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Abstract

A sequent calculus is given in which the management of weaken-
ing and contraction is organized as in natural deduction. The latter
has no explicit weakening or contraction, but vacuous and multiple
discharges in rules that discharge assumptions. A comparison to nat-
ural deduction is given through translation of derivations between the
two systems. It is proved that if a cut formula is never principal in a
derivation leading to the right premiss of cut, it is a subformula of the
conclusion. Therefore it is sufficient to eliminate those cuts that cor-
respond to detour and permutation conversions in natural deduction.

§1. Introduction. In natural deduction, what corresponds to weaken-
ing and contraction in sequent calculus, is achieved by permitting vacuous
and multiple discharges in those rules that discharge assumptions. We shall
give a formulation of sequent calculus ‘in natural deduction style,” in which
weakening and contraction work the same way. Discharge in natural deduc-
tion corresponds to the application of a sequent calculus rule that has an
active formula in the antecedent of a premiss. These are the left rules and the
right implication rule. In sequent calculus, ever since Gentzen, weakening
and contraction have been made into steps independent of the application of
these rules. Cut elimination is much more complicated than normalization,
with numerous cases of permutation of cut that do not have any correspon-
dence in the normalization process. Moreover, in usual sequent calculi, due
to mentioned independence, there can be formulas concluded by weakening
or contraction that remain inactive through a whole derivation. These steps
do not contribute anything, they are totally ‘useless’ and the formulas can
either be pruned out, for useless weakening, or left multiplied, for useless
contraction. The calculus we present avoids such useless steps altogether.

The calculus we present is characterized by the following two properties:
First, two-premiss rules have independent contexts, corresponding to the
independent treatment of assumptions in natural deduction. The structure
of a calculus with independent contexts but with explicit rules of weakening
and contraction has been studied in von Plato (2001a). Secondly, weakening
and contraction are rendered implicit by letting any number n > 0 of repe-
titions of an active formula be removed in a logical rule. This formulation of
the rules was found by the first author in connection with studies on linear
logic, Negri (2000).



In the calculus we give, only those cuts need be eliminated that corre-
spond to detour and permutation conversions. These are the cases where
the cut formula is principal in at least the right premiss of cut. In addition,
the cut formula can be principal somewhere higher up in the derivation of
the right premiss of cut, and the cut is permuted up there in one step. For
all other cases of cut, we prove that the cut formula is a subformula of the
conclusion. Therefore the subformula property, Gentzen’s original aim in
the ‘Hauptsatz,” can be concluded by eliminating only those cuts where the
cut formula is principal in the derivation of the right premiss.

§2. The calculus and proof of cut elimination. Contexts will
be treated as multisets, denoted by I';A,0,... . Arbitrary formulas are
denoted by A, B,C, ..., and n occurrences of a formula A by A™. Falsity
L is the constant value of a zero place logical connective. The intuitionistic
single succedent sequent calculus in natural deduction style is denoted by
GN. We shall also briefly indicate a corresponding multisuccedent classical
calculus GM for which the proof of cut elimination goes through in a similar
way. We shall first consider the propositional part of the single succedent
calculus. The logical rules have independent contexts.

GN
Logical axiom:
A=A
Logical rules:
Am,B",I‘#CL& =4 A=B,_,
A&B, T = C A = A&B
A" T=C B"A=C = A =B
AVBT,A=C Tr=AvB®' T=A4vB™
r=4 B”,A:>CL Am,F:>BR
ASBT,A=C T=A>B "
10"

The formula with the connective is principal in a rule, the other shown
formulas are active. For 1, we write a zero premiss rule instead of an
axiom, to emphasize that 1, too, has a left rule with principal formula 1.
The left rules L&, LV and LD as well as RD have instances for any
m,n > 0. For example, from L& with m = 1,n = 0 we get the first
of Gentzen’s original left conjunction rules, with premiss A,T" = C. We
say that formulas A and B are used in these rules. Whenever m = 0 or
n = 0 in an instance, there is a vacuous use, corresponding to weakening,



and whenever m > 1 or n > 1, there is a multiple use, corresponding to
contraction.

The intuitionistic calculus G0i of von Plato (2001a) is the same as GN
with the exponents in the rules removed and with explicit weakening and
contraction as primitive rules.

The rule of cut is
'=>A AA=C

IA=~<C

Cut

DEFINITION 1. If a multiset A is obtained from T' by multiplying formulas
in ', where zero multiplicity is also permitted, A is a multiset reduct of T'.

The relation of being a multiset reduct is reflexive and transitive. We also
call a sequent a reduct of another if its antecendent is a multiset reduct.
These reducts are generated by steps of cut elimination, in the same way
as assumptions are multiplied in the conversions to normal form in natu-
ral deduction. In usual cut elimination procedures, once the cut has been
permuted up, the original antecedent of the conclusion of cut is restored by
weakenings and contractions following the permuted cut. In our calculus,
weakening and contraction are not explicitly available, but the restriction is
not essential:

PROPOSITION 2. If in the derivation of T' = C in GN+Cut the sequent
A = D occurs and if the subderivation down to A = D is substituted by a
derivation of A* = D where A* is a multiset reduct of A, then the derivation
can be continued to conclude T'* = C with T'* a multiset reduct of T.

PROOF: It is sufficient to consider an uppermost cut that we may assume
to be the last step of the whole derivation. First consider the part before
the cut, having only axioms and logical rules. Starting with the derivation
of A* = D, the derivation is continued as with A = D, save for the steps
that use formulas. It is enough to consider such rules when one premiss
is A* = D. If in the original derivation a formula from A was used that
does not occur in A*, a vacuous use is made, and similarly for formulas that
occur multiplied in A*, as compared to A, a multiple use is made.

It remains to show that the conclusion of cut can be replaced with a
sequent having a multiset reduct as antecedent. Let the original cut con-
cluding I' = C be

Ih=A ATl.=C
r'y,Toa=C

Cut

where I'y,I's = I, and let the reduced premisses be I'1* = A and A", I'2* =
C. If n =1 a cut with the reduced premisses will give a conclusion with a
multiset reduct of " as antecedent. If n = 0 the conclusion of cut is replaced
by the right premiss. If n > 1, we make n cuts with left premiss I''* = A



in succession and the conclusion of the last cut has a multiset reduct of T’
as antecedent. QED.

The proposition shows two things: 1. It is enough to consider derivability
in GN modulo multiset reducts. 2. It is enough to perform cut eliminations
modulo multiset reducts.

DEFINITION 3. A cut with the premisses ' = A and A, A = C isredundant
in the following cases:

(i) T contains A,

(ii) T or A contains L,

(iii) A = C.

(iv) A contains C,

(v) the derivation of A,A = C contains a sequent with a multiple oc-
currence of A.

THEOREM 4. ELIMINATION OF REDUNDANT CUTS. Given a derivation of
I' = C in GN+Cut there is a derivation with redundant cuts eliminated.

PROOF. In case (i) of redundant cut, if ' contains A, then A, A is a multiset
reduct of I', A and by proposition 2, the cut is deleted and the derivation
continued with A,A = C. In case (ii), the conclusion has L in the an-
tecedent and the derivation begins with 1 = C. In case (iii), if A = C, the
cut is deleted and the derivation continued with I' = C. In case (iv), if A
contains C, the derivation begins with C = C.

Case (v) of redundant cut can obtain in two ways: 1. It can happen
that A has another occurence in the context A of the right premiss, and
therefore also in the conclusion of cut. But in this case, the antecedent A, A
of the right premiss is a multiset reduct of I'; A and by proposition 2, the
cut can be deleted. 2. It can happen that there was a multiple occurrence of
A in some antecedent in the derivation of the right premiss and all but one
occurrence were active in earlier cuts or logical rules. In the former case, if
the right premiss of a cut is A, A’ = C" and A’ contains another occurrence
of A the cut is deleted and the derivation continued from A’ = C’. In
the latter case, using all occurrences of A will give a derivation of A = C.
Again, since A is a multiset reduct of the antecedent of conclusion of cut
the cut can be deleted and the derivation continued from A = C. QED.

Redundant cuts (i)—(iv) have as one premiss a sequent from which an axiom
or conclusion of L1 is obtainable as a multiset reduct. In particular, if one
premiss already is an axiom or conclusion of L_1, a special case of redundant
cut (i)—(iv) obtains.

DEFINITION 5: A cut is hereditarily principal (nonprincipal) in a deriva-
tion if its cut formula is principal in some rule (is never principal) in the
derivation of the right premiss of cut.



PROPOSITION 6. The first occurrence of a hereditarily principal cut formula
in a derivation without redundant cuts is unique.

PROOF. Assume there are at least two such occurrences. But then there is
a sequent with a multiple occurrence of the cut formula and the derivation
has a redundant cut as in case (v) of definition 3. QED.

A principal cut is the special case of hereditarily principal cut, with the cut
formula principal in the last rule deriving the right premiss. The idea of cut
elimination is to consider only hereditarily principal cuts and to permute
them up in one step to the first occurrence of a cut formula A hereditarily
principal in the derivation of the right premiss.

It can happen that the instance of a rule concluding a hereditarily prin-
cipal cut formula had vacuous or multiple uses of active formulas. These
cuts are hereditarily vacuous and hereditarily multiple, respectively:

DEFINITION 7. If a hereditarily principal cut formula is concluded by rule
L& and m,n =0, or by rule LV and m =0 or n =0, or by rule LD and
n = 0, the cut is hereditarily vacuous. If the formula is concluded by L&
and m > 1 orn > 1, or by LV and m,n > 1, or by LD and n > 1, a
hereditarily multiple cut obtains.

We now prove a cut elimination theorem for hereditarily principal cuts. The
proof is by induction on the length of cut formula, with a subinduction on
height of derivation of the left premiss of cut. Length is defined in the usual
way, 0 for L, 1 for atoms, and sum of lengths of components plus 1 for proper
connectives. Height of derivation is the greatest number of consecutive steps
of inference in it. In the proof, multiplication of every formula occurrence
in I' to multiplicity n is written I'".

THEOREM 8. ELIMINATION OF HEREDITARILY PRINCIPAL CUTS. Given a
derivation of ' = C with cuts, there is a derivation of T'* = C with no
hereditarily principal cuts, with T'* a multiset reduct of T.

PROOF. First remove possible redundant cuts. Then consider the first
hereditarily principal cut in the derivation which we may assume to be the
last step. If the cut formula is not principal in the left premiss, the cut is
permuted in the derivation of the left premiss, with its height of derivation
diminished.

There remain three cases with the cut formula principal in both pre-
misses. In each case, if a step of cut elimination produces redundant cuts,
these are at once eliminated.



1. Cut formula is A&B. If m > 0 or n > 0 we have the derivation
A™ B" O = C'

A%B,0 =
T4 A>B,
T.A = A&B A&B,0 = C
T,A,0=C Cut

We make m cuts with I' = A, starting with the premiss A™, B", ©' = (',
and up to B",I'"™,©" = (C’, then continue with n cuts with A = B, up to
the conclusion I'™, A™, ©' = C'. Now the derivation is continued as before
from where A& B was principal, to conclude I'™, A™ © = (|, all cuts in the
derivation being on shorter formulas than in the initial derivation.

If m,n = 0, we have a hereditarily vacuous cut, with ©' = C' the premiss
of rule L&. It is not a special case of the previous since there is nothing
to cut. Instead the derivation is continued without rule L& until © = C' is
concluded.

2. Cut formula is AV B. With A V B principal in the left premiss, assume
the rule is RV{ with m > 0:

A" A= C'" B"0' =

AVB,ALO = Y
Tea é
T= AVB AVB,A,0 = C
ILA,©0=C Cut

We make m cuts with T' = A, starting with the premiss A™, A’ = (',
obtaining I'", A’ = C'. The derivation is continued as before from where
AV B was principal; Where a formula from ©' was used in the original
derivation, there will be a vacuous use. The derivation ends with ', A = C
where A is a multiset reduct of the context A, ©® of the right premiss of the
original cut. All cuts are on shorter formulas than the initial cut. If in the
left premiss the rule was RVy and n > 0, the procedure is similar.

If m = 0, assuming still that the rule concluding the left premiss is
RV1, the cut is hereditarily vacuous and proceeding analogously to case 1 we
continue from the premiss A’ = C' without cuts to a sequent A = C where
A is by proposition 2 a reduct of I'; A, ©. The other cases of hereditarily
vacuous cuts are handled similarly.

3. Cut formula is A D B. With n > 0 the derivation is
A=A B"0O =/

ASB A O =C
A™T = B :
T=45B° A5BA60=C
[LAO=C cut



We first cut m times with A’ = A, starting with A™,T' = B, and obtain
I,A'™ = B, then cut with this n times, starting with B, @' = (', to
obtain I, A'™" = C'. All cuts are on shorter formulas.

The case of n = 0 gives a hereditarily vacuous cut that is handled as in
the previous cases. QED.

COROLLARY 9. SUBFORMULA PROPERTY. If the derivation of ' = C has

no hereditarily principal cuts, all formulas in the derivation are subformulas
of T,C.

PROOF. Consider the uppermost hereditarily nonprincipal cut

I'=sA AAN=(C
A =

Cut

Since A is never active in the derivation of the right premiss, its first occur-
rence is in an axiom A = A. By the same, A = A can be replaced by the
derivation of the left premiss of cut, IV = A and the derivation continued
as before, until the sequent IV, A’ = C’ is reached by the rule originally
concluding the right premiss of cut. Therefore the succedent A is a sub-
formula of I', A’ = C’. Repeating this for each nonhereditary cut formula
in succession, we conclude that they all are subformulas of the endsequent.
QED.

Theorems 4 and 8 and the proof of corollary 9 actually give an elimination
procedure for all cuts:

COROLLARY 10. Given a derivation of I' = C in GN+Cut, there is a
derivation of I'* = C in GN, with T'* a multiset reduct of T.

There are sequents derivable in calculi with explicit weakening and con-
traction rules that have no derivation in the calculus GN, for example,
A = A&A. The last rule must be R&, but its application in GN will
only give A, A = A&A. Even if the sequent A = A& A is not derivable, the
sequent = A D A& A is, by a multiple use of A in the RD rule.

The completeness of the calculus GN is easily proved, for example, by
deriving any standard set of axioms of intuitionistic logic as sequents with
empty antecedents, and by noting that modus ponens in the form

=ADB = A
= B

is admissible: Application of LD to A = A and B = B gives A D B, A =
B, and cuts with the premisses of modus ponens give = B. We also
have completeness in another sense: Sequent calculi with weakening and
contraction modify the derivability relation in an inessential way, for if I' =
C is derivable in such calculi, obviously there is a derivation of I'* = C in



GN, with I'* a multiset reduct of I'. In particular, if = C is derivable in
such calculi, it is derivable in GN.

To extend the calculus to predicate logic, quantifier rules must have
multiplicities in antecedents of premisses, similarly to the propositional case:

Quantifier rules for GN

At/z)™.T'=C I'= A(y/z)
ViA T = C " T=vzd

Ay/z)™ T = C I'= A(t/x)
MAT = C T=Jz4

The variable restrictions in RV and L3 are that y is not free in the conclusion.
The results for propositional logic extend in a straightforward manner to
predicate logic and will not be detailed out here.

§3. A multisuccedent calculus. We give a classical multisuccedent
version of the calculus GN, called GM. It is obtained by writing the right
rules in perfect symmetry to the left rules.

GM
Logical axiom:
A=A
Logical rules:
A" BT = A [= A A™ TI'= A, B"
A&B,T = A © T,0' = A, A, A4B
A"D=A B.T'= A T = A, A™, Bn
AVB,I,T' = A ' T=AAvVB W
= AA B”,I":>AL A™ T = A,B"
ASBT T =>A T=>AADB
1= ALL
A(t/ac)m,I‘iALv I'= A A(y/z)™
VA, T = A I'= A, VzA
Ay/z)™, T = ALEI I'= AA(t/z)™
JzA,T = A '= A 3zA

In von Plato (2001a), a classical calculus called G0Oc was given that is the
same as GM but without the exponents in the rules and with explicit left



and right weakening and contraction.

Similarly to proposition 2, one proves that if in the derivation of I' =
A in GM+ Cut a subderivation of ® = A is substituted by a derivation
of ©* = A* with both contexts reducts of the original ones, then there
is a derivation of I'* = A* with contexts similarly reduced. A proof of
elimination of hereditarily principal cuts and of the subformula property
is obtained similarly to the results for the single succedent intuitionistic
calculus.

The above calculus is complete for classical logic, by the derivation:

A= A

=A,AD 1L
= AV ~A rY

RD

The instance of RD has m =1, n = 0, with I empty, A = A and B = .
More generally, we obtain the full versions of Gentzen’s original left and
right negation rules from LD and RD by suitable choices:

r=AA 1= AT = A

ASIT=A ™ T=SA4A>1L™

§4. Natural deduction. To compare sequent calculus and natural
deduction, the conjunction and implication elimination rules will be formu-
lated as general elimination rules, analogously to the disjunction elimination
rule. The three rules are

1. 2. 1. 2. 1.
[A™], [B"] A" B B
W&E,l.,z AV B CC ¢ VE,1.,2. ADB CA ¢ SE,L.

1.

The rules have instances for any m,n > 0. The notation [A™] stands for m
occurrences of A, all discharged, which is indicated by the square brackets
and number identifying the rule at which the discharge happens. It may
very well happen that there are other occurrences of a formula A among
the assumptions than those discharged in an inference. The discharge of
assumptions is regulated by the principle that no two instances of rules in
a derivation can have a common discharge label (number next to the rule
symbol).

The first of the above general elimination rules is suggested in Schroeder-
Heister (1984), the third in von Plato (2001b). The usual rules come out
as special cases, with C = A and C' = B, respectively, for conjunction, and
C = B for implication. As shown in von Plato (2001b), it is precisely these
special rules that are responsible for the lack of isomorphism of derivations



in sequent calculus and natural deduction. Translations are given there,
between cut-free sequent calculus derivations and normal natural deduction
derivations with general elimination rules, such that translation back and
forth always is the identity. The translations were also extended to non-
normal derivations and derivations with principal cuts.

In order to make transparent the connection between the present sequent
calculus GN and natural deduction, we write the latter in sequent calculus
style: Each formula A in a natural deduction derivation is replaced by the
expression ' = A where I' is the multiset of open assumptions on which A
depends. This variant of natural deduction was first used by Gentzen (1936).
It may resemble sequent calculus proper in appearance but is fundamentally
different as there are no left rules with principal formulas in the antecedent
of the conclusion. We restrict the treatment to the propositional part; The
quantifier rules are handled analogously, with a general elimination rule for
the universal quantifier. A single arrow will be used for the derivability
relation of natural deduction. The natural deduction calculus in sequent
calculus style with general elimination rules is denoted NG:

NG
Rule of assumption:
A— A
Logical rules:
= A A_)B&I ' - A&B Am,Bn,F%C&
T,A > A&B TA>C B
TS A I r - B I r-AvB A" A—~C B",0—->C .
T >AVB 'T 5 AVB ' T,A,0 > C v
A™ T — B s r-4A>B A—-A B"0->C .
T>A>B" T,A,05C K
'— L
I‘—)CLE

The multiplicities for m,n are as for the sequent calculus rules, with m = 0
or n = 0 corresponding to vacuous and m > 1 or n > 1 to multiple discharge.
The notion of a multiset reduct is the same as in sequent calculus.

Derivations in GN differ from those in NG in that non-normal derivations
are already contained in the NG rules. Some cuts correspond to non-normal
steps, namely the principal ones, but for a full correspondence of derivations
in GN and NG, a rule of substitution for NG is needed:

10



r-A AA-C
rA—-C

Subst

THEOREM 11. ADMISSIBILITY OF SUBSTITUTION. If T' — C is derivable
in NG+4Subst, then I'* — C is derivable in NG, where I'* is a multiset
reduct of T.

PROOF: It is sufficient to consider an uppermost substitution, and we may
assume it to be the last step in the derivation of I' — C. Admissibility
of substitution is proved by induction on the height of derivation of the
right premiss A, A — C of substitution. If it is an assumption, A is empty
and A = C, so the conclusion of substitution is equal to the left premiss.
Otherwise the right premiss is concluded by a logical rule. Inspection of
the logical rules shows that the substitution formula always appears in at
least one context of their premisses, and substitution is permuted up until
it reaches an assumption. QED.

The rule of substitution resembles cut but is different in nature. The rules of
natural deduction in sequent calculus style list in the antecendent the open
assumptions, but these are never principal in a rule. Therefore substitution
is like a cut where the cut formula is never principal in the derivation of the
right premiss of cut. Indeed, the above proof of admissibility of substitu-
tion is just another formulation of the proof of elimination of hereditarily
nonprincipal cuts in corollary 9.

In terms of the standard representation of natural deduction, instead of
the sequent calculus style representation, admissibility of substitution just
states that substitution through the putting together of derivations produces
a correct derivation. The rule of cut, on the other hand, is not a rule of the
systems of sequent calculi we have considered. From its admissibility in
these systems follows closure under cut, but only of the class of derivable
sequents, not of derivations.

DEFINITION 12: A derivation in NG is normal if the major premiss of every
elimination rule is an assumption.

Inspecting the rules, we observe that the subformula property for normal
derivations follows.

We shall show that cut-free derivations in GN have the same structure
as normal derivations in NG.

§5. Isomorphic translation between sequent calculus and natu-
ral deduction. An isomorphism between cut-free derivations and normal
derivations will be established through translations in both directions, where
by isomorphism is meant that the order of logical rules is the same. We first
translate from arbitrary, possibly non-normal, natural deduction derivations

11



to sequent calculus, then from cut-free derivations, and finally also cuts will
be translated.

The translation from NG begins top-down with assumptions in which it
is enough to change the arrow. In introduction rules arrows and rule symbols
are changed. When an elimination rule is encountered, say &FE, the step of
inference and its translation are

A™ B A = C
T = A&B A™ B",A — C I = A4B A&B,A=C ©
A C kB T.A=C Cut

The translation of the other cases is perfectly analogous. It is seen that the
order of logical rules is the same in the original and the translation.

If the major premiss of an E-rule is an assumption, the context of the
major premiss is the same as the major premiss formula; In the translation
to sequent calculus it now appears only as the principal formula in the
antecedent of the conclusion of the left sequent rule. (In particular, falsity
elimination leads to the L1 rule.)

Given a derivation in GN with principal cuts only, the above translation
in reverse gives a derivation in NG with the order of logical rules again pre-
served. Translation back and forth, starting from either, gives the identity.
We therefore conclude the

THEOREM 13: Derivations in GN + principal cuts are isomorphic to deriva-
tions in NG.

For normal derivations, the translation of an E-rule produces a left rule and
a cut where the left premiss is an axiom. The right premiss of cut is equal
to its conclusion so that the cut can be deleted. We have

THEOREM 14. Cut-free derivations in GN are isomorphic to normal deriva-
tions in NG.

Cut-free derivations in sequent calculus in natural deduction style turn out
to be the same as normal natural deduction derivations in sequent calculus
style, except for some notational variation and the writing of an assumption
of the form A — A as an extra premiss in NG. It follows that the calculus
GN shares the good and bad aspects of natural deduction, for example, it is
not suited for proof search, whereas inductive proofs on height of derivation
tend to be easier than in calculi supporting proof search.

We still have to consider the translation of derivations with arbitrary
cuts. This is done by cases, depending on whether the cut formula is prin-
cipal in the right premiss or not. The former obtains in four cases, the left
rules. The first one is L&, and the translation was already given above,
and similarly for the other left rules. If the cut formula is not principal in
the right premiss, the cut is translated into a substitution, as nonprincipal

12



cuts do not have any representation in NG without the substitution rule.
This finishes the translation of derivations with cuts into non-normal natural
deduction derivations. We conclude the

THEOREM 15. Derivations in GN+Cut are isomorphic to derivations in
NG+Subst.

In Gentzen’s original work, a translation of natural deduction deriva-
tions, normal in Gentzen’s sense, into sequent calculus is described (sec. V.
§4). Each formula C is first replaced by a sequent I' = C where I' is the
list of open assumptions C' depends on, and then the rules are translated.
The rules &I and VI are translated in the obvious way. Translations of
DI and VE involve possible weakenings and contractions, corresponding to
vacuous and multiple discharges. Whenever in the natural deduction there
are instances of &F and DF, the first phase of the translation gives steps

such as
I' = A&B I'=ADB A=A

=4 I'A=1-B

These are turned into sequent calculus inferences by the replacements

A=A A=A B:>BLD
P#AM?A&B#A? IA>B ASBA=B
FZ}A ut F,AZ}B ut

A normal natural deduction in Gentzen’s sense translates into a sequent
calculus derivation with cuts. These ‘hidden cuts’ are brought about by
the special elimination rules for conjunction and implication but Gentzen
makes no comment about the cuts that the translation to sequent calculus
produces.

Natural deduction in sequent calculus style can be translated into the
more usual notation of natural deduction with nonlocal discharge of as-
sumptions in a way analogous to the translation of sequent calculus to
natural deduction in von Plato (2001b). The translation begins from the
root of a derivation and proceeds step by step until assumptions or L F are
reached. Conjunction and disjunction introductions are translated by writ-
ing the principal formula under the inference line. Implication introduction
is translated by

. 1. :
Am T 5 B [A™],T 5 B

T 5458 " ~ A>B Ot

The translation now continues from the premiss. Conjunction elimination

13



is translated by

. : . 1. 2. .
I 5 A&B A™ B" A C T 5 A&B [A™],[B"],A 5 C
A C B C

The other elimination rules are translated similarly. Finally, we have the
translation of assumptions and of the LE rule:
L

A A ~ A TS50 o ¢t”f

If assumptions without numerical labels are reached, A and L turn into
open assumptions of the natural deduction derivation. Whenever a formula
is discharged, the translation produces formulas with labels. When assump-

7. 2.
tions are reached, we can have [A]—» A and [L]— C with a label in the
antecedent. These are translated into [fll] and %J_E.

It is also possible to define a translation in the other direction, from
nonlocal natural deduction to natural deduction in sequent calculus style.
The translation is analogous to the translation from natural deduction to
sequent calculus given in von Plato (2001b).

It is straightforward to write a multiple conclusion calculus correspond-
ing to the multisuccedent calculus GM, in analogy to the way NG corre-

sponds to GN.

§6. Concluding remarks on normalization. A step of normalization
corresponds to a cut with cut formula principal in the right premiss or both
premisses. Part of the effectiveness of normalization comes from this being
the only situation of convertibility. Instead of transforming, step by step,
a derivation with a nonprincipal cut into one with a principal cut, we have
achieved the same efficient transformation as in natural deduction. Our
method of cut elimination has some analogy to that of Gentzen’s, where
one inductive parameter is the sum of the “left and right rank numbers,”
i.e., the numbers of steps of inference from first occurrences of a cut formula
to the cut. In Gentzen’s procedure, the cut was permuted up, but due to
independent contexts in our calculus, and the deletion of redundant cuts
where the cut formula has a second occurrence in the premiss, a single-
step permutation of cut can be done. Our cut elimination procedure for
a hereditarily principal cut gives a unique result, whereas the step-by-step
permutation up of nonprincipal cuts can usually be done in different ways,
leading to cut-free derivations with varying orders of logical rules.

Our proof of elimination of hereditarily principal cuts gives at once a
proof of normalization for natural deduction, where permutations of cuts
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correspond to either detour conversions, into derivations with shorter con-
version formulas, or permutation conversions, with height of derivation of
major premiss of an elimination rule diminished by one. In the end, major
premisses have become assumptions and the derivation is normal.

Since we use the general elimination rules for conjunction and implica-
tion, permutation conversions can be extended from such conversions for
disjunctions as found by Prawitz (1965), to all elimination steps.

In Prawitz (1971), a simplification of derivations in natural deduction
is suggested, called properly simplification conversion. The convertibility
arises from disjunction elimination when in at least one of the auxiliary
derivations, say the first one, a disjunct was not assumed:

2.
r a [B70
AV B % c VE,2.

The elimination step is not needed, for C is already concluded in the first
auxiliary derivation. With general elimination rules for conjunction and
implication, we analogously have:

rooA I A e

AGB G ASB A ¢
c &E c D

E

In both inferences, C' is already concluded without the elimination rule, and
simplification conversion extends to all elimination rules. In terms of GN,
there is in each of these inferences a (hereditarily) vacuous cut with cut
formula concluded by a left rule in the right premiss. For example, for VE
we have

A=C B"60=C
' AvB AVB,A0=C
IA,0=C

LV
Cut

which converts to A = C, and A is a reduct of the antecedent of conclu-
sion of the original cut. The other two elimination rules lead to similar
conversions. In the notion of vacuous cut, we find the systematic origin of
simplification conversions, extending to all elimination rules.
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