydz(z e z & y € 2).

(The sorts of the variables are determined from their places in the incidence
relation: z and y points, z a line.) Next, uniqueness axioms are added, such
as

VeVyVaVv(z ez & yez & zcv & yev D z=v).

As mentioned above, it is possible to formulate geometry, the axiom of
noncollinearity included, either as a constructive geometric theory, or as
a classical co-geometric theory. This result refers to a formulation with
geometric constructions. With a relational formulation, a comparison of the
form of the existential axioms that replace constructions with the form of
the axiom of noncollinearity leads instead to the following result:

If noncollinearity is formulated as a geometric implication, the existence
axioms are co-geometric; if the existence axioms instead are geometric, non-
collinearity is co-geometric.

There is thus a fundamental incompatibility in both approaches, and it can
be overcome only through the use of constructions. This phenomenon is
quite general and is met in, for example, lattice theory (as in Negri and von
Plato 2004), and in field theory.
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