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Abstract. Starting with a derivation in the refutation calculus CRIP
of Pinto and Dyckhoff, we give a constructive algebraic method for de-
termining the values of formulas of intuitionistic propositional logic in a
counter-model. The values of compound formulas are computed point-
wise from the values on atoms, in contrast to the non-local determination
of forcing relations in a Kripke model based on classical reasoning.

1 Introduction

Systems of terminating sequent calculi for intuitionistic propositional logic were
first given in Dyckhoff (1992) and in Hudelmaier (1992). These calculi have the
property that bottom-up proof search of provable sequents always terminates, a
feature obtained through a refinement of the left implication rule of the usual
cut-free sequent calculi for intuitionistic propositional logic (see Troelstra and
Schwichtenberg 1996 for standard versions of these calculi).

In Pinto and Dyckhoff (1995), a related refutation calculus CRIP was given,
for showing underivability of a sequent I' = A. They proved that for intuition-
istic propositional logic, either the sequent I' = A is derivable in Dyckhoff’s
calculus LIT*, or the antisequent I' # A is derivable in CRIP. For the latter
case, a method was given for constructing a Kripke counter-model. A related
method was developed by Stoughton (1996) for producing small Kripke counter-
models.

We shall here propose an algebraic method for computing the values of com-
pound formulas in a counter-model. The method is constructive, and can replace
the determination of forcing of compound formulas in a Kripke model. In the
latter, classical reasoning on the meta-level is used; Our method, instead, uses a
direct pointwise computation from values on atomic formulas.

In Kripke trees as well as in Heyting algebras, there is no internal notion
for expressing that, say, an element is strictly above another one in the partial
order, but this can only be seen by looking “from the outside”, if at all. We
propose a structure, that of a positive Heyting algebra, that internalizes the
intuitive situation. This is done by requiring a relation a ¢ b, read as “a exceeds
b”, with properties such that the usual partial order comes out as a negation,
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a<b = ~agb. This is quite analogous to the definition of an equality relation
as a negation of apartness. Next, we define a formula A to be invalid if there
exists a valuation v to a positive Heyting algebra such that v(T) ¢ v(A). If not,
A is defined as valid, and we have for all valuations v that v(T) < v(A4). In
von Plato (1997), it is shown that this initially perhaps surprising definition of
intuitionistic validity as a negative notion coincides with the usual definition.
Further, with positive Heyting algebras we can express and prove soundness
of rules of refutation, by showing that if there is a counter-valuation for the
premises, there 1s a counter-valuation for the conclusion.

The paper is organized as follows: We introduce the algebraic semantics of
refutation, and then present the calculus CRIP. In Section 5, we show how to
construct an algebraic counter-model parallel to the construction of a Kripke
counter-model. The key step is the operation of combining (positive) Heyting
algebras that corresponds to the gluing of Kripke models. In Section 6, we show
how the valuations in positive Heyting algebras are computed, and in Section 7
we give some examples; These show concretely how the values of compound for-
mulas are computed from values on atoms, instead of the non-local and classical
determination of forcing in a Kripke model.

2  Positive partial order, lattices and Heyting algebras

We assume given a set with a primitive relation a ¢ b, to be read a exceeds b,
and satisfying the axioms of irreflezivity and splitting:

PPOl. ~aga, PPO2. ag¢gbDagcVeghb.

A set with such a relation is called a positive partial order. Observe that the
relation is not a partial order, for transitivity does not in general hold, but a
relation whose negation is a partial order, defined by:

Definition 1. a ¢ b = ~a ¢ b.

This weak partial order relation is reflexive by PPO1 and transitive by contra-
position of PPO2. As there will be no need for a primitive notion of equality, we
define equality by a = b = a < b & b < a. Thus, our weak partial order is what is
sometimes called a quasi-ordering.

We can further define an apartness relation by a 26 = agbVbga It
has the usual properties, and its negation coincides with equality defined above.
Strict partial order can be defined by a < b = b ¢ a & ~a ¢ b and it is irreflexive
and transitive.

A positive lattice is obtained by adding meet and join operations and the
following axioms to a positive partial order.

MTI ~anbg a, ~anbgb, JNI ~agavh, ~bgavh,
MTU cganb Degavegd, JNU avbgcDagceVbge

Positive Heyting algebras result from adding to a positive lattice a third
construction a—b, to be called Heyting arrow, with the axioms
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PHI ~ (a—b)nra g b, PHU c¢ga—=bDceragb.

The first axiom validates modus ponens, the second, a constructive uniqueness
principle, identifies implication as the supremum of anything that together with
a gives b.

Here we use positive Heyting algebras with a bottom element 0. This is
obtained by the principle

PHB ~0 ¢ q,

and a top element 1 is now defined by 1 = 0—0.

Each of the positive structures is constructively stronger than the correspond-
ing usual structure, because of the presence of splitting and the uniqueness ax-
ioms. But if we define partial order through the negation of excess, the usual
axioms for partial order, lattices and Heyting algebras are obtained by taking
the negative axioms for excess and the contrapositions of the positive ones. For
instance, the axioms for partial order defined negatively are PPO1 and

~agc&~cgbDd~aghb,

and the ones to be added for lattices are M'TI, JNI, and
~ega&~cgbD ~cganb,
~age&~bgeD ~avh g e,

and for Heyting algebras PHB, PHI, and
~caa g b D ~cgasb

If a formula in which all atoms are negated is proved in the theory of positive
Heyting algebras, then it can be proved in the theory with the above axioms. This
conservativity result is proved in Negri (1997) by means of a cut-free sequent
calculus for the theory of positive Heyting algebras. (The ideas and methods of
this proof require too much space to be summarized here).

We say that a map ¢ from a positive Heyting algebra H; to a positive Heyting
algebra Hy i1s a homomorphism of positive Heyting algebrasif it reflects the excess
relation and preserves meet, join, Heyting arrow and bottom, that is, for all
a,be Hi we have

600 ¢80 e
$(anb) = B(@)nd(0),
o) = d(apit),
a—b) = ¢(a)—=¢(b),

1) = 0g,

where 01 and 02 are the bottom elements of H; and Hs, respectively.

é(
é(
é(
¢(0;

If a map ¢ reflects the excess relation, then by contraposition it is mono-
tone with respect to the partial order defined through negation of excess. As a
consequence, the conditions 2-5 can be weakened into the following;:
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2.~ ¢(a)nd(b) £ ¢(anb),
3.~ g(avd) £ g(a)ve(b),
4. ~o(a)=o(b) & p(a—b),
5. ~ ¢(01) ¢ 02.

An isomorphism of positive Heyting algebras is a bijective homomorphism of
positive Heyting algebras.
The following lemma will be used in the proof of proposition 11:

Lemma 2. If Hy and Hs are positive Heyting algebras and ¢ : Hy — Hs and
Y 1 Hi — Hy are maps that reflect the excess relation and are inverses of each
other, then ¢ 1s an 1somorphism of positive Heyting algebras.

Proof. We prove 2/, the other conditions being dealt with similarly.

By bijectivity, we have aab = ¥¢(aab), and thus also Yo (a)apg(b) = Y(anb).
By monotonicity of ¢ we have ~ ¢(¢(a)ad(b)) ¢ Yo(a)aped(b), and therefore
~ Y(p(a)ad(b)) £ é(and). By monotonicity of ¢ and the fact that ¢ is the
inverse of 1, we obtain ~ ¢(a)ag(b) ¢ ¢(anb).

3 Algebraic semantics of refutation

We shall show that positive Heyting algebras lead to a natural formal semantics
of refutation, corresponding precisely to the usual algebraic semantics for deriv-
ability. A wvaluation is, as usually, a homomorphism v : Form — H from the set
of formulas Form (here of intuitionistic propositional logic) to a positive Heyting
algebra H, satisfying the equations

W(A&B) = o(A)ns(B),
v(AV B) = v(A)vu(B),
v(A D B) = v(A)=v(B),
v(L) =0.

Let I" range over finite sets of formulas. We shall write v(I") for the meet of the
values of formulas in I, with v(I") = 1 in case I" is empty.

Definition 3. A formula A is invalid under I', written I' ¥ A, if there is a
valuation v to a positive Heyting algebra such that v(I') ¢ v(A). In this case we
say that v 1s a counter-valuation to I', A.

In particular, a formula A is invalid, denoted by ¥ A, if there is a valuation v to
a positive Heyting algebra such that 1 ¢ v(A). We can also define consistency of
I' internally, by requiring that there is a valuation v for which v(I") ¢ 0. This is
most naturally written as I" ¥ (or, equivalently, I' ¥1).

Definition 4. I'E A if and only if not I' ¥ A.
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We shall say that A is valid under I', or a logical consequence of I". In particular,
Ais valid if not ¥ A, and I' is inconsistent if not I" ¥ .

We emphasize that this order of concepts is essential for reasoning construc-
tively. If a classical meta-logic is used, validity can equally be taken as the basic
notion.

It follows from our definition that I' F A if and only if for all valuations v
to positive Heyting algebras, v(I") < v(A4). In particular, we have that a formula
A is valid if and only if v(A) = 1 for all valuations. This is just like the stan-
dard definition of validity for intuitionistic logic except that it refers to positive
Heyting algebras, and as shown in von Plato (1997), the new notion of validity
coincides with the old one. To give a brief example of a proof of validity, let us
show F A&B D A. So assume there is a valuation v such that 1 ¢ v(A&B D A).
Then 1 ¢ v(A)av(B)—v(A), so by PHU, v(A)av(B) ¢ v(A) which gives a con-
tradiction by MTT. So for all valuations v we have ~1 ¢ v(A&B D A), that is,
1 ¢ v(A&B D A). Observe that the proof is constructive: no reductio ad absur-
dum is used, but the negative definition of validity.

In von Plato (1997), details of the application of positive Heyting algebras
to intuitionistic propositional logic can be found. For example, it is shown that
the Lindenbaum algebras of intuitionistic propositional logic have the structure
of positive Heyting algebras, from which completeness relative to these algebras
follows.

4 Refutation calculi

For us, a refutation calculus is a system of syntactic rules for showing refutability.
Refutability is a positive notion, in contrast to the weak negative notion of
underivability.

We shall here make use of the calculus CRIP of Pinto and Dyckhoff (1995),
with the role of falsum in the rules made explicit (Roy Dyckhoff, personal com-
munication November 1997). In the rules below, an antisequent is an expression
of form I' & A where I') A are finite multisets of formulas. The rules of CRIP,
from Pinto and Dyckhoff (1995, p. 227), are to be read as follows: We start from
an antisequent I' # A at the bottom, and infer sufficient conditions upwards.
If we reach azioms in all leaves of the upward-growing tree, the refutation was
successful. We can then read the tree top-down as a derivation of the initial anti-
sequent as a theorem of CRIP, and, therefore, as a nontheorem of intuitionistic
propositional logic. If not, the sequent 1" = A is derivable in the multisuccedent
calculus LIT* of Dyckhoff (1992).

In the rules of CRIP below, we use P,Q, R, ... for atomic formulas and
A, B,C,... for arbitrary formulas. Two of the rules have conditions, and in
them, an atomic implication is one with an atom as antecedent.
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CRIP:

azriom

PrLDBy,...,Pr DBy, [ A

A B, T'# A rs A A s AB

B Tr»a" Taaias” Taaies?

AT 5 A . B, ' A . I's A AB .
vBT»AY AVBT»2a" T»aAAvE

PBI#A _ COBDOBI#A
PP5BT»A" T(CVD)oBTl=»A

CD(DDB),F#A(Q_ B, I'#& A
C&«D) 5B T »A ") (©oD)>BTl»A

(10)

Ci,D1D>B1,In#D1...Co,DyaD>Bp, [y Dy, I Ey#Fi...I",Epm=+ Fn
I'"sFE DF,...,E,DF, A

(11)

where we use the abbreviations:

I'"=(CyD>Dy)DB1,...,(C,, DDy) DBy, I,
Iy=T"—(C; > D;) D B,.

' A

=5 g x (12)
LO>B,I'# A

The conditions in ariom are that I' contains only atomic formulas, A contains
only atomic formulas or 1, I" and A are disjoint, and each P; is atomic and not
in I

The restrictions in rule (11) are: Each formula in I' is either atomic or an
atomic implication, no antecedent of an atomic implication is equal to an atom
in I', A contains only atoms or L, I" and A are disjoint.

The aziom-rule is a special case of rule (11), with m = n = 0. The conditions
and rule (12) are amendments to Pinto and Dyckhoff (1995). It is possible to
avoid adding rule (12) if in rule (11) 7" is permitted to contain implications with
1 as antecedent.
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5 Construction of counter-valuations

We show how to construct positive Heyting algebras serving as codomains of
counter-valuations for the nontheorems of intuitionistic propositional logic. We
use the calculus CRIP and the construction of Kripke counter-models from
derivations of antisequents in CRIP, to obtain the construction of positive Heyt-
ing algebras and counter-valuations.

We start by recalling the construction of a Heyting algebra out of a Kripke
model (for more details, see Fitting 1969). Let K be a Kripke model, with a
reflexive and transitive relation < and a forcing relation |- between elements
w of K and formulas, with the usual properties.! The algebraic model H(K)
corresponding to K is the collection of the upward closed subsets? of K, with
ordering given by subset inclusion. The meet and join operations are intersection
and union, respectively. The top element 1 is the whole set K, the bottom is the
empty set. The K-valuation v(P) of an atomic formula P is the set of nodes of

the Kripke model forcing P,

Definition 5. v(P)={we K | wlF P}.

We have (Fitting 1969, p. 24):

Proposition 6. H(K) is a Heyting algebra, with v(A) = 1 iff K |- A.

For propositional logic, finite Kripke models suffice for the construction of counter-
models. These are discrete structures, with a decidable partial order.

Whereas finite sets have a decidable membership, subfinite sets, i.e., subsets
of a finite set, do not necessarily have a decidable membership. We therefore
define the Heyting algebra associated to a finite Kripke tree to consist of finite
subsets of the Kripke tree. Then the associated Heyting algebra has a decidable
order, and is indeed a positive Heyting algebra with the excess relation defined
by

UgV =g (FuelU)(ugV).

We therefore have
Proposition 7. If K is a finite Kripke tree, H(K) is a positive Heyting algebra.
The following representation of elements of H(K) will be useful:

Lemma 8. If K is a finite Kripke tree, then every element of H(K) can be
uniquely represented as
U ta

a € F

where 1 a = {be K | a < b}, F is a finite subset of K, and any two distinct
elements of F are incomparable.

! By well known results (see Troelstra and van Dalen 1988, ch. 2.6) we can consider
Kripke models as represented by trees, and call a Kripke tree the lattice structure of
a Kripke model.

2 Recall that a subset U of S is upward closed if, whenever = ¢ S and a < & for some
ae U, then z ¢ U.
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Proof. Immediate.

In the construction of Kripke models, an essential step is the gluing of a finite
number of Kripke models K1, ..., K,. The resulting Kripke model has an initial
world wg with immediate successors given by the initial worlds of the n given
Kripke models. The forcing relation can be modified by the forcing of certain
atoms in the new root wyg.

We shall denote by g(K1,...,K,) the Kripke tree obtained by gluing of
Ky, ..., K,. Our next task is to find the operation on (positive) Heyting algebras
corresponding to gluing, that is, the operation o solving up to positive Heyting
algebra isomorphism the equation

H(g(K1,...,Kn)) = o(H(K1),..., H(Kn)).

For the sake of simplicity, we consider the case of n = 2 only, but what follows
generalizes to any finite number in an obvious way.
Before giving the general construction, we discuss two examples:

Example 9. Let K; be the singleton-set Kripke tree. Then H (K1) is the (pos-
itive) Heyting algebra consisting of two elements

{a}

0

Observe that when one draws diagrams of this kind, one neatly places the points
apart, even though in the theories based on partial order there is no internal
notion to express the visual effect.

Example 10.

{b,e,d}

{e,d}

c d
Ky = \ / H(K,) = / \
b {c} {d}
AN @ /

Observe that K is itself the gluing of two Kripke trees of the first kind, so
H(K»s) =2 H(K1) o H(K1) where o is the operation to be determined.

If we glue together K71 and Ky we obtain
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| c\b/d
N

and the corresponding positive Heyting algebra is (with explicit labels omitted)

g([{l, IX’Q) =

The general construction behind these examples is as follows: Given two
positive Heyting algebras Hy and H,, with respective top elements 1; and 15,
let Hy x Hs be their Cartesian product with excess relation defined by

((1,1,(12) ;{ (bl,bQ) = a1 ;{ b1 V as 7{\ b2

and component-wise meet, join and Heyting arrow, and let HT>—<\H2 be the
lattice obtained by adding an “extra-top” element 1 and extending the excess
relation by posing ~ (a,b) ¢ 1 for a e Hy, be Hy and 1 ¢ (14, 13). It is clear
that in the examples we have

H(Ks) = H(g9(K1,Ky)) 2 H(Ky) x H(K3),

H(g(Ki,K9)) = H(Ky) x H(K3).
Indeed we have, in full generality, that the extra-topped Cartesian product is
the operation on Heyting algebras corresponding to the gluing of Kripke models:

Proposition 11. Let Ki and K4 be finite Kripke trees. Then

—

H(g(K1, K2)) = H(Ky) x H(K3).
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Proof. By lemma 8, an element in H (g(K1, K2)) is either 1 = 1 wg, where wyq is
the root of g(K1, K2), or

UJ teu |J 1o

a€F be F,

where Fi and F5 are finite subsets of Ky and K. The maps

—

¢ H(g(Ky, K1) = H(Ky) x H(K})
Two — 1

UaEFlTa UUbeFZTb'_)(UaeFlTa’UberTb)

—

Y H(Ky) x H(Ky) — H(g9(K1, K1))

ll—)TwQ

(UaEF1Ta)UbEFgTb)'_)UaEFlTa UUbeF2Tb

reflect the excess relation and are inverses of each other, therefore by lemma 2

they give an isomorphism between H (g(K1, K2)) and H(K1) x H(K»).

We adopt from Pinto and Dyckhoff (1995) the following:

Definition 12. A Kripke tree is a strong counter-model to a sequent I' = A if
wn its initial world all the formulas in I' are forced and none of the formulas in

A are forced.
Our corresponding algebraic notion is:

Definition 13. A positive Heyting algebra H with a valuation v is an algebraic
counter-model to a sequent I' = A if for all A in I', we have v(A) = 1 and

1 g \/B € AU(B)‘

Lemma 14. If K is a strong counter-model to I' = A, then H(K), with the
K -valuation as defined in 5, is an algebraic counter-model to I' = A.

As an aside, we recall from Pinto and Dyckhoff (1995) that a Kripke tree is a
counter-model to a sequent I' = A if it has a node in which all formulas in I’
are forced and none of the formulas in A are forced. If K is a counter-model to
I' = A then the positive Heyting algebra H(K) with the K-valuation has the

property that
/\ v(A) ¢ \/ v(B)

Aerl BegA

and we call such a positive Heyting algebra with a valuation satisfying the above
property a weak algebraic counter-model. The relation between algebraic counter-
models and weak algebraic counter-models parallels the relation between strong
counter-models and counter-models, that is, every algebraic counter-model is a
weak algebraic counter-model but not conversely.
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Theorem 15. If I' & A s derivable in CRIP, then there is an algebraic
counter-model to the sequent I' = A.

Proof. Consider the derivation in CRIP of the antisequent I" # A. For each
step of the construction of the Kripke counter-model as given in proposition 1
of Pinto and Dyckhoff (1995), there is a corresponding step of construction of a
positive Heyting algebra and an algebraic counter-valuation, given as follows:

—To the Kripke tree consisting of a single world there corresponds the pos-
itive Heyting algebra consisting of two elements. All atoms that are forced are
evaluated into the top element, the others into the bottom.

—To the gluing of n > 1 Kripke trees K; there corresponds the extra-topped

Cartesian product of Heyting algebras. The atoms forced in the new root are
evaluated into the extra top, the other atoms P into (vy(P),...,v,(P)) where
v;(P) is the K-valuation of H(Kj;). In the special case of an application of rule
(11) with just one premise, and in all other rules, no gluing of Kripke models is
performed, and correspondingly, no extra-topped Cartesian product is taken: an
algebraic counter-model for the premise is also a counter-model for the conclu-
sion.
By proposition 11, the Heyting algebra H resulting from this construction is
isomorphic to the Heyting algebra H (K) associated to the resulting Kripke tree.
Moreover, by lemma 14, H with the K-valuation of H (K) is an algebraic counter-
model to I' = A.

6 Computation of counter-valuations

The proof of theorem 15 prescribes how to construct an algebraic counter-model
starting from a successful CRIP refutation. The positive Heyting algebra that
serves as codomain of the valuation is defined inductively: The starting points
are the two-element Heyting algebras, serving as counter-models for the axioms,
and given n > 1 positive Heyting algebras that serve as counter-models for the
n premises of rule 11, the counter-model for the conclusion is obtained by taking
their extra-topped Cartesian product; The construction also gives the valuation
for atomic formulas. The evaluation of compound formulas can then be done in
a component-wise fashion, but before that a remark on the Cartesian product
of positive Heyting algebras is in order:

If Hy,..., H, are positive Heyting algebras, then the set given by their Carte-
sian product with excess relation given by

(@1,...,an) ¢ (b1,....,bp)=a1 ¢ b1 V... Va, ¢ b,

and meet, join and Heyting arrow defined component-wise, is a positive Heyting
algebra.

Let H be the extra-topped Cartesian product of the positive Heyting algebras
Hy,...,H, and let v be a valuation on atoms. Then for all formulas A, v(A)
is either 1 or (a1,...,an), where a; ¢ H;. For the sake of simplicity we can also
denote by a vector (t1,...,%,) the extra-top and extend the excess relation and
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the meet and join operations of H; by stating that ¢; ¢ a; for all a; ¢ H; and by
posing t;ana; = a; and t;va; = t;. Then valuations can be computed component-
wise, with some care for implication. So assume that v(B) = (b1,...,b,) and
v(C) = (c1,. .., cn) have been computed. We then have:

v(B&C) = v(B)av(C) = (bincy,. .., buacn),
v(BV C) = v(B\vu(C) = (biver, ..., byven).
For v(B 3 C) we distinguish three cases:

If ~o(B) ¢ v(C), then v(A) = (t1, ... tn),

if v(B) ¢ v(C) and v(B) = (t1,...,t,) then v(A) = (c1,...cn),

if v(B) ¢ v(C) and (t1, ... 1,) £ v(B) then v(A) = (bi—seq,...by—cy).

The evaluation is algorithmic and no use of reasoning on the meta-level is needed,
whereas in Kripke models the computation of the values of compound formulas
uses classical reasoning on the meta-level.

7 Some examples of algebraic counter-models

Example 16. (P D Q) V (Q D P), with P and @ distinct atoms:
The antisequent # (P D Q) V (@ D P) has the following CRIP derivation:

(11)
(6)

ariom

P+Q Q=+ P
#>PDQ,QDP
#(POQ)V(QDP)

The Kripke counter-model is obtained by gluing the single-world Kripke mod-
els Ky and Ky, with Ky IF P and K5 IF Q. The algebraic counter-model is
obtained by taking the extra-topped Cartesian product of the corresponding
positive Heyting algebras of two elements

1 =v(Q) 1 = vs(P)

that is,
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The valuation of the atoms 1is

V(@) = (n(Q),v2(Q)) = (1,0),  w(P) = (v1(P),v2(P)) = (0, 1)

and now we can compute

v(PDQ)=(1,0), v(@>P)=(0,1), v((PDQ)V(QDP))=(11),
so that

Lgo((PDQ)V(QDP)).

Example 17. (P> QVR) D (P D Q)V (P D R), with P, @, R distinct atoms:
The CRIP derivation is

ariom ———— ariom

RP%Q QPR
QVR,P2%Q - QVR,P#R
POQRVR,P#(Q POQVR,P#R
POQVR®#PDOQPDOR
PODQVR+%(PDQ)V(PDR)
#(PDOQVR)D(PDQ)V(PDOR)

(")
11

(

(6)

(11)

We get the Kripke counter-model by gluing the two single-world Kripke models,
K1 forcing R and P, and K5 forcing @ and P. Observe that the lower instance of
rule (11) does not require any gluing. Thus, the corresponding algebraic model
is as in example 16, with

o(P)=(1,1)  2(@Q)=(0,1), w»(R)=(1,0).
Therefore

v(QVR)=(1,1), w(PD>Q)=(0,1), »(PDR)=(1,0),
thus

v (PODQVR)=1¢v((PDQ)V(PDR))=(11).



14 Sara Negri and Jan von Plato

Example 18. (~P D QVR) D (~P D Q)V(~P D R), P,Q, Rdistinct atoms:
The CRIP derivation is

azriom

‘ R,~P % Q

Psl ™™ o __QVR~P%Q
(12)

LDQVRP- L ~PDOQVR,~P=3Q

~POQVR+»~PDQ,~PDOR

~PDQVR=%(~PD>Q)V(~PDR)

#(~PDOQVR)D(~PDQ)V(~PDR)

(5) —————— aziom

~P%R "
10y 9 (4)
QVR~P#R

(6)

(11)

We construct the Kripke counter-model to the end-antisequent by gluing the
three Kripke trees forcing, respectively, P, R, and ). The corresponding positive
Heyting algebra is the extra-topped cube

where v(P) = (1,0,0), »(R) = (0,1,0), »(Q) = (0,0,1). We can now illus-
trate the ease by which the values of compound formulas are determined in the
algebraic semantics, by simple computation from values of atomic formulas:

v(~P)=(1,0,0)—(0,0,0) = (0,1,1)

v(@VR)=(0,1,1)

v(~PDQVR)= (0,1,1)—>(0,1,1) 1

U(NPDQ) (al (Oa ,1):(1, ) )

v(~P D> R)=(0,1, ) (0,1,0) = (1,1,0)
v((~PDQ)V(~PDR))=(1,0,1)v(1,1,0)=(1,1,1)
v((~PDQVR)D(~PDQ)V(~PDR))=1=(1,1,1)=(1,1,1).

8 Concluding remarks

We have given an algebraic semantics of refutation and replaced the determina-
tion of forcing of formulas in a Kripke model by a straightforward component-
wise computation. Kripke models have been used only for showing the correctness
of the construction, that parallels the construction of a Kripke counter-model out
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of a CRIP derivation. In a further work we plan to study the direct construction
of counter-valuations avoiding Kripke models altogether.

Positive Heyting algebras and the definition of validity as a negative notion
have been here introduced for systematic reasons, even if they could have been
avoided in the case of intuitionistic propositional logic because of decidability.
We hope to extend the algebraic semantics and counter-valuation construction
to intuitionistic predicate logic and expect that the use of positive Heyting alge-
bras will result in a computationally stronger semantics as compared to Kripke
models.

Implementation of our algorithm of counter-model construction should present
no particular difficulties.

We are indebted to Roy Dyckhoff for his useful comments and advice. Thanks
are due to Paul Taylor for his package for drawing diagrams in ETEX.
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