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Summary: The theory of constructive ordered fields, based on a relation
of strict linear order, is formalized as a proof-theoretical system, a sequent
calculus extended with nonlogical rules. It is proved that structural rules, the
rules of cut and contraction in particular, can be eliminated from derivations.
An application of the method of extension by nonlogical rules the theory of
real closed fields is presented.
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1. Introduction

The problem of failure of cut elimination for logical systems extended with ax-
ioms for specific mathematical theories has so far prevented the application of the
methods of structural proof theory to the study of, even elementary, mathematical
theories.

In previous work (cf. Negri 1999, Negri and von Plato 1998) a method was found
for extending logical sequent calculi with nonlogical rules representing mathematical
axioms while maintaining eliminability of the structural rules, cut especially.

Here the method is applied to an axiomatization of constructive ordered fields.
The axiomatization is based on a single primitive notion of constructive linear order
and uses constructions and free parameters instead of quantifiers. A well known
problem with such an approach to field theory is that it goes beyond first-order logic.
Namely, a proposition containing an inverse z—! is well formed only if it is true that
z # 0. However, the analysis of formal derivations can equally be performed if we
treat the condition for the construction of inverses as a meta-level rule of well-
formedness of sequents, similarly to other conditions of well-formedness occurring
in first-order logic.

After giving the axiomatization for constructive ordered fields, we show how to
convert it into a system of sequent calculus nonlogical rules. We then prove cut
elimination for the system obtained by adding these rules to the sequent calculus
for first-order intuitionistic logic G3i.

Similar methods can be applied to the study of the metamathematics of the
theory of real closed fields. We eliminate quantifiers already in the axiomatization,
by expressing the axioms of existence of square roots of positive elements and of
zeros of polynomials of odd degree by means of constructions, rather than by V3-
axioms.



2. Axioms for constructive ordered fields

We assume a set R with a primitive relation a < b of strict order, instead of the
relation a < b of weak order. This choice of basic relation is needed in order to
secure computational meaning: Intuitively, a finite approximation of a and b is
sufficient for the verification of a < b, whereas with a < b the verification may lead
to an infinite computation. Negation ~ A is defined as A D L.

The axioms for constructive ordered fields can be grouped as follows:

I. Axioms for constructive linear order:
1. ~(a < b&b < a) (asymmetry)
2.a<bDa<cVece<b (split)

Given a relation a < b satisfying the above axioms, the relation a # b defined by
azb=a<bVb<<a
is an apartness relation. Equality is then defined as the negation of a # b
a=b=~a=zb

and it is easy to see that the relation a = b satisfies reflexivity, symmetry and tran-
sitivity. Clearly, the relation a = b is stable, that is, it satisfies ~~a =0 D a =b.
Substitution in the form

a<b&b=cDax<c

follows from split and definition of a =b. We argue similarly for a < b&a=c¢ D
¢ < b. The usual weak order is defined by

agb=~b<ca

Note that classically, the first axiom is equivalent to a < bVb < a. But constructively,
any two elements a, b need not be comparable. Contraposition of the second axiom
expresses transitivity of weak order.

We stipulate the existence of two distinct elements 0 and 1 in R satisfying

3.0< 1.

We have a binary operation + (addition) and a unary operation — (opposite)
satisfying:

II. Axioms of additive group:

4. a+ b = b+ a (commutativity)

5. (a+b) + c=a+ (b+ ¢) (associativity)
6. a+ 0 =a (zero)

7. a + (—a) = 0 (opposite)

We assume a principle of strong extensionality



8. a+b<a+cDb<ec

from which the principle of extensionality,
b=cDa+b=a+c

follows by contraposition and definition of equality. We observe that the apparently
more general form of extensionality, a=b&c=d D a + ¢=b+ d, follows from the
previous one and transitivity of equality.

Monotonicity of addition with respect to the strict linear order, i.e.,

a<bDa+c<b+c

is now provable: From the antecedent, by axioms 7, 8 and substitution we obtain
a+ (c+ (=¢)) <b+ (c+ (—c)), hence by associativity and substitution again we
have (a + ¢) + (—¢) < (b+ ¢) + (—c), thus by symmetry and strong extensionality
a+ c< b+ c. We also have

0<a+bD0<aVvVO0<d

as follows: From the antecedent, by split, we have 0 < aVa < a+b. By extensionality
and the axiom for opposite, the second disjunct gives 0 < b.

Multiplication of a and b is denoted by ab. For a # 0 we have an operation of
inverse, denoted a 1.

ITI. Axioms for multiplication:
9. ab = ba (commutativity)
10. (ab)c = a(be) (associativity)
11. al = a (unit)
12. aa~! = 1, provided that a # 0 (inverse)
13. a(b + ¢) = ab + ac (distributivity)
Strong extensionality for multiplication is
14. ab<acD (a<0&c<b)V(0<a&b<c)

and gives by contraposition and definition of equality the principle of extensionality
in multiplication
b=cDab=ac

thus by transitivity of equality also a =b&c=d D ab = cd.
By distributivity, from 0a = (0 + 0)a and extensionality for addition we obtain
0a = 0. From this we obtain
0<cD0<ct

1 1

as follows: From 0 < 1, by extensionality we have 0c™" < cc™
and strong extensionality together with the hypothesis 0 < ¢, the result 0 < ¢
follows.

, 80 by commutativity
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We are now ready to prove monotonicity of multiplication with respect to the
strict linear order, i.e.,
a<b&0<cDac<be

From a < b, by using the unit axiom and extensionality in multiplication we ob-
tain a(cc™') < b(cc™!) so by associativity and substitution (ac)c™! < (be)e™!. By
commutativity and strong extensionality, since 0 < ¢~1, the result ac < be follows.

Standard axiomatizations of constructive ordered fields are based on a primi-
tive notion of weak order. Our axiomatization is equivalent to other constructive
axiomatizations, except for the axiom of strong extensionality for multiplication.
In Palmgren (1998) the theory of contructive ordered fields is presented through a
predicate P(a) of strict positivity that corresponds to 0 < a. The split property,
here taken as an axiom, is instead shown to follow from the axiom

O0<a+bD>0<aVvO0<d

The latter is in turn provable in our axiomatization using split and the axiom for
opposite.

In Bridges (1999) the Archimedean axiom and a constructive version of the
least upper bound principle are added to constructive ordered fields for obtaining
an axiomatization of real numbers. These two axiom are not expressible in our
approach since the first relies on natural numbers and the second is inherently
second order (see the discussion in Truss 1997).

What are known as formal reals (cf. Negri and Soravia 1999) give a model for
the axioms of the theory of constructive ordered fields. More generally, constructive
reals (e.g. Bishop’s reals) constitute a model for the theory.

3. Sequent calculus proof theory and its extension by nonlog-
ical rules

We shall be using an intuitionistic multi-succedent sequent calculus in this work.
Atomic formulas are denoted by P, @, R, ... and arbitrary formulas by A, B,C,... .
The basic expressions are sequents of form I' = A, where I and A are finite multisets
of formulas, i.e., sets where the multiplicity of an element is counted. The left and
right parts of the sequent are the antecedent and the succedent. Derivations in
sequent calculus start with logical axioms, i.e., zero-premiss rules of two forms:

Logical axioms:
PT=AP 1, I'=A

The first axiom corresponds to making the assumption P, the second to the rule ez
falso quodlibet. The first axiom is restricted to atomic formulas and in the second,
it is essential that the false formula L is not considered atomic, but a zero-place
logical operation.

The logical rules are divided into right rules that correspond to the introduction
rules of natural deduction, and to left rules that correspond to elimination rules.



Logical rules:

A BT =A e 'sAJA T=A,B
ALB,T = A T = A, A4B
AT=A B,F:>AL ' A A B R
AVB,T= A v T=AAVB
ADB,IT'= A B,F=>AL AT=1B R
ASBT = A > T=AADB
A(t/z),VzA,T = A . I'= A(y/z) o
VzA,T = A T = A,VzA
A(y/z),T = A - L= A, 3zA, A(t/x)
JzA,T = A I'=s A, dzA

In the rules for the quantifiers, A(t/z) (A(y/x)) denotes substitution of z with the
term ¢ (the variable y) in A. The usual restrictions apply: in RV and L3, y is not
free in the conclusion; in LV and R3 the term ¢ has to be free for x in A, that is,
no variable of ¢ is in the scope of some quantifier in A.

This calculus is designated G3i (after Kleene’s system, of which it is a simplified
version). The calculus is the same as the calculus GHPC of Dragalin (1988).

The height of a derivation is its height as a tree, that is, the length of its longest
branch.

The structural rules of weakening, contraction and cut are formulated as follows:

's A . s A
AT=A" T1=a4™

AAT=A  T=A44
AT=A ' T=a4

F=sAA AT = A
L= AA

None of these structural rules need be assumed in G3i since they can be proved
admissible, in the sense that if the premisses of a rule are derivable, its conclusion
also is derivable. Weakening and contraction are admissible and height preserving,
that is, if their premisses are derivable with a certain derivation height, then their
conclusion are also derivable with the same derivation height (cf. Dragalin 1988).
Ezchange rules, permitting the permutation of order in a list of assumptions as in
Gentzen’s original calculus, are absent due to the use of multisets. We refer to Negri
and von Plato (2001), where the above calculus is called G3im, for a detailed proof
of admissibility of the structural rules.

A rule is said to be invertible if whenever the conclusion is derivable, then the
premisses are derivable.

All logical propositional rules of G3i except L D and R D are invertible. The
rules for implications are partially invertible in the following sense: L D is only

RC
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invertible with respect to the second premiss, i.e., from A D B, = A, the sequent
B,T = A follows. The rule of R D is invertible when the context A is empty. All
the quantifier rules are invertible except RV. As for R D, the rule of RV is invertible
when the context A is empty.

Starting with the calculus G31i, the structural rules remain admissible also in
extensions of G3i by suitably formulated nonlogical rules. Given any formula A, we
can check through a formula decomposition via the invertible rules of G3i whether
the formula is equivalent in the system to a conjunction of formulas of the form
Pi&...&P, D @1V ...V @y, where the consequent is L if n = 0. (This is a
slightly modified version of conjunctive normal form.) It is shown in Negri and
von Plato (1998) that these are precisely the formulas representable as systems of
sequent calculus rules for which the structural rules are admissible. Formulas are
now converted into rules through the following general
Rule-scheme:

Q1,T=A ... @Q,I'=A
P,....,Pp, = A

I and A are arbitrary multisets. Addition of a rule following the scheme will make
sequents = P& ... &P, D Q1 V...V Q, derivable by the logical rules.

Special cases of the rule-scheme are obtained when n is 0 and the zero-premiss
rule Reg becomes a nonlogical axiom, with inference line omitted,

Reg

Pl,...,Pm,F:>A

which translates a Hilbert style axiom of the form ~ (P& ...&P,).

As explained in Negri and von Plato (1998), the principal formulas Py, ..., Py,
of the scheme must be repeated in the antecedent of each premiss, but we leave
this out for better readability. Such repetition is needed for proving the rule of
contraction admissible. We also note the following subtlety:

Closure condition: Given a system with nonlogical rules, if it has a rule with an
instance of form

Q. I'=A ... Qn,F=>AR
P,...,Pn 2, P,P,T=A 7

then also the rule
Q. I'=A ... Qn,Ff,'AR
€g

Pi,....Pno,P,T = A

has to be included in the system. It can happen that a substitution in the atoms
of a rule produces duplications of formulas the contraction of which requires the
condition. But it is in principle unproblematic, since the number of rules to be
added to a given system of nonlogical rules is bounded. Often the closure condition
is superfluous, for example, as noted in Negri (1999), the rule expressing irreflexivity
in the theory of strict linear order is derivable from the other rules. However, the
rule of irreflexivity can be added to the system if height-preserving admissibility
(and not just admissibility) of contraction is needed.



Theorem 3.1: The structural rules are admissible in extensions of G3i following
the rule-scheme and satisfying the closure condition. Weakening and contraction
are admissible and height preserving.

This result is proved in Negri and von Plato (1998, section 3).

The immediate subformula property fails for nonlogical rules, but a weak sub-
formula property, stating that in a derivation only subformulas of the endsequent
or atomic formulas occur, is enough for proof-analysis. In particular, we have the

Corollary 3.2: If a derivable sequent I' = A has no logical operator, then its
derivation uses only logical axioms and nonlogical rules, but no logical or structural
rules.

4. Sequent calculus for constructive ordered fields

In usual sequent calculi, the rules for well-formed sequents are meta-level rules,
not explicit rules in derivations. For instance, the variable conditions in quantifier
rules, the conditions on terms for substitution, and even the syntactic rules for
well-formed formulas are such rules. We shall handle the conditions arising in the
theory of constructive ordered fields in the same way. If a sequent I' = A contains
a term z~! we assume that the condition z = 0 has been established.

Another example of conditions is found in elementary geometry. The construc-
tion of a line through two points a and b can only be made if a and b are distinct
points. In treating the conditions of wellformedness of sequents as meta-level rules
we have followed von Plato (1998).

In a more formal treatment, conditions can be made into progressive contexts
in the sense of type theory (see Martin-Lof 1984 and von Plato 1995).

The rules for constructive ordered fields are grouped as in the axiomatic presen-
tation. For simplicity of notation we have omitted the repetition of the principal
formula (or formulas) of each rule in its premisses. The rule of irreflexivity has to
be added in order to satisfy the closure condition.

I Rules for constructive linear order:
a<a,I‘:>A irref a<b,b<a,I‘=>A asym

a<ce,I'=>A ¢c<bT'=A
a<bT'=A

split

The axiom 0 < 1 becomes the rule

0<1, = A
'=A

nondeg

In order to express the axioms of addition and multiplication in the form of inference
rules we first have to formulate the axioms for defined equality in terms of the
primitive notion of strict linear order. In each axiom involving equality, a = b is



replaced by ~ (a < bV b < a) which is in turn replaced by its logical equivalent
~a<b& ~b<a. The latter form of axiom is rendered into two inference rules
with zero premisses, namely a < b,I' = A and b < a,I' = A. Following the same
general method we obtain:

IT Rules for additive group:

a+b<b+a,l' = A +-commi b+a<a+bT = A +-comme
(@+b)+c<a+(b+¢),l = A +-asst a+(b+c)<(a+b)+c¢,I'=>A +-ass2
a+0<a,T'= A zerot a<a+0,T=> A zero2
a+(—a)<0,T'=> A oppt O<a+(—a), T = A opp2
b<e,I'=> A
a+b<a+ce, Il = A oeat
I1I Rules for multiplication:
ab < ba,T' = A x-commt ba < ab,T' = A x-comm2
(ab)ec < a(bc),T = A x-asst a(be) < (ab)e,T = A x-ass2
al <a,I' = A unit1 a<al,I' = A unit2
aa ' <1, T = A invi l<aa L, T = A inve
alb+c) <ab+ac,T = A distri ab+ac<alb+c),I' = A distrs

Observe that by symmetry, the rules +-comm2 and x-comm2 can be dropped.
The axiom of strong extensionality for multiplication gives rise, by using the
regular decomposition described in the previous section, to the following four rules:

a<0,I'=A 0<al'=>A y c<bT=>A b<e,T=>A o
ab<ac,I'= A e ab < ac,T' = A e
a<0,T=A b<e,I'=A c<bT'=>A 0<al=A
ab < ac,T = A X-eatd ab < ac,T = A Xrentd

It follows as in Negri and von Plato (1998, pp. 421-422) that these four rules above
can be reduced to the single rule

a<0,c<bI'=A 0O<ab<c,I'=>A
ab <ac,T' = A

X -ext

In the rules for the inverse the condition a # 0 is required. We notice that
substitutions in the atomic formulas may produce duplications only in the rule
containing two principal formulas in the conclusion, namely asymmetry. In this



case the closure condition requires the rule of irreflexivity. Since all of our rules
follow the rule-scheme, we conclude from theorem 3.1 the

Corollary 4.1: The structural rules of weakening, contraction and cut are admis-
sible in the sequent calculus for constructive ordered fields. Weakening and contrac-
tion are admissible and height preserving.

It follows that our system is complete, in the sense that if A is derivable in the Hilbert
style axiomatization given in section 2, then = A is derivable in the sequent calculus
system.

With logical systems, proofs of cut elimination have as a trivial consequence a proof
of consistency for the system. With the extension by nonlogical rules, the situation
is different. Here a purely proof-theoretic proof of consistency is complicated by
the rule nondeg: In a root-first analysis of derivations, the rule nondeg introduces
atoms in the antecedents of sequents. All the other nonlogical rules have atoms
in the antecedent of their conclusion and therefore, in absence of nondeg, cannot
produce a derivation of = 1. These problems will be studied in a subsequent work.

5. Conclusion

Having a cut-free sequent calculus for a mathematical theory has a methodological
implication: A proof-theoretic treatment based on the methods of proof analysis
which are typical of structural proof theory becomes possible. For pure logical sys-
tems standard applications of cut elimination include consistency proofs as direct
consequences of the subformula property. In systems with nonlogical axioms as
those studied here the subformula property does not hold, but only a weaker form
of the subformula property. Nevertheless the control of the structure of derivations
in a cut-free system permits to answer non trivial questions of conservativity. For
instance, the methods developed in Negri (1999) for showing conservativity of apart-
ness over equality can be applied also in the context of constructive ordered fields.
By these methods it is possible to show that the theory of constructive ordered
fields is conservative over the theory of ordered fields based on a relation of weak
partial order, defined as the negation of strict linear order.

Our method of treating constructive ordered fields can also be applied to real
closed fields (see Delzell 1996 for references on the literature on real closed fields).
The axioms asserting the existence of square roots of positive elements and the
existence of zeros of polynomials of odd degree will be first formulated in terms of

two constructions, sqr(a) and z(ag, ..., as,+1) satisfying the quantifier-free axioms
sqr(a)sqr(a) = a, forOga
2n+1 ;
St aiz(ag, - -y aong1)? = 0, for aspi1 2o

By adding the two constructions and the respective axioms to the theory of
constructive ordered fields, we obtain a quantifier-free axiomatization for real closed
fields, with all axioms conforming to the rule-scheme. Consequently, we obtain a
sequent calculus for real closed fields with all structural rules admissible.



In the standard theory of real closed fields, the law of excluded middle is assumed
for atoms. By a result of Tarski (see Delzell 1996), the law holds for arbitrary
formulas. The assumption means that atoms are decidable, but this has constructive
sense only if a field is discrete. In our proof-theoretical approach, decidability for
atoms can be included in the cut-free system by adding the rule of Gentzen excluded

middle for atoms
a<bIT=>A ~a<bI'=A

r=A

By arguing as in von Plato (1999) it can be shown that the corresponding excluded
middle rule for arbitrary quantifier-free formulas is admissible in the theory of real
closed fields with decidable atoms, thus showing that, at least for the quantifier-free
fragment, the theory behaves like a classical theory. Palmgren (1998) proves the
decidability for all formulas using Tarski quantifier elimination and the Dragalin-
Friedman translation.

We plan to make a detailed study of the proof theory of real closed fields in a
subsequent work.
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