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Abstract. A uniform calculus for linear logic is presented. The calculus has the form
of a natural deduction system in sequent calculus style with general introduction
and elimination rules. General elimination rules are motivated through an inversion
principle, the dual form of which gives the general introduction rules. By restricting
all the rules to their single-succedent versions, a uniform calculus for intuitionis-
tic linear logic is obtained. The calculus encompasses both natural deduction and
sequent calculus that are obtained as special instances from the uniform calculus.
Other instances give all the invertibilities and partial invertibilities for the sequent
calculus rules of linear logic. The calculus is normalizing and satisfies the subformula
property for normal derivations.

1. Introduction

There is no general agreement on what features distinguish sequent
calculus and natural deduction from each other. As soon as tentative
characterizing properties are singled out, exceptions are found:

1. Sequent calculus has the structural rules of weakening, contraction,
and cut, whereas natural deduction has no structural rules.

This first difference disappears in the family of cut- and contraction-
free calculi G3 originated along the line Kleene-Dragalin-Troelstra and
in other proof-search oriented calculi, like the G4 calculi, introduced
by Hudelmaier and Dyckhoff and the calculi recently introduced by
Miglioli and his collaborators for various intermediate logics (as in
Avellone, Ferrari, and Miglioli 1999).

Besides these calculi, there exist sequent calculi in which the effect of
the structural rules is achieved as in natural deduction, namely by vac-
uous and multiple discharge in the rules corresponding to elimination
rules and to implication introduction (cf. Negri and von Plato 2001a).

In natural deduction, the absence, or better, implicit treatment
of structural rules works to perfection only when treating context-
independent connectives. The simultaneous presence of context-sharing
and context-independent connectives in linear logic breaks down the
modularity needed in systems with implicit weakening and contraction;
Consequently, systems of natural deduction for linear logic are often
formulated with explicit structural rules.
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2. In sequent calculus derivations are trees labelled by sequents, in
natural deduction derivations are trees labelled by formulas.

3. In sequent calculus rules are local, in natural deduction they are
nonlocal.

These two latter distinctions are based only on the notation chosen, as
one may as well write natural deduction in sequent calculus style, with
all active assumptions listed at each step of inference. Thus the rules
of natural deduction can be made local. On the other hand, there are
sequent calculi with nonlocal rules.

4. Rules of sequent calculus can have any number of formulas in the
succedent, whereas rules of natural deduction have a single conclusion.

Although this is almost invariably the case, multiple-conclusion systems
of natural deduction have been proposed (e.g., in Ungar 1992). Also,
in the case of linear logic, proof-nets can be regarded as a multiple-
conclusion natural deduction system.

5. The basic structural requirement for sequent calculus is cut-elimination,
and normalization for natural deduction.

The two features cannot be put in a 1-1 correspondence, in the sense
that translating cut-free derivations into natural deduction can pro-
duce non-normalities, and translating normal derivations into sequent
calculus can produce cuts.

In recent years sequent calculus has been brought closer to nat-
ural deduction by the elimination of redundancies which are absent
in natural deduction, and sequent calculi have been formulated where
normality of sequent derivations corresponds to normality for A-terms
(Herbelin 1994, Mints 1996, Dyckhoff and Pinto 1999).

Points 1-5 attempt to give characteristics that distinguish the two
main varieties of logical calculi from each other. There are exceptions
to each of the points, and these exceptions should give an indication
of the work that has been done to bridge the gap between the two
varieties. It is also clear that the borderline between the two varieties
of logical calculi is even more vague for linear logic. In contrast to
the well established system of natural deduction for intuitionistic logic,
there is no unique answer to what a natural deduction system for linear
logic should be.

The two approaches to proof theory have also been related in a
more direct manner in Negri and von Plato (2001), through a uniform
calculus, the rules of which contain as special instances the rules of
sequent calculus and natural deduction.
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The rules of the uniform calculus are found through the constructive
meaning explanation of the logical connectives: First introduction rules
are justified in proof-theoretical terms through the BHK-interpretation
of the logical constants that gives the sufficient grounds for deriving
a formula. General elimination rules can then be obtained from the
introduction rules through an inversion principle stating that whatever
follows from the sufficient grounds for deriving a formula must follow
from that formula (cf. Section 2). Finally, general introduction rules are
determined by a dual inversion principle stating that whatever follows
from a formula must follow from the sufficient grounds for deriving the
formula.

With the standard elimination rules there is no obvious correspon-
dence between normal derivations in natural deduction and cut-free
derivations in sequent calculus, since the translation of normal deriva-
tions produces sequent derivations with cuts and the translation of
cut-free derivations produces non-normalities. With general elimination
rules, instead, no cuts are introduced in the translation from normal
natural deduction to sequent calculus, and no non-normalities arise in
a translation of cut-free derivations.

We shall here extend to linear logic the application of the inversion
principles in the design of a calculus with general rules. The calculus
thus obtained will be flexible enough to give a variety of calculi as
special cases, and at the same time structured enough so as to enjoy
normalization and the subformula property for normal derivations.

General elimination rules for the connectives and for the modality
! of intuitionistic linear logic are used in Negri (2002) for obtaining a
normalizing system of natural deduction, with no explicit structural
rules and with a full subformula property.

The rules of the uniform calculus for classical linear logic have
multisets rather than formulas as conclusions, thus a sequent calcu-
lus style notation will be used for them. The additive connectives are
context-dependent and in order to avoid higher-order rules (as used
for intuitionistic implication in Schroeder-Heister 1984) we give for the
additive conjunction & two general elimination rules, and, dually, for
the additive disjunction & two general introduction rules. The rules
for the constants 1, T,0, L are obtained as nullary cases from the rules
for ®, &, @, B, respectively. There are general introduction and elimi-
nation rules also for the modalities !, ?. The calculus thus obtained is
complete for classical linear logic.

The calculus is called a uniform calculus for the reason that it encom-
passes both natural deduction and sequent calculus, the rules of which
are obtained as special instances. Natural deduction rules are obtained
when the major premisses of introduction rules are assumptions (and
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thus deleted). Sequent calculus rules are obtained when also the major
premisses of elimination rules are assumptions (and thus deleted).

Instances of the rules of the uniform calculus with minor premisses
assumptions give all the invertibilities and partial invertibilities for the
sequent calculus rules of linear logic. By restricting all the rules to their
single-succedent versions, a uniform calculus, complete for intuitionis-
tic linear logic, is obtained, and from this the corresponding sequent
calculus (with its invertibilities) and natural deduction formulations.

The uniform calculus can be given in two forms, namely with explicit
or implicit structural rules. In the latter form, the modalities have an
introduction and elimination rule only, both justified by the inversion
principles. The rules of -weakening and !-contraction are derivable from
the introduction and elimination rules for !, and analogously for the
modality 7.

A derivation in the uniform calculus is in normal form when all its
major premisses are assumptions. For the version of the uniform cal-
culus with implicit structural rules the definition of normal derivation
is modified by the requirement that all instances of the rules for the
modalities are of a prescribed form. Normalization and the subformula
property for normal derivations are proved through translation to se-
quent calculus, cut elimination, and translation back to the uniform
calculus.

2. Inversion principles and the justification of the logical
rules

In order to maintain the exposition self-contained we repeat here some
background on the use of general elimination rules in natural deduction.
General elimination rules for intuitionistic logic were introduced in von
Plato (2001, see also von Plato 2000). A thorough exposition of natural
deduction with general elimination rules can be found in Negri and von
Plato (2001).

Introduction rules are usually justified in proof-theoretical terms
through the BHK-interpretation of logical constants, which gives the
sufficient grounds for deriving a formula. General elimination rules can
then be obtained from the introduction rules through an inversion
principle: Whatever follows from the grounds for deriving a formula
must follow from that formula.

Whereas Prawitz’ inversion principle only justifies the elimination
rules, this stronger inversion principle determines the elimination rules,
once the introduction rules are given. For instance, given the introduc-
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tion rule for conjunction

A B

ANB
through the inversion principle the elimination rule is determined: The
grounds for asserting A A B are (derivations of) A and B, one obtains
the rule

N

(A, B]

AAB C
C
By writing out the multisets of open assumptions and replacing the
vertical dots with the symbol for the formal derivability relation —,
the two rules above read as
rsA4 A>B ' AAB A B,A—C
LA AAB M T,A > C "

AE

The conjunction elimination rules in their standard form

F—>A/\B/\E1 I‘—)A/\BAE2

r—-A r—-B
are obtained as special cases from AE when C is A or B, respectively,
with the second premiss derivable. The general elimination rule for A
was first given for a system of intuitionistic logic in Schroeder-Heister
(1984).

General elimination rules have already been used, to some extent, in
linear logic. They have been given for @, analogously to the elimination
rule for disjunction, and for ®: These choices were wellnigh inevitable,
the first due to the meaning of disjunction, the second due to the fact
that one cannot project from A ® B as from A&B. Following type
theory in the design of a logical calculus, general elimination rules for
®, &, and @ have been given in Valentini (1992).

A derivation of B from A gives the sufficient grounds for deriving an
implication A D B. Therefore, in the formulation of the general elim-
ination rule for implication we should have to express that something
follows from a derivation, but there is no way to do this unless with the
use of higher-level rules, as in Schroeder-Heister (1984). On the other
hand a satisfactory solution in first-order logic is obtained by noting
that if A D B holds, arbitrary consequences of B are already conse-
quences of A. With this proviso, the general implication elimination
rule for intuitionistic logic is formulated as

r-A>B A— A BII—>C
LAII—C

DE
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which replaces the special implication elimination rule of modus ponens

' 4 ADB A—>AD
I''A—B

E

obtained when B = C. It seems that the general elimination rule for
implication was first presented in Dyckhoff (1988).

The general elimination rule for linear implication is the same as for
intuitionistic implication:

' A—-B A—A BII->C
I'AII—C

— K

Determining the rules for the context-dependent connectives, or ad-
ditives, is not completely straightforward: The grounds for obtaining
A& B are derivations of A and B from the same multiset of open as-
sumptions. Again, this would bring to a higher-level condition in the
elimination rules, not expressible in first-order logic. The two, instead
of one, elimination rules for the additive conjunction are a way to
overcome this problem:

' - A&B A,A—)C&E ' - A&B B,A—)C&E
T.A = C ' I,A>C :

The standard elimination rules of natural deduction (special elimi-
nation rules), are obtained as special cases of the general elimination
rules. As seen above for modus ponens, also the special elimination
rules for & follows from the general elimination rule when the right
premiss is an axiom A — A or B — B. Modus ponens is similarly an
instance of the general implication elimination rule.

By using special elimination rules there is no obvious correspon-
dence between normal derivations in natural deduction and cut-free
derivations in sequent calculus. The translation of a step of &F;

I' - A&B
T4 “&
is the following
A= A L&
I = A&B A&B=A '
I'= A cut

where an extra cut is needed. In the converse translation from sequent
calculus to natural deduction a step of L&;

AT =C e
A&B,T=C
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becomes
A%B - A%B
A&B — A IAP%Cb
A&B,T = C subst

with a possible non-normality produced by the step of substitution’.

By using general elimination rules no cut is introduced in the trans-
lation from normal natural deduction to sequent calculus, and no non-
normalities arise in a translation of cut-free derivations.

In the rules of the uniform calculus, the major premiss is the premiss
containing the connective or the constant of the rule in question. The
other premisses are called minor premisses.

General introduction rules are dual to general elimination rules: The
principal formula appears in the antecedent of the major premisses,
whereas in general elimination rules the principal formula appears in
the succedent of the major premiss. The semantical justification for
general introduction rules can be given in terms of a dual inver-
sion principle: Whatever follows from a formula must follow from
the sufficient grounds for deriving the formula.

A couple of examples illustrate how the dual inversion principle
determines the general introduction rules.

1. The sufficient grounds for deriving A@ B are given by a derivation
of A or a derivation of B. By the dual inversion principle, whatever
follows from A @& B must follow from A and whatever follows from
A @ B must follow from B, thus we get the rules

[4eB] [Ae B

u EBII CiB @IZ

C C

With the multisets of assumptions written out explicitly and a sequent-
style notation, we obtain the rules

Ao B, I'-C A—-A , A®B,I'-C A—B
T,A > C o T,A > C

@12

2. The sufficient grounds for deriving A — B are given by a deriva-
tion of B from A. The dual inversion principle thus gives the rule, in
either notation

[A—=B] 4
¢ B A—-BTC AA-B

—of —o

C A—-C

The rules for all the other connectives are obtained in a similar fashion.
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3. The uniform calculus and its basic properties

The most general version of the uniform calculus is the one for classical
linear logic. It has multiple conclusion rules, thus in the inversion prin-
ciples arbitrary conclusions are given by a multiset of formulas rather
than a single formula.

By the method described in the previous section the introduction
and elimination rules of the uniform calculus for ®, &, ®, and — are
found. The rules for ® are dual to the rules for ®.

The rules for the constants 1, T, 0, and L are found as degenerate
instances of the rules for the connectives of which these constants are
the unit elements: First the rule for the matching connective is gener-
alized to a finite arity, then the empty instance is taken. For example,
rule &1 generalized to n conjuncts is the rule with n 4+ 1 premisses

&i<i<nAi, T = A {T' = A, Ajhicicn
LT — AA

which gives, for n =0
T,I'—=> A

LT — AA

The generalization of &F to n conjuncts is given by the n two-premiss
rules
r'— Aa&ISiSTLA’i Ai,I" — A/
LT — AA

for each ¢ such that 1 < 4 < n. For n = 0 no rule is produced, so
there cannot be a rule of elimination for T. The rules for the other
constants are found similarly, and the syntactic impossibility for a rule
of 0-introduction is shown.

The calculus has only one axiom, A — A, which corresponds to the
rule of assumption in natural deduction. For this reason, a premiss is
called an assumption if it is of the form A — A.

The rules for the modalities !, 7 are also justified by means of the
inversion principles. The grounds for deriving ! A are given by a deriva-
tion of A from !-assumptions. In the presence of multiple-conclusion,
A can be accompanied by ?-alternatives, so rule 71 is justified. For |E
we cannot encode the grounds for deriving !A without a higher order
syntax, but we use what is a sufficient ground for deriving !A, namely
having A without assumptions. So the rule becomes the formal tran-
scription of the inversion principle thus instantiated: Whatever follows
from A must follow from !A.

Rules 71 and 7E are obtained by symmetry from !E and !I, respec-
tively.
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The structural rules for the modality ! follow the pattern of gen-
eral elimination rules, where a multiplicity rather than a formula is
eliminated. The structural rules for 7 instead follow the pattern of
general introduction rules. None of these structural rules has a direct
explanation in terms of the inversion principles. However, they can be
dispensed with through a natural generalization of the introduction or
elimination rules for the modalities, as we shall see below.

Uniform calculus for classical linear logic
Ucl

Axiom
A— A
Rules for ®, &, ¢, B, —

AB,T-A T"=>AA T" > A" B
LT, 7" — A, A" A"

QI

r-AA®B A,B T = A’ .
T = A, A ®
A&B,T - A T"—>A" A T A" B
D,T = AA!
' - A,A&B A,I"—)A'& - AA&B B,I" = A’
T,T = A, A ' T,T = A, A
ABT—-A T AA AeBT'-A T A'B
T,T = A, A o T,T" = A, A o
r-AAeB ATI'—-A" BI'—A' o
L,T — AJA!

&I

2

ARBT A T"—> A" AB
L,T — AA!

I

- AABB AT - A" BT"— A"
Lo, T — A A A"

E

A—-BT—>A AT - A"B
LT —AA

—ol

r+AA—-B I"=>A"A BTIT'"—- A"
LT, T — AA A"

—oF
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Rules for 1, T, 0, L

1,T - A = A1 F’—>A’1E
ro>a Y T, — A, A
T,T > A N
TT S AN TI no elimination rule for T
r
no introduction rule for 0 %7“ OE
LT — AA'
1L, T-A T A Iy - AL
T, - A, A r>a 7
Rules for !, ?
AT - A !F’—)?A',A'I = AJJA AT — A/ .
LI — A?A! ' LT — AA ‘
AT A T ALA o - A?A AT 27A! .
LT — AA ' LI — A ?A '
- AA T"> A ' T 57A,14A 1AIA T —» A/ '
I,I' - AA 7 IT,I" »?A, A ‘
7A,T - A T"—> A R 7A,IT =?7A F’—)A’,?A,?A?
I,T > A A ° IT, T —?A, A’ -

The first basic property of the uniform calculus is closure under sub-
stitution:

Proposition 3.1 The rule of substitution

r-AC CIlI—@
[ A,®

subst

1s admissible in Uecl.

Proof: By induction on the sum of the heights of the derivations of the
two premisses. If one of the premisses is an axiom, the conclusion is
given by the other premiss, and there is nothing to prove. Else both
premisses are derived by some rule. Consider the derivation of the right
premiss. If the last rule is any rule except one of the context-dependent
rules I, 7E, lc or 7¢, we observe that substitution can be permuted
up to the premiss(es) where C' appears, and the conclusion is obtained
by applying the same rule to the premisses thus obtained. A similar
permutation can be performed if C appears in the left premiss of !7,
7E, lc, or 7¢, since the left premiss of these rules is context-independent.
If C appears instead in the right premiss of, say, !I, C' is of the form
!B for some formula B. Consider now the last rule R in the derivation
of ' - A,C. If Ris not !I 7E, l¢, or 7c, we proceed by permuting

varlin.tex; 14/06/2002; 12:44; p.10



Varieties of linear calculi 11

substitution to the premiss(es) of R. Else, if R if !I, 7E, !¢, or 7¢, since
the formula C is an !-formula it cannot belong to the context-dependent
premiss of these rules, which have a context made of ?-formulas as
succedent. Thus substitution can be permuted. A similar reasoning
applies in all other critical cases, where the last rule used to derive
C,II —» @ is 7E, !¢, or 7c and C appears in the left premiss of these
rules.

The calculus above can be simplified to one where both modalities
have only an introduction and an elimination rule, by considering the
following generalizations of !E and 71, where n =0,1,2,...

L= A1A AT — A - TAT 5> A TV — Al A" -
LT — AA! ' LT — AA! '

By using the above rules, the structural rules of weakening and con-
traction become derivable:

Proposition 3.2 Rules !w and !¢ are derivable from !E* and !I. Rules
7w and ?c are derivable from ?77* and 7FE.

Proof: Observe that !w is just the instance of | E* where n = 0. Similarly,
7w is the instance of 7I* with n = 0. Rules !¢ and ?c are derived as
follows:

A A I =7A14

I

T —7A,114 D MAAT A
IT,T" —7A, A/ '
MASA 240 A
774,10 »7A T A2A4
IT,T" =7A, A/ ;

Alternatively, instead of generalizing the rules of !-introduction and
?-elimination, the rules of !-elimination and ?-introduction can be gen-
eralized so that weakening and contraction are derivable. Consider the
following rules, where n = 0,1,2,...

A"T 5 A T 5?ALA T ATAY AN A
T = A, 7A o T, = A, ?A ‘E

Then we have:

Proposition 3.3 Rules !w and !c are derivable from !7* and !E. Rules
?w and ?c are derivable from 71 and 7E*.
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Proof: The rules of weakening for !- and ?-formulas are derived as
follows:

AIA A A
I Ay A~ A4 ,. (r;:o)
I = A4 AT S A
T.T = A, A subst
PAA Ao A,
I'— A A—?A . (T;:o)
" — A74 ' ?A,T — A
T,T = A, A subst
Rules !c and 7c¢ are derivable by
' »?7A1A A— A ‘
14,14, T" — A’ T 78,4 P
IT,T" =74, A’ ‘
7AIT 5?7A A A .
AT S7A T roaar4

IT,T" >7A, A/

Observe that in the proof above substitution cannot be removed until
both its premisses are replaced by “concrete” derivations.

Definition 3.4 Let Ucl* be the calculus obtained from Ucl by replac-
ing the rules !FE and 7?1 with !E* and 7I* and by removing the rules w,
le, 7w, and lc.

Let Ucly be the calculus obtained from Ucl by replacing the rules
!I and 7FE with !I* and 7E* and by removing the rules !w, !¢, 7w, and
le.

By the proof of proposition 3.1 it follows that the rule of substitution
is also admissible for the calculi Uel* and Ucl,.

By Propositions 3.2 and 3.3 both of the calculi Ucl* and Ucl, are
equivalent to Ucl and all are complete for classical linear logic.

4. The varieties of linear calculi generated by the uniform
calculus

Formally, the uniform calculus can be described as a multiple conclusion
natural deduction system with general introduction and general elimina-
tion rules, written in sequent calculus style. The uniform calculus thus
encompasses features of both natural deduction and sequent calculus.
Systems of natural deduction and sequent calculus for classical and
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intuitionistic linear logic can be obtained from the uniform calculus as
special cases.

4.1. FROM THE UNIFORM CALCULUS TO SEQUENT CALCULUS AND
ITS INVERSIONS

By instantiating the major premisses of the rules of Ucl to a (derivable)
premiss of the form Ao B — A o B, where o is a binary connective, or
to the form yA — pA, where p is ! or 7, we obtain the familiar sequent
calculus rules for classical linear logic. For instance, by taking I' to be
the empty (multi)set and A = A ® B in the rule ®1I, we obtain

A®B—-A®B T A A T" > A" B
'T" 5 A A" A B

Since the left premiss is derivable, this rule is equivalent to
I'—-A A T"—- A" B
r'™—- A A" A® B

which is the usual R®. In a similar way, the other rules are obtained.
The full table of rules of the calculus Gel, given below, presents each
rule in the position corresponding to the rule of the uniform calculus
from which it is derived. The calculus we obtain is the same as the
calculus often called CLL in the literature (cf. Troelstra 1992, where a
different notation and rules for primitive negation are used).

Sequent calculus for classical linear logic

Gel
Axiom
A=A
Rules for ®, &, ®, B, —o:
'=AA F':>A',BR AB,T = A .
I T'=AANAcB © A@BT=A ®
'sAJA T=>AB AT=A B,T= A
R& ————— L& ———————— L&

T = A, A4B ALB,T = A ALB,T = A
s AA . I'sAB . AT=A BT=A
T>AA0B & T>AA®B o AoBT=A
I'= AAB 3 AT=A BI'=A 29
T=AARB " ARB,T,I' = A AN *
ATl=AB s AA I"=>A’,BL
T>AA-B A<BT,I'=AAN
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Rules for 1, 7, 0, L

r=A
=1 L,T=>A "
F=AT mr
o,r=a "
'=A
T=A, L™ 1=
Rules for !, ?
T'=?7AA ‘ AT=A '
IT =7A,14 ™ AT=A "
F=AA AT = A
————— R? ==+ L?
'=A,74 7A,'' =7A
r=A 1AJTA T = A
m L-weak m L-contr
r=A = A74,74
= A,?A R-weak —F:> A,?A R-contr

By taking instances of the rules of the uniform calculus where minor
premisses are assumptions, we obtain all the invertibilities of the se-
quent calculus for classical linear logic. For instance, instantiating in
®I, T' with A, T” with B and A’, A" with the empty multi(set) we

obtain
AB,I'=A A=A B=1B

A B, I'= A
Since the two minor premisses are derivable, this rule amounts to

A®BT=A
A,B,T=A

which is invertibility of L.

In some cases there is no special instance where the minor premisses
are axioms. This happens when the minor premiss contains two active
formulas, namely for the rules ® F, B I, !c and ?¢ and when there is no
minor premiss, such as in 17, TI, OF and L E. Correspondingly, there
is no inversion for R®, L® , L-contr, R-contr (although the inverses
of the two latter are instances of the rules L-weak, R-weak) nor for
L1 or R1. In other cases an instance where the minor premisses are
axioms is produced only by imposing active formulas to have a certain
form. This happens for the context sharing rules &I, @F and for — [
and for the context-sensitive rules !/ and 7E. In these cases there are
special inversions.
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Observe that some of these inversions are known already (cf. Prop.
3.7 in Troelstra 1992). What is peculiar here is that there is no need
of any metatheoretical argument, like induction on derivations, for ob-
taining them, but they are automatically generated from the uniform
calculus.

In the table below of inversions for Gel, the position of each inversion
is the same as in the table of the corresponding rule of the uniform
calculus from which it is obtained. The name instead indicates the rule
of sequent calculus to which it pertains.

Observe that rules without minor premisses do not have any cor-
responding inversions. In some cases there are odd-looking inversions,
namely those obtained from 1FE, L1, 'w and 7w: In all these cases the
conclusion is of the form of a generalized axiom C,I" = A, C, where C'
is an arbitrary formula.

Inversions for Gel

Inversions for ®, &, ®&, B, —

A®B,T= A ) . .
m L®-inv no inversion for R®
A&A T = A . I'= A, A&B R I'= A, A&B R
AT A L A invs T= A B invz
A@B,F#AL ) A@B,F:AL ) F:A,A@AR_ )
TAT=S A T TRT oS A YET T oA e
. . I'=AA®B
no inversion for L% TS AAB R® —ino
A—OA,FiAL . I'=>AA—B )
—F = A —o=sp.inv —A, T = A, B R—o—inv
Inversions for 1, T, 0, L:
r=A,1
no inv. for L1 ﬁ Ril-inv
1, I'=A
CH_‘,TZ’C’ L1-inv no inv. for Rl
Inversions for !, 7:
!!A,I‘=>AL'_ ] I'= A4 .
7!14-71_‘ :> A m8p.tnu 71_‘ # A —inv
AT = A " = A774 .
AT A T= A4 o
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16 Sara Negri

4.2. FROM THE UNIFORM CALCULUS TO SEQUENT CALCULUS AND
NATURAL DEDUCTION FOR INTUITIONISTIC LINEAR LOGIC

By restricting the uniform calculus for classical linear logic to its single-

succedent version we obtain a uniform calculus for intuitionistic linear
logic, Uil. The table of rules is the following:

Uniform calculus for intuitionistic linear logic

Uil
Axiom
A=A
Rules for ®, &, ®, B, —o:
ABT-C I"-A I'"—>B . r-A®B ABTIT' -C .
I,I" = A @ I,T' > C @
A&B,T - C T"— A F'—)B&I
nLrr-c
I - A&B A,F’—)C& I - A&B B,I"—)C&
T > C ' T > C ’
AeB,I'-C T"—> A AeB,I'-C TI'"—> B
©5 S22
nr—C nLr—cC
r-AeB ATl'-C BI'->C .
Y N
A—-BT'-C AT =B E r+A4—-B I"'—-A BI"=C .
I,[' 5 C - T,T'.T" > C -
Rules for 1, T, 0
1,1‘—>CH r—-1 F’—)CIE
r-c o —-cC
LI=0 ., liminati le for T
F,FI—)C no elmination rule 1or
. . r—0
no introduction rule for 0 m OE
Rules for !
AT ->C !I"—)A'I -4 A,F’—>C'E
nLr—c ' nr—cC '
L4 I'sC ' »!A !A,!A,F’—)C'
r-c T, T - C ”
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In a way completely similar to what we have done for Ucl, one obtains
from Uil the usual sequent calculus for intuitionistic linear logic, often
called ILL in the literature, and its inversions.

For a natural deduction system, we have the possibility of some
choices, namely, we can specialize all the rules of the uniform calculus
to their special form, and obtain a system of natural deduction that
resembles the one for intuitionistic logic, or we can just specialize the in-
troduction rules, and obtain a system of natural deduction with general
elimination rules. Special instances of introduction rules are obtained
by considering the case when the major premiss is an assumption. Spe-
cial instances of elimination rules are instead obtained by considering
the cases when the minor premisses are assumptions, whenever this is
applicable (for instance, it is not for ® E, so the rule of elimination for
® can be formulated only in a general form). For &FE; the instance
with minor premiss an assumption is

I' > A&B A— A
r— A4

by deleting the derivable premiss A — A this is equivalent to the rule

I' > A&B
r— A4

which is the usual special elimination rule for &. The other special
elimination rules for all connectives are obtained similarly.

A system of natural deduction for intuitionistic linear logic with
general elimination rules is studied in Negri 2002, thus we shall not
investigate it here any further, but just limit ourselves to observing
that it is obtained, as the previous systems, as a special case of the
uniform calculus.

5. Normalization

In this section we shall give a proof of normalization for the uniform
calculus Ucl. For the uniform calculi with in-built weakening and con-
traction, Ucl* and Ucl,, the definition of normal derivation will have
to be slightly modified. We recall the following:

Definition 5.1 In each rule of the uniform calculi Ucl, the major
premiss is the premiss containing the logical constant of the rule. The
other premisses are called minor premisses. A premiss is an assumption
if it is of the form A — A.

Definition 5.2 A derivation in Ucl is in normal form if all the major
premisses are assumptions.
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18 Sara Negri

For the uniform calculus with implicit weakening and contraction the
definition of normal derivation has to be modified so as to include
those instances of !I*, TE* or !E*, 7I* that correspond to weakening
and contraction for !,?-formulas.

For the calculus Ucl* the definition of normality needs to be modi-
fied by the following:

Definition 5.3 An instance of !E* is simple if its major premiss is an
assumption or it is of the form !A —!A. An instance of 7I* is simple
if its major premiss is an assumption or it is of the form 774 —7A4. A
derivation in Ucl* is in normal form if all the major premisses of rules
other than !E*, ?7I* are assumptions and all instances of |E*, 7I* are
simple.

A similar modification is needed for the definition of normality for the
system Ucl,:

Definition 5.4 An instance of !I* is simple if its major premiss is an
assumption or if its minor premiss is of the form !A — A. An instance
of 7E* is simple if its major premiss is an assumption or if its minor
premiss is of the form A —7A. A derivation in Ucl, is in normal form
if all the major premisses of rules other than !I*, 7E* are assumptions
and all instances of 1I*, 7E* are simple.

The proof of normalization for the uniform calculus is obtained by a
translation between sequent calculus and the uniform calculus such that
cut-free derivations in sequent calculus correspond to normal derivation
in the uniform calculus. Cut-elimination for sequent calculus then yields
the result.

The translation S from the uniform calculus to sequent calculus is
defined by induction on the derivation tree. Axiom A — A is translated
by A = A. A derivation ending with an introduction rule is translated
via the corresponding right rule of sequent calculus and cut and one
ending with an elimination rule via the corresponding left rule and cut,
as follows:

7r T i)
A®BT A T' AL A TV A" B

I
T,0, 0" - A, A A" ®
is translated as
S(m1) S(m2)
I'=A A I"=A"B R S(r)
TA= A®B ® A®B,I'=A t
Ccu

T,I.T" = A, AL A"

varlin.tex; 14/06/2002; 12:44; p.18



Varieties of linear calculi 19

T T2
' >AA®B A,BT' — A’ on
LT — AA

is translated as
S(ra)
A, B, T = A’
S(m)
'=AA®B A®B,I'=A'
LT = AA

L®

cut

All the other rules are translated in a similar way. Observe that no cut
is needed in the translation of normal instances of rules.

The translation of the rules !I*, 7E*, |E*, and 7I* has steps of
weakening and contraction with n as parameter. No cut is needed in
the translation of simple instances of these rules.

We have thus proved:

Proposition 5.5 Given a derivation D in Uecl, Ucl*, or Ucl,, its
translation S(D) is a derivation in Gel+ cut. If D is in normal form,
its translation is a derivation in Gel.

The translation N from sequent calculus to the uniform calculus
is also defined inductively, starting with the translation of the axioms
and proceeding with the translation of the sequent calculus rules. For
instance, the rules for —o are translated as follows: a step of the form

d
AT =AB
T=AA B
becomes
Na)
A—-oB—-A—-oB AT —>AB
T A A B -
and
d1 da
'=A B,A=A
A BT, A=A "
becomes

N(d) N(d»)
A—-oB—+A—-oB I'5A BA—=>A

A -BTL,ASA

—F

In a similar way all the other rules are translated into rules of the
uniform calculus where major premisses are assumptions. The transla-
tions to the uniform calculi with implicit weakening and contraction are
obtained by modifying the translation of the structural rules only. The
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rules of weakening and contraction are translated into simple instances
of the starred !-7 rules. We shall denote by N* the translation to Ucl*
and by N, the translation to Ucl,.

Proposition 5.6 Given a derivation d in Gel+ cut, its translation
N(d) (N*(d), N,(d) resp.) is a derivation in Uecl (Ucl*, Ucl, resp.) If

d is cut free, its translation is a normal derivation.
By Propositions 5.5 and 5.6 and cut-elimination for Gel we have:

Theorem 5.7 Every derivation in Ucl, Ucl*, or Ucl, can be trans-
formed into a derivation in normal form.

By inspection on normal instances of the rules we have the following
subformula properties:

Theorem 5.8 All formulas occurring in a normal derivation in Ucl
or Ucl, are subformulas of the conclusion. All formulas occurring in a
normal derivation in Ucl* are subformulas of the conclusion or !4, 7A
for A subformula of the conclusion.

The same results hold, with obvious modifications, for the uniform cal-
culus Uil and its variants without explicit weakening and contraction.
It is also unproblematic to include the quantifiers in this treatment.

Notes

1. In Prawitz 1965 a translation between cut-free sequent calculus and normal
natural deduction derivations is described. Contexts are treated as sets and the
sequent calculus employed uses a non-invertible LA rule. The translation from
sequent calculus to natural deduction translates right rules by natural deduction
introduction rules that continue a proof tree from the bottom, whereas left rules
are translated by natural deduction elimination rules that expand a proof tree
from the leaves. A normal derivation, in Prawitz’ sense, is thus obtained. The
reverse translation from natural deduction to sequent calculus implicitly uses
steps of cut-elimination, in other words it is not an isomorphic translation. See
also von Plato (2002) for a discussion on Prawitz’ translation. In a forthcoming
work by Pfenning a translation between normal natural deduction and cut-free
sequent calculus is presented in a fully formalized way. The translation from
natural deduction to sequent calculus employs G3-like rules in order to take
account of possible multiple use of assumptions in natural deduction.
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