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Abstract

The main result of this paper is a normalizing system of natural de-
duction for the full language of intuitionistic linear logic. No explicit
weakening or contraction rules for !-formulas are needed. By the sys-
tematic use of general elimination rules a correspondence between nor-
mal derivations and cut-free derivations in sequent calculus is obtained.
Normalization and the subformula property for normal derivations fol-
low through translation to sequent calculus and cut-elimination.

Mathematical Subject Classification: 03F52, 03F05 (Keywords: Linear
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1 Introduction

It is well known that a natural deduction formulation for the full language
of intuitionistic linear logic presents difficulties.

In the first place, the coexistence in linear logic of multiplicative and
additive connectives, with corresponding context-independent and context-
sharing rules, impairs the modularity of the logical calculus. Consequently
partial solutions, for the multiplicative fragment only, have been given.

Another difficulty in the formulation of a natural deduction system for
linear logic was pointed out in Wadler (1992). The direct translation of the
context-dependent rule R! of sequent calculus produces a context-dependent
rule of ~introduction, with the undesirable feature that the resulting system
is not closed under substitution.

In the sequent calculus formulation of linear logic the structural rules of
weakening and contraction are permitted only for special formulas and cor-
respondingly, restricted rules of weakening and contraction are given. For
intuitionistic logic the sequent calculus rules of weakening and contraction
are implicit in a natural deduction formulation, in the form of vacuous and



multiple discharge of assumptions. The same implicit treatment of weaken-
ing and contraction cannot be easily extended to linear logic, and therefore
explicit weakening and contraction rules are usually given, even in what are
taken to be natural deduction formulations.

There is no “official” definition of what a natural deduction system
should be, but some guidelines in designing such a system can be inferred
both from the classic literature (Gentzen 1934-35, Prawitz 1965) and from
the desiderata expressed in the various attempts regarding linear logic. The
main features can be summarized in the following seven requirements:

1. The rules are motivated through a constructive semantics, giving the
meaning of the connectives in terms of derivability. Thus each logical
constant has an introduction rule, given by the meaning explanation,
and an elimination rule, justified by the introduction rule through an
inversion principle.

In comparison to sequent calculus there are no explicit structural rules:

2. The substitution rule, corresponding to cut, is admissible and thus not
needed, because the derivability relation of natural deduction has to
be compositional;

3. Also weakening and contraction are not needed, but the same deductive
strength is achieved by permitting vacuous and multiple discharge of
assumptions.

4. The syntax should be as simple and natural as possible.
5. The system should be normalizing.
6. Normal derivations should satisfy the subformula property.

7. Normal derivations in natural deduction should correspond to cut-free
derivations in sequent calculus.

The last point has been open for a long time also for intuitionistic logic
(Zucker 1974, Pottinger 1977). Recently it has been shown by von Plato
that such a correspondence can be achieved for intuitionistic logic by the
use of general elimination rules.

All these questions have been addressed and answered in different sys-
tems proposed in the literature, sometimes at the cost of a complex syntax.
However, there has been no “best” solution with respect to all of the above
requirements and it is generally believed that these are opposing goals that
cannot all be achieved in the same system.

The main result of this work is a system N-ILL of natural deduction
for the full language of intuitionistic linear logic. Each logical constant



has an introduction and an elimination rule, expressed with the standard
notation of natural deduction, closed under substitution and without explicit
structural rules, normalizing and with the subformula property for normal
derivations, with normal derivations corresponding to cut-free derivations in
sequent calculus. Thus our system satisfies all the above seven requirements.
These essential properties are contained in the results 3.2, 3.3, and 4.2-4.5.

The introduction rules for the system are the standard ones (except for
1) and the elimination rules are found by the use of an inversion principle.
A suitable formulation of the rule of !-introduction gives a system with im-
plicit weakening and contraction, closed under substitution. Closure under
substitution is obtained following in part the natural deduction formulation
of the necessitation rule of modal logic, as made explicit for linear logic
by several authors. The structural rules of weakening and contraction for
I-formulas follow as derived rules thanks to the possibility of vacuous and
multiple discharge of !-formulas in the rule of introduction for the !-modality.

The heterogeneous character of elimination rules in standard natural de-
duction, with VE and 3F differing from the other elimination rules, leads to
a difficult definition of normal derivation. By using general elimination rules
the definition is uniform: A derivation is normal when all major premisses
of elimination rules are assumptions.

We define local translations between the sequent calculus ILL and the
natural deduction system N-ILL for intuitionistic linear logic and show that
cut-free derivations are mapped into normal derivations, thus obtaining an
indirect normalization proof. The translation has the important consequence
that normal derivations satisfy the subformula property.

In Section 2 we recall the standard sequent calculus formulation ILL of
intuitionistic linear logic. In Section 3 we review the use of general elimi-
nation rules in intuitionistic logic and discuss its relevance for linear logic.
The rules for the constants 1, T and 0 are shown to be uniquely determined
starting from the rules for ®, & and @. The rules for the modality ! are
discussed and related to previous choices in the literature. The natural de-
duction system N-ILL is presented both in “sequent calculus style” and in a
natural deduction formulation and is shown to be closed under substitution.
The usual rules of weakening and contraction for !-formulas are shown deriv-
able; thus completeness of our system follows. We recall the counterexample
by Troelstra of a normal derivation not satisfying the subformula property
and show that this problem is solved by our approach. In Section 4 we de-
fine a translation between sequent calculus and natural deduction, showing
that cut-free derivations in the sequent calculus ILL correspond to normal
derivations in N-ILL. We apply the translation for obtaining an indirect
proof of normalization and the subformula property for normal derivation.

In the final section we relate our system to other systems in the literature.



2 Preliminaries

We recall a sequent calculus system for Intuitionistic Linear Logic. We use
I, T, A, A’ ... for finite multisets of formulas and A, B, C, ... for arbitrary
formulas. In a sequent the antecedent is a multiset, so that no exchange rule
is needed. As for the linear connectives we conform to Girard’s notation,
but use two-sided sequents. For rules RV and L3 the usual side conditions
on the variable are assumed.

Sequent Calculus for Intuitionistic Linear Logic ILL

Axioms:
A=A =1
0,I'=C =T
Logical rules:
I'=> A A:>BR® A737F:>C L®
I'N'A=AQB A® B,T = C
I=A =B . AT =>C Br=c¢
T = A%B A&BT=C A&BT=C
P=A4 o =B .. Al'sC BTI'sC
T=>AaB Tr=AeB A®BT=C
AT =B '=A BA=C
T 4B A<BT,A=C
rT=cCc Al=C
T =10 ™ AT=C "
= A(y/z) A(t/z), T = C .
T=ved VZA,T = C
L= A(t/z) A(y/z), T = C
T = 3zA wAT=C 7
Structural rules:
r=c r=c MAT=>C
1,I'=C 1AAT=C IAT=C
'=sA AA=C )
[LA=C o

The cut rule can be dispensed with, since we have:
Theorem 2.1 The cut rule is admissible in the system ILL.

The proof essentially uses the method of Gentzen’s original proof of admis-
sibility of cut for intuitionistic and classical logic, by showing how the cuts
can be transformed to cuts on smaller formulas or cuts of less height. The



use of multicut is needed when the right premiss of cut is derived by lc.
Details are given in Section 3.14 of Troelstra (1992).

3 Natural deduction for intuitionistic linear logic

We present the system N-ILL of natural deduction for intuitionistic linear
logic. For convenience of notation, we first use a sequent-style presentation
for the rules of natural deduction, and later give it in the usual natural
deduction style. We write I' = C for the formal derivability relation in
natural deduction, meaning that there is a derivation of C' from the multiset
of open assumptions I'. Each axiom or logical rule of ILL corresponds to an
axiom or logical rule of N-ILL, except the structural rules, which need not
be taken as primitive in N-ILL. Observe that in our system each connective
as well as the modality ! has an introduction and an elimination rule. No
explicit weakening or contraction for !-formulas need be assumed: !w and !¢
are absorbed into !/ and are shown to be derivable.

3.1 General elimination rules

The main novelty of the system is the use of general elimination rules for
all the connectives and for the universal quantifier. We shall give here some
background on the use of general elimination rules in natural deduction.
General elimination rules for intuitionistic logic were introduced in von Plato
(2001, see also von Plato 2000). A thorough exposition of natural deduction
with general elimination rules can be found in Negri and von Plato (2001).

The standard way of justifying introduction rules in proof-theoretical
terms is through the BHK-interpretation of logical constants, which gives the
sufficient grounds for deriving a formula. General elimination rules can then
be obtained from the introduction rules through an inversion principle:
Whatever follows from the sufficient grounds for deriving a formula must
follow from that formula.

In contrast to Prawitz’ inversion principle that only justifies the elimi-
nation rules, this stronger inversion principle uniquely determines the elim-
ination rules, once the introduction rules are given. For instance, given the
introduction rule for conjunction

A B
ANB

N

the elimination rule is determined through the inversion principle. The



grounds for asserting A A B are (derivations of) A and B, thus the rule

|4, B]

AAB C

C AE

is determined. By writing out the multisets of open assumptions and re-
placing the vertical dots with the symbol for the formal derivability relation
F, the rules read as

THA AF+B I'-AANB A BAFC
T,AFAAB T,AFC

The two standard elimination rules for conjunction

I‘I—A/\B/\E1 FI—A/\B/\E2

r-A4 I'EB

are obtained as special cases from the above when C' is A or B, respectively,
with the second premiss derivable. The general elimination rule for A was
first given for a system of intuitionistic logic in Schroeder-Heister (1984).

We shall here extend the treatment of natural deduction based on general
elimination rules to linear logic.

To some extent, the use of general elimination rules has already been
undertaken in linear logic. General elimination rules have been given for &,
analogously to the elimination rule for disjunction, and for ®: These choices
were wellnigh inevitable, the first due to the meaning of disjunction, the
second due to the fact that one cannot project from A ® B as from A&B.

The sufficient grounds for deriving an implication A D B are given by
a derivation of B from A. In the formulation of the general elimination
rule for implication we should have to express that something follows from a
derivation, but there is no way to do this except with the use of higher-level
rules, as in Schroeder-Heister (1984). On the other hand a satisfactory solu-
tion in first-order logic is obtained by noting that if A O B holds, arbitrary
consequences of B are already consequences of A. With this proviso, the
general implication elimination rule for intuitionistic logic is formulated as

TFASDB AFA BIFC
T,AIIFC

DE

which replaces the special implication elimination rule of modus ponens

TFADB AR A
T,AF B

OF



For linear implication we adopt the same elimination rule as for intuitionistic
implication:

TFA—-B AFA BIFC
T,ATFC

—o

In linear logic there are difficulties for obtaining the rules for the context-
dependent connectives, or additives: The grounds for obtaining A& B are
derivations of A and B from the same multiset of open assumptions. Again,
this would lead to a higher-level condition in the elimination rules, not ex-
pressible in first-order logic. The two, instead of one, elimination rules for
the additive conjunction are a way to overcome this problem:

I'+A&B AAFC '+ A&B B,AFC
[AFC ! [AFC

E,

The special elimination rules, i.e., the standard elimination rules of natu-
ral deduction, are special cases of the general elimination rules. For instance,
the first special elimination rule for & follows from the general elimination
rule when the right premiss is the axiom A + A. Modus ponens is similarly
an instance of the general implication elimination rule.

With special elimination rules there is no obvious correspondence be-
tween normal derivations in natural deduction and cut-free derivations in
sequent calculus. A step of the form

' A&B

Tra &
is translated as
M L&
I = A&B A&B=A '
I'= A

thus requiring the insertion of a cut. In the converse translation from sequent
calculus to natural deduction a step of the form

AT =C

A&BT=C ™

is translated into
A&B I+ A&B & B,

A&BF A ATFC
AYB,TFC

subst

where substitution can produce a non-normal derivation.

With general elimination rules no cut is introduced in the translation
from normal natural deduction to sequent calculus, and no non-normalities
arise in a translation of cut-free derivations.



Consider the case, in the process of cut-elimination, where the cut for-
mula is principal in both premisses of cut, for instance

=4 AZ}BR@ A,B,H#C L®
T.A=> A®B A9 B,I=C
T,AI=C eut

By taking the left premiss of cut and the premiss of L® (and renaming the
contexts) we obtain the general elimination rule for ®

T-A®B AB,AFC
T,AFC

By taking the right premiss of cut and the premisses of R®Q, we obtain

A®BTHC AFA TEB
T,AIFC ®

the general introduction rule for ®. General introduction rules are dual to
general elimination rules: The principal formula appears in the antecedent
of one of the premisses (referred to as major premiss), whereas in general
elimination rules the principal formula appears in the succedent of the major
premiss. The semantical justification for general introduction rules can be
given in terms of a dual inversion principle: Whatever follows from a
formula must follow from the sufficient grounds for deriving the formula.
General introduction rules for all connectives of linear logic and for the
modality ? are given in Negri (2000); here we shall use, among general
introduction rules, only the one for !, to be presented in Section 3.3.

3.2 Rules for 1, T, 0

Once we have given the rules for ®, & and @, the rules (axioms) for the
constants 1, T and 0 follow as special cases: since the constants 1, T and 0
are the units of ®, & and @ respectively, their rules are obtained as “nullary”
cases of the rules for the connectives.

For the constant 1, first we formulate rule ®I for a finite set of conjuncts
indexed by I

U; Ti - ®i4;

where |J; I'; denotes the multiset union of the I';. By identifying 1 with

®;A;, where I = (), we single out a special case of the rule where I is the
empty set: the premiss is empty, and the conclusion gives

F1



The elimination rule for 1 is obtained similarly from the general ®-elimination
rule for a finite set of conjuncts
't ®;A; {AZZEI},AFC
LAFC

which gives, for I = (),
T'F1 ARC
LAFC

For the additive unit T, rule &I extended to a finite set

(THA4;:iel}
T F &4,

and specialized to I = () gives
T

for any multiset I" since the premiss of the rule is vacuously satisfied. Rule
& F has no vacuous instance and therefore no elimination rule for T exists.
The rule of falsity elimination is obtained as a special case from the rule

T AFC

which gives, in the 0-ary case

TFO
T,AFC

There is no vacuous instance for ® I, thus no 0-introduction rule. Rule 0F
is quite analogous to the rule of falsity elimination suggested by Prawitz
(1965) for intuitionistic logic

'k 1

re=c
giving as special cases the two forms of axioms of ez falso quodlibet 0, A - C
and 1 F C, for linear and intuitionistic logic, respectively. The use of the
rule of falsity elimination in place of the axiom of ez falso quodlibet allows to
infer anything from falsity at any place of the derivation, not just on top of
it. However, our notion of normal derivation and procedure of normalization
will produce derivations where the premiss of 0F is of the form 0 F 0, and
therefore the rule is only applied immediately below assumptions.



3.3 Rules for !

The sequent calculus rules for the modality ! include two logical rules, in-
troduction and elimination, and two structural rules, weakening and con-
traction. In the natural deduction system N-ILL an introduction and an
elimination rule suffice.

Rule R! of ILL is context-dependent, allowing to infer !C if C can be
inferred from a multiset of exclamative formulas. Its natural deduction
correspondent (often called promotion rule) could be given by

THC
THIC

I

or, in natural deduction style, by

T

G
However, as was first observed by Wadler (1992), the above rule does not
have the desirable property of being closed under substitution, i.e., compo-
sitionality for natural deduction derivations is lost with such a rule. Several
alternatives have been proposed in the literature in order to overcome this
problem (see Benton et al. 1992, Troelstra 1995, Mints 1995).

The introduction rule for ! can be formulated as a general introduction
rule, by following the dual inversion principle: The grounds for deriving !A
are given by a derivation of A from a multiset of exclamative formulas; thus
the rule takes the form.

IATFC AFA
T,JAFC

7

The same rule has been used in Wadler (1992), although with a different
motivation. In order to close the above rule under substitution we modify its
premiss !A F A along the lines suggested for another form of the introduction
rule for ! in Troelstra (1995), and for the necessitation rule of the modal logic
S4 in Bierman and de Paiva (1996), following Prawitz (1965), and obtain

IATFC A FIB ... AyFIB, !Bi,... 1By A
T,AL,.... A FC '

1

or, in natural deduction style

[ALT A A, [Bi,...,B,]

C By ... B, A
C

10



where the formulas !A and !By,...,!B, in brackets are discharged at the
rule.

Together with the above rule one has to add explicit structural rules
which allow to discard and duplicate !-formulas. In their general forms,
rules lw and !c are

LHA Arc . THA 44AFC
T,AFC T,AFC

e

Sequent calculus versions follow when I' = !A. However, one of the main
features of natural deduction, that is, the absence of explicit structural rules,
is lost by such addition. In natural deduction systems for intuitionistic and
classical logic the effect of the structural rules of weakening and contraction
is achieved by means of vacuous and multiple discharge of assumptions. As
shown in von Plato (2001), this works to perfection (only) with general
elimination rules. The obvious adaptation of the method to linear logic
would consist in allowing vacuous and multiple discharge of assumptions
consisting of !-formulas. However, this method only works with context-
independent rules, and thus is not suited for extension to linear logic beyond
the multiplicative fragment. Instead, as shown by Proposition 3.3 below, we
can obtain a system with implicit weakening and contraction by allowing
vacuous and multiple discharge in the generalized rule of !-introduction. We
thus introduce and use the following

A" TFC A FIBi ... AyHBy By, 1By A
T,AL...., A FC '

I

where !A™ denotes m occurrences of the formula !A (zero included).

Rule !E follows the pattern of the other elimination rules.

In the table that follows some axioms and rules are grouped differently
with respect to the table for ILL: In fact, OF is an elimination rule and 17
as well as T are introduction rules with zero premisses. Instances of the
axiom A F A are called assumptions. Rule VI has the condition that y is
not free in I' and y = = or y is not free in A. Rule 3F has the condition
that ¥ is not free in A, C and y = z or y is not free in A.

11



Natural Deduction for Intuitionistic Linear Logic N-ILL

(Sequent calculus style)

Axioms:
AF A
Logical rules:
TEl AFC
F1ar T,AFC
TFoO
THT 1 T,LAFC P
TFA AFB 'HFA®B A/B,AFRC 5
TLAFA®B ° T,AFC ®
THA F}_B&I '+ A&B A,AF—C&E1 '+ A&B B,Al—C&E2
T - A&B T,AFC T,AFC
THA rrp _ THA®B AAFC BAFC
TFrdeB " TFAeB " T,LAFC @
ATFB TFA—-B AFA BIFC
TF4A—-B T,ALFC -
A" DHC A FB ... AHB, 1B, 1B, bA THA AAFC
T,A,.., A, FC ' T,AFC
'+ A(y/z) F'EVzA A(t/z),AFC
TFvzd T,AFC e
T+ A(t/z) F'F3zA A(y/z),A+C
TFagA T,AFC "

Definition 3.1 The height of a derivation in N-ILL is its height as a tree.

We have:

Theorem 3.2 (Closure under substitution) If T' = A is derivable in
N-ILL with derivation of height < n and A, A+ B is derivable with deriva-
tion of height < m, then 'y A - B is derivable with derivation of height
< maz(n,m).

Proof: By induction on the height of the derivation of A,A F B. If the
height is 0, then there are two cases: In the first case, A is empty and B is
A, thus the first premiss gives the conclusion without substitution. In the
second case, B = T and the conclusion is an instance of the axiom of T1.
If the height is greater than 0, we consider the last rule applied in the
derivation of A, A F B. In all the cases substitution is inductively applied to
the premisses, and the rule is applied. We show only one case, all the others

12



being dealt with similarly. Let d be the derivation of T - A, and suppose
A,AFBis A,A’", A" - By ® By, derived by ®I from the premisses A, A’ -
By, A" By, with derivations dy,ds of height h(d;),h(ds), respectively.
By induction hypothesis I', A’ By is derivable with derivation of height

< maz(h(d), h(d1)), and by applying @I, T', A, A’ - B1® B, is derivable with
derivation of height < maxz(maz(h(d),h(d1)),h(d2)) + 1 and the conclusion
follows since max(maz(h(d), h(d1)), h(d2))+1 < max(h(d), max(h(dy), h(d2))+
1). O

We observe that closure under substitution is the property that guaran-
tees that pasting together two proof trees, one with A at the root, another
with A in a leaf, produces another proof tree. This property is usually
assumed without mention, but can fail to hold.

As announced, we have:

Proposition 3.3 The rules lw and !c are derivable in N-ILL.

Proof: Consider the following derivations:

AHIA AFA
AFC THA — AFA
T AFC
IAHA AFA
AJAAFC THA ~ 1AFA %
T.AFC T (m=2)

O

Whereas a sequent calculus style of natural deduction is suitable for
studying the metamathematical properties of the system, it is often more
convenient to use the tree-style presentation for actually drawing inferences.
We include a presentation of N-ILL in the usual natural deduction style.
The axiom is known as the rule of assumption of natural deduction, that
allows to start up inferences.

Observe that the assumptions in context-sharing rules get a label. For-
mulas with the same label are treated as if they were the same formula:
For instance, when a formula with a label is discharged, all formulas with
the same label are discharged at the same time; when an open assumption
with a label is substituted by a derivation concluding the formula, the same
substitution is performed for all formulas with the same label, and the open
assumptions of these identical derivations all get the same label. This is
just a notational convention since the natural deduction style presentation
would not otherwise allow to identify formulas as in the sequent calculus
style presentation.

When formulas with the same label are discharged in a derivation (for
instance in an implication introduction step) we have a form of contraction,

13



hidden in the additive treatment of the context, which differs in character
from explicit contraction for !-formulas.

In elimination rules, the major premiss is the premiss containing the
connective or the constant of the rule in question. The other premisses
are called minor premisses. The assumptions in brackets are discharged as-
sumptions. Discharged assumptions in elimination rules are called auziliary
assumptions.

Natural Deduction for Intuitionistic Linear Logic N-ILL

(Natural deduction style)

Axioms:
A

Logical rules:

r A
i ¢
T 17 C 1E
r
T 0 A
T c %
T A r [ABLA
1 B Ao B 8]
AoB Y c or
I r [A,A r [BA
A B A&B O A&B C
a&B “' c c
T T r [A,A° [B]A?
AgB oh AgB ol Aeb CC < on
[4],T T A [BLI
B A B )1 C
A—oB ! C b

14



[!A".‘],F Ay A, [!Bl,..‘.,!Bn] r [4],A

G 1 e
r P A@/e).A
Aly/=) ved
vod " G VE
I r [Al/=)],A
A(t/z) 354 ¢
2a Y == 3
We observe that the rule T
e}
IC
is derivable in our system as follows (where I' = By,..., B,,)
['By,...,!By]
lC] !By ... B, Oq

IC
and we shall sometimes use the former as a shortcut for the latter.

Definition 3.4 An instance of !I is simple if it is of one of the following

forms:
'1AH'A 'By+'B; ...'B,F'B, 'Bi,....B,FA

IB1,...,1B, F1A
IA™ THC 1AFIA 1AF A
IATFC

where n,m > 0.

Definition 3.5 A derivation in N-ILL is in normal form if all major pre-
misses of elimination rules are assumptions and all occurrences of !I are
simple.

There are several other definitions of normal form in the literature. In
Troelstra (1995) an example of a normal derivation (with respect to detour
and permutation conversions) is given which does not satisfy the subformula
property. The rules used in the derivation are like ours except for —oF which

15



is the usual modus ponens rule, instead of our generalized — F, and the rules
for !, which are

1 n
4], [1An]
! | :
% . .Al,....A!nC C _
The derivation is as follows:
1
[A—(B—-0)] = , \ \
. g A—(B—0() t4] [(B — C)] [1B]
[(A— (B —C))] [4] B—C . B=c " B
(B — () B ['B]
11,3,4
_C s
'B —!IC ’ L6
IA— (IB—!C) '

(A= (B—=0)) = (A—-(B=10) '

The subformula property is violated because the formula !(B — C) does
not appear in the conclusion. In order to avoid this problem Troelstra adds
a conversion to contract the sequence promotion/dereliction rule (1I/!c).
In our approach instead we have a normal derivation with the subformula
property, as follows:

5 1
, B om,
[B — C] B ~ (]
4 6 —FE,2
. 14— (B—C)] 14 c ’
—F,3
(14 — (B — O))] c ’
Q 17 o
_1C s
!B —!IC ’_01.6
A — (IB—10)
—oI,7

It seems that the problem lies in non-normalities hidden in the spe-
cial elimination rule of modus ponens, rather than in the new rules for the
modality ! of linear logic, because also other choices for the modality rules
produce a normal derivation with the desired subformula property.

We shall prove in the next section that every derivation in N-ILL can be
transformed into a derivation in normal form and that derivations in normal
form satisfy the subformula property.

16



4 From sequent calculus to natural deduction and
back: A proof of normalization

We define a translation N from sequent calculus to natural deduction and a
translation S from natural deduction to sequent calculus that gives through
cut elimination a proof of normalization for the system N-ILL. We use for
N-ILL the sequent calculus style notation, so that no discharge labels are
needed.

The translation N is defined inductively, starting with the translation
of the axioms and proceeding with the translation of the sequent calculus
rules, as follows:

A=A ~ AFA

0F0
,L=>C ~ orrc’”

=1 ~ F1

'=T ~ T'FT

dy da N(dl) N(d2)
'= A A:>BR® 'A AI—B@I
ILA= AQB ~ TI.,A+AQ®B
d N¢a)
ABTL=C | A®B+A®B ABTFC
A@BT=C ° ~ A@B,TFC
dy da N(dy) N(d»)
T4 T=>B .. T-A THB
I = A&B ~ T+ A&B
d N(a)
Al=C A%BF AYB ATFC
A&B,T=C ' ~ A&B,TFC !

A derivation ending with L&s is translated similarly to the above one.

Na)

d
= A4 Roy T'HA

T— Ao B ~ TrAeB ™

17



A derivation ending with an application of the rule R®3 is translated simi-

larly.
dy da N(dl) N(dZ)
AT =C B,I‘iC’L AeB+FA®B ATHC B,THC .
AeBr=0 ° ~ A@B,TFC @

d N(a)
AT = B ATFB
T4 -B" ~ TFrA4A—B

dy do N(dl) N(d2)
'sA BA=C A—oBFA—-oB T'FA BAFRC
AoBT,A=C ™ ~ A BT,AFC -
d N
rsc ICHC 1By FIB, ... |ByHB, !Bi,...,1B,+C
=i ® . T FIC s
where I is ! By,...,!B,.
d N(a)
AT=C IAHA ATFC
arsc" ~ —arrc "
For the quantifiers we have the translations
d N(a)
I'= A(y/z) ' A(y/z)
T=vzd % ~ TFvza
d N
A(t/z),T = C VeAFVzA A(t/z),T+C
VAl = ¢ 7~ VZA,TFC v
d N(a)
= A(t/z) L' A(t/x)
T=dz4d © ~ TF 24
d N(a)
A(y/z),I' = C dzAF 3zA A(y/z),THC
AT C 7~ wATFC o

18



Finally, the structural rules of weakening and contraction are translated
through 1F and introduction and elimination rules for !, and cut through
substitution:

d N(a)
rs_c 11 THC

i.rT=Cc ™ ~ 1rrc "

d N(a) IAFIA AR A

r=c . THC 1AFA AT A e,

AT=>C " ~ IATFC '

d Nya) 1AHA AFA,E
14,)AT = C IAIATFC 1AFA AFA "
ATSC ¢ ~ ATFC T (m=2)

di da N(dl) N(dz)

T A AASC TFA AAFC

TLA=C ™ ~ T,ArC ™

We have thus proved:

Theorem 4.1 If d is a derivation of a sequent I' = C in ILL, N(d) is a
derivation of I' = C in N-ILL.

In defining the translation we have also given the translation of the cut
rule. This is not strictly necessary, since cut is an admissible rule of the
system ILL. However, as we shall see in the following section, the transla-
tion of a derivation in N-ILL which is not in normal form produces cuts, so
it is convenient to translate cut as well for having a direct back and forth
translation. On the other hand, the translation of a cut-free derivation in
ILL produces a derivation in N-ILL in which no use of substitution is made.
This is made possible by the full use of the general elimination rules (like the
implication elimination in place of modus ponens, or the general elimination
rules for & instead of the special elimination rules). Other translations in
the literature (cf. Benton et al.) use special elimination rules and substi-
tution has to be used. By inspection of all the cases considered, we note
that in the translation of all the left rules, the major premisses of the cor-
responding elimination rules are assumptions and all occurrences of ! are
simple. Occurrences of R! are mapped into simple instances of I of the first
form, whereas occurrences of !w and !¢ are mapped into simple instances of
the second form. Therefore we have:

Corollary 4.2 If d is a cut-free derivation of a sequent I' = C in ILL,
then N(d) is a derivation of T' = C in N-ILL in normal form.
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The translation S from natural deduction to sequent calculus is also
defined by induction on the derivation tree. We start with the axioms:

AFA ~ A=A

F1 ~ =1

'+T ~ TI'=>T

. S(r)
L0 ., '=0 0,A=C .
[AFC ~ rLA=cCc ©

A derivation ending with an introduction rule is translated by the corre-
sponding right rule of sequent calculus and one ending with an elimination
rule by the corresponding left rule and cut.

S(7r1) S(7r2)

TEA AFPBM r=4 A=B .
T,AFA®B ~ T,A=>A®B
S(m2)
o o S(m) A, B,A=C Lo
r-A®B AB,AFC r+A®B A®B,A=C °
T,AFC T T,A=C o
m 2 S(m) S(m2)
T'HA FI—B&I I'=s A F:>BR&
'+ A&B ~> I' = A&B
S(m)
T e S("rl) —A’ A = C L&
I-A%B AAFC I'= A&B A&B,A = C
T,AFC SN T,LA=C cut

A derivation ending with & Fs is translated similarly by L& and cut.

TE A o,
1A =
rTFAeB " o TsAeB ™

A derivation ending with @15 is translated similarly by R®-.

20



S(m2) S(ns)
S(?Tl) A,A:>C B,A:>C

T+-AeB AAFC B,AFC ; Ir=A6B  AeBA=C
T,AFC RPN T,A=C cut
m S(x)
ATFB AT = B

T4 —~B & ~ T=A4B"

S(m2) S(rs)
o - s S(m) A=A B,H:>CL
TFA—~B AFA BIFC 'sA—oB A—-<BAI=C t‘°
O,AIIFC IS [,AII=C “
s 1 Tn e
A" DCEC TiFBy ... ToHBy Bi,...,1By b A
Ty,....,[,,TFC T~

S(n)
S(T{'l) !Bl,...,!Bn = A R
Iy :>'B1 !Bl,... ,'Bn =14 .t
By,...,!B,, 1 =14

S(”) S(“n) .
A" T=C  Tu=By  1Bply,.. Tpg =4
IAT=C " Ty,....[, =4 o

cut

Pl,...,Fn,Fic

where str denotes applications of !w or !¢, depending on m.

S(m2)
T ) S(Tfl) M L
T'HA A,AI—C' =14 'AA=C ™
TLAFC 7 ~ TLA=>C ™
- Al 5
r T
(y/z) r = A(y/z) -
T'kVzA ~ I'=> VzA
S(71'2)
1 T2 S(Trl) M LY
F'FVzA A(t/z),AFC '=VzA VzA,A=C
T.AFC B T.A=C cut
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7r S(m)
I'F A(t/z) = A(t/z)

TF3zA ' ~ T=3z4 °
S(7r2)
T o S(ﬂ'l) A(y/l‘),A = C
C'F3zA A(y/z),A+C '=3dzA JzA,A=C
T,AFC FL T,A=C et

S(ma)

T T2 S(ﬂ-l) 7A = C lw

TkF1 AFCIE‘ '=1 1’A:>Ccut

LLAFC ~ LA=C

When translating elimination rules the major premisses of which are
assumptions, the translation produces redundant cuts, of the form

A=A AT=C
AT =C

In all such cases the conclusion of cut is equal to the right premiss of cut,
and the cut can simply be removed by deleting the left premiss and the
conclusion, and the derivation continued as before. It is just a matter of
choice whether the removal of redundant cuts should be made part of the
translation or not. Henceforth we shall not distinguish between a cut-free
derivation and a derivation with redundant cuts.

We have:

Theorem 4.3 If 7 is a derivation of T + A in N-ILL, then S(w) is a
derivation of T'= A in ILL. If in addition 7 is in normal form, then S(m)
is cut free.

Proof: The first assertion holds by the definition of the translation given
above. As for the second part, we observe that when translating a derivation
in normal form only redundant cuts are introduced by the translation. For
instance, the translation of a step of &FE; in a derivation in normal form is:

S(m)
A&BF A&B ATFC . A&B= AYB AT=C
A&B,T+C SN A&B,T = C '

It is routine to check that all the other elimination rules, the translation
of which in general requires cuts, are translated without nonredundant cuts
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when major premisses are assumptions. The translation S of a simple in-
stance of I of the first form produces redundant cuts and a step of R!. For
the second form, !w or steps of !¢ are used, depending on m. O

As applications of the translation between sequent calculus and natural
deduction we have:

Corollary 4.4 Every derivation in N-ILL can be transformed into a deriva-
tion in normal form.

Proof: Given a derivation w of I' - A in N-ILL, consider its translation
S(m), which is by Theorem ?? a derivation of I' = A in ILL. By Theorem
?? we obtain a cut-free derivation S(7)" of I' = A, hence by Corollary ??,
N(S(m)') is a normal derivation of T' - A in N-ILL. O

Corollary 4.5 In a normal derivation in N-ILL all formulas are subfor-
mulas of open assumptions or of the conclusion.

Proof: All formulas occurring in a derivation @ of I' - C are also in its
translation S(7), which by ?? is cut free under the hypotheses. O

By the results proved in Thm. ??, Prop. 7?7, Cor. ??, Thm. ??, Cor. 77,
and Cor. ??, we have shown that the system N-ILL fulfils all the seven
criteria for a satisfactory system of natural deduction for intuitionistic linear
logic that have been listed in the Introduction.

Concluding remarks and related work

There is a vast literature on normalization for systems of natural deduc-
tion in intuitionistic linear logic: Valentini (1992) gives a system with proof
terms with a context-dependent !-introduction rule and explicit weakening
and contraction. The elimination rules for ®, & and @ are the same as
ours, whereas —oF is the usual modus ponens. Also Ronchi della Rocca and
Roversi (1997) give a system with context-dependent !I thus satisfying only
a partial substitution property. Weakening is in-built through a generalized
identity axiom and contraction through a shared treatment of the !-part of
the context in the rules for the multiplicatives. There are no rules for 0,
T, 1. Pfenning and Polakow (1999) give a system with implicit structural
rules: The method for absorbing contraction in the logical rules is the ad-
ditive treatment of the context as in the sequent system G3. In the case
of linear logic the additive treatment is for the part of the context made of
I-formulas in the rules for the multiplicative connectives, which leads to a
syntax where the antecedents of sequents consist of two parts, a linear and
an intuitionistic one. A context-free rule of !-introduction permitting clo-
sure under substitution has been given by several authors following the idea

23



from Prawitz’ treatment of S4 (1965): Benton et al. (1993) give a system
with proof terms for the 1,®, —o,!-fragment of intuitionistic linear logic,
with explicit weakening and contraction. The same fragment is considered
by Troelstra (1995), in which contraction is absorbed into !7 through a suit-
able management of multiple occurrences of labels. The implicit treatment
of contraction cannot however be extended to the additives. Mints (1998)
gives a system for 20d_order intuitionistic linear logic, where rules have pre-
misses and conclusions of the form (I')i4, A F C meaning that C is derivable
from !A and A and !A is derivable from I'.

We have here brought natural deduction and sequent calculus closer by
the use of general elimination rules. At the same time the redundancies
caused by sequent proofs are avoided with natural deduction with general
elimination rules: principal cuts correspond to non-normal instances of elim-
ination rules and non-principal cuts (i.e., cuts where the cut formula is not
principal in the right premiss), which are the cause of non-determinism in
the cut-elimination process, are absent in natural deduction.

We mention another trend in the literature, that, instead of modifying
natural deduction, looks for identifications in sequent calculus derivations
for applications in proof search, as in Andreoli (1992) and Howe (1998).

An attempt to identify all possible sequent calculus proofs for classical
linear logic is pursued with proof nets, introduced by Girard (1987), but the
extension beyond the multiplicative fragment has remained unwieldy.

The main novelty of our system N-ILL with respect to the previous in
the literature is the implicit treatment of weakening and contraction working
for the whole system, not just for a fragment, and with no complication of
the syntax, and the use of general elimination rules for all logical constants.
At the same time the system satisfies the main desideratum of a natural
deduction system, namely the subformula property for normal derivations.

Another possibility of absorbing the structural rules in an implicit way
in a system of natural deduction for linear logic consists in allowing multi-
ple and vacuous discharge of !-formulas in rules that discharge assumptions,
thus following more closely what is done for intuitionistic logic. The system
thus obtained satisfies the same properties of N-ILL but at the cost of mul-
tiplication of open assumptions in a derivation in the normalization process,
so we could not regard the system as completely satisfactory. However such
a phenomenon would justify in the resource semantics a slogan such as: The
simpler a proof, the more expensive.

General elimination rules for all the intuitionistic connectives and quan-
tifiers have been introduced by von Plato (2001). General elimination rules
are systematically used in Negri and von Plato (2001) for establishing a di-
rect isomorphism between derivations in natural deduction and in sequent
calculus.

The introduction rule for ! has the form of a general introduction rule.
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General introduction rules are employed in Negri and von Plato (2001) in
a uniform calculus for intuitionistic logic that gives both natural deduction
and sequent calculus as special cases. A uniform calculus for linear logic is
presented in Negri (2000).

A proof of strong normalization for natural deduction with general elimi-
nation rules for intuitionistic logic has been given in Joachimski and Matthes
(2001) by the use of proof terms. A term assignment for our system N-ILL
is left to future work.
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