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CUT ELIMINATION IN THE PRESENCE OF AXIOMS 

SARA NEGRI AND JAN VON PLATO 

For Oiva Ketonen's 85th birthday 

Abstract. A way is found to add axioms to sequent calculi that maintains the eliminability 
of cut, through the representation of axioms as rules of inference of a suitable form. By 
this method, the structural analysis of proofs is extended from pure logic to free-variable 
theories, covering all classical theories, and a wide class of constructive theories. All results 
are proved for systems in which also the rules of weakening and contraction can be eliminated. 
Applications include a system of predicate logic with equality in which also cuts on the equality 
axioms are eliminated. 

?1. Introduction. The use of sequent calculus for the analysis of proofs 
outside pure logic is considered rather problematic, as the addition of non- 
logical axioms usually destroys the eliminability of cut. A simple example is 
given by Girard [7, p. 125]: with => standing for the sequent arrow, let the 
axioms have the forms = A D B and > A. The sequent =# B is derived 
from these axioms by 

A =A B => B 
?=AD B A,A D B = B 
=B A Cut > B Cut 

Inspection of sequent calculus rules shows that there is no cut-free derivation 
of = B, which leads Girard to conclude that "the Hauptsatz fails for systems 
with proper axioms." (Ibid.) More generally, the cut elimination theorem 
does not apply to sequent calculus derivations having premisses that are not 
logical axioms. 

Another way of adding axioms, already used by Gentzen [5, sec. 1.4], is 
to add "mathematical basic sequents" which are (substitution instances of) 
sequents P1, ..., Pm => Q, ... . Q Here Pi, Qj are atomic formulas 
(typically containing free parameters). By Gentzen's Hauptsatz, the use of 
the cut rule can be pushed into such basic sequents. Following this line of 
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thought in our example, let us take as basic sequents P = Q and => P. It is 
to be expected that cut elimination will not extend to derivations with basic 
sequents as premisses: indeed, = Q is derived by 

=P P=Q 
CQut 

and there is no cut-free derivation of = Q unless it was already assumed as 
a basic sequent. 

A third way of adding axioms, first found in Gentzen's consistency proof 
of elementary arithmetic in [4, sec. IV.3], is to treat axioms as a context F, 
and to relativize all theorems into F, thus proving results of form F = A. 
Now the sequent calculus derivations have only logical axioms as premisses, 
and cut elimination applies. For our example, we derive P, P D Q = Q 
without cut by 

P=P Qe=Q 
P, PDQ Q LD 

But structural analysis of proofs usually breaks down in this approach, 
as the main results of purely logical sequent calculus proof theory do not 
extend to sequents with a context. 

We shall here propose a fourth way of adding axioms to sequent calculus, 
namely, in the form of nonlogical rules of inference. When formulated in a 
suitable way, cut elimination will not be lost by such addition. This was first 
realized in Negri [10] for the intuitionistic theories of apartness and order. 
By converting axioms into rules, it becomes possible to prove properties of 
systems by induction on the height of derivations. 

Our method of extension by nonlogical rules works uniformly for systems 
based on classical logic. For constructive systems, there will be some special 
forms of axioms, notably (P D Q) D R, that cannot be treated through 
cut-free rules. 

Gentzen's original subformula property is lost; instead, we have a subfor- 
mula property stating that all formulas in a derivation are either subformulas 
of the endsequent or atomic formulas. 

To give an idea of the method, consider again the above example. In 
general, axioms are converted into rules by inspecting the left rule that 
matches the logical form of the axiom. The rules added to the logical ones 
will have only atomic active formulas. With P and Q atomic formulas and 
C an arbitrary formula, P D Q is rendered into a rule by stipulating that if 
Q = C, then P = C, and P is rendered into a rule by stipulating that if 
P > C, then > C: 

Q C P C 
P C C 
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The sequent = Q now has the cut-free derivation 

Q Q 
P Q 

Observe that by putting Q and P for C in the two rules, the basic sequent 
P = Q and the axiomatic sequents => P D Q and =X P follow. But the 
other direction requires cuts, as is to be expected. 

The rule of contraction permits to eliminate duplications of formulas in 
the antecedents of sequents, to conclude A, r => C from A, A, F = C. This 
rule is often as "harmful" for structural proof analysis as the rule of cut, as 
it permits an unending bottom-up proof search. Contraction is sometimes a 
built-in feature of sequent calculi, through the treatment of contexts as sets, 
or else assumed as a rule. Here we shall treat contexts as multisets and prove 
applications of contraction to be eliminable. 

?2. From axioms to rules. Using classical logic, we find that all free- 
variable axioms can be turned into rules of inference permitting cut elimi- 
nation. The constructive case is more complicated, and we shall deal with it 
first. 

2.1. Extension of constructive systems with nonlogical rules. We shall be 
using the intuitionistic multi-succedent sequent calculus for propositional 
logic of Dragalin [2]. We call it here G3ipm, in conformity with Troelstra 
and Schwichtenberg [12] whose notation we also follow, except that we use D 
for implication. Atomic formulas will be denoted by P, Q, R, ..., arbitrary 
formulas by A, B, C, ..., and contexts (finite multisets of formulas) by F, 
A, ?,.... 

G3ipm 
Axioms: 

P,Fr=A,P I,rF A 
Rules: 

A,B,Fr=A rF= A,A rF A,B 
L& R& 

A&B, r A F r A, A&B 

A,F=A B,r=A F r , A,AvB 
A B, Fr = A F r A A, A B 

ADB,r=F A B,rF=A A,F=~B 
LD RD A D B,r =. A LD F= A,A D B 

REMARKS. Axioms are to be considered rules with zero premisses. The 
first axiom is restricted to atomic formulas, the second instead applies to 

420 



CUT ELIMINATION IN THE PRESENCE OF AXIOMS 

arbitrary formulas. It is essential that I is not considered an atomic formula, 
but a zero-place logical operation. None of the usual structural rules of 
sequent calculus need be assumed in the above calculus. Exchange rules are 
absent due to properties of multisets, and the other structural rules, those 
of weakening, contraction, and cut, can be eliminated. The left implication 
rule has a repetition of the principal formula A D B in the left premiss; this 
is a crucial ingredient in the proof of admissibility of contraction. 

The rules of weakening, contraction and cut are formulated as follows: 
F:=>A LW F=>A RW A,A,F=-LA 

A,F A F A, A ,A,F r A 

=>^A, ^RAC ACut 
F ==> A,A F,F' ==> A,A' 

In general, a rule with the sequents S, ... , Sn as premisses and the sequent S 
as conclusion is admissible if, whenever an instance of S1i, ..., S, is derivable, 
the corresponding instance of S is derivable. The rule is invertible if each of s 
is admissible. All rules of G3ipm except those for implication are invertible, 
but RD is invertible in case A is empty. Finally, LD is "semi-invertible": 
inference from A D B, r = A to the first premiss A D B, F = A is not 
admissible, inference to the second premiss B, F = A instead is admissible. 
For more details, see [12]. 

In a proof of admissibility it is assumed that in a derivation there is only 
one instance of the rule in question, the last one. Such a proof establishes also 
the eliminability of the rule in any derivation, by induction on the number 
of occurrences of the rule. The inductive step consists in the application of 
admissibility to the topmost instance of the rule. 

In adding nonlogical rules representing axioms, we will be guided by the 
following 

PRINCIPLE 2.1. In nonlogical rules, the premisses and conclusion are se- 
quents that have atoms as active andprincipalformulas in the antecedent, and 
an arbitrary context in the succedent. 

The most general scheme corresponding to this principle is 
Ql,F => A ... Q,r A Reg 

Pi, ...,Pm,F, r> A 
where F, A are arbitrary multisets and P1, ... Pm, Qm . Q .Qn are fixed 
atoms, and the number of premisses n can be zero. 

Once we have shown structural rules admissible, we can conclude that a 
rule admitting several atoms in the antecedents of the premisses reduces to 
as many rules with one atom, for example, the rule 

Q1, Q2, r = A R, r = A 
P,F =r A 
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reduces to 
Ql,rF=A R,rF A Q2, F=A R,F>A 

P, F A P, F A 
The second and third rule follow from the first by weakening of the left 
premiss. In the other direction, weakening R, F = A to R, Q2, F =X A we 
obtain the conclusion P, Q2, Fr = A from Q, Q2, Fr = A by the second rule, 
and weakening again R, F = A to R, P, F => A, we obtain by the third rule 
P, P, r = A which contracts to P, F =- A. This argument generalizes, so 
we do not need to consider premisses with several atoms. 

The full rule corresponds to the formula P1 & ... & Pm D Q1 V ... V Qn. 
In order to better see what forms of axioms the rule-scheme covers, we write 
out a few cases, together with their corresponding axiomatic statements in 
Hilbert-type calculus. We also write a suggestive identifier for each rule. 
Omitting the contexts, the rules for Q & R (Et), Q V R (Vel) and P D Q (Si) 
become 

Q= R =A Q= A R V=A Q =A - , Et Vel Si =>A =A =A P=>A 
The rules for Q (Atom), ~P (Non) and ~ (P1 & P2) (Asym) are: 

Q~A Q- Atom Non Asym =^A P ==. A P1, P2 X=> A 
We define the class of regular sequents by the following 
DEFINITION 2.2. A sequent is regular if it is of form 

P1 ... Pm = Q1 ,... ,Qn ,, ... , 
where the number of l's, m and n can be 0, and Pi # Qj for all i, j. 

Regular sequents are grouped into four types, each with a corresponding 
formula trace: 

1. m > O, n > , trace P &...& PmD Qi V ... V Qn,, 
2. m = 0, n > O, trace Q1v ...V Qn, 
3. m > 0, n = O, trace (P1 &... & Pm), 
4. m = 0, n = 0, trace _. 

Regular sequents are precisely the sequents that correspond to rules (lat. 
regulae) following our rule-scheme. 

Given a sequent =? A, we can perform a bottom-up decomposition by 
means of rules of G3ipm. If the decomposition terminates, we reach leaves 
that are either logical axioms or regular sequents. Among such leaves, we 
distinguish those that are reached from = A by "invertible paths," i.e., paths 
that never pass via the left premiss of a LD-rule, nor via an instance of RD 
with nonempty context A in its conclusion, and call them invertible leaves. 
The other leaves are called noninvertible. 

We now define the class of regular formulas: 
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DEFINITION 2.3. A formula A is regular if it has a decomposition that 
leads to invertible leaves that are either logical axioms or regular sequents 
and noninvertible leaves that are logical axioms. 

We observe that the invertible leaves in a decomposition of = A are 
independent of the order of decomposition chosen, since any two rules 
among L&, R&, LV, RV, and RD with empty right context A, commute 
with each other and each of them commutes with the right premiss of LD. 
This uniqueness justifies the following 

DEFINITION 2.4. For a regular formula A, its regular decomposition is the 
set {A1,..., Ak }, where the Ai are the formula traces of the regular sequents 
among the invertible leaves of A. The regular normal form of a regular 
formula A is AI &... & Ak. 

Note that the regular decomposition of a regular formula A is unique, and 
A is equivalent to its regular normal form. Thus, regular formulas are those 
that permit a constructive version of a conjunctive normal form, one where 
each conjunct is an implication of form P1 &... &Pm D Q V... v Qn, instead 
of the classically equivalent disjunctive form - P1 V... V Pm V QI V... V Qn. 
The class of formulas constructively equivalent to usual conjunctive normal 
form is strictly smaller than the class of formulas having regular normal 
form. The following proposition shows some closure properties of the latter 
class of formulas: 

PROPOSITION 2.5. 

(i) If A has no D, then A is regular, 
(ii) If A, B are regular, then A & B is regular, 

(iii) If A has no D and B is regular, then A D B is regular. 

PROOF. (i) By invertibility of the rules for & and V. (ii) Obvious. (iii) Start- 
ing with RD, a decomposition of => A D B has invertible leaves of the form 
Pi,..., Pm, F = A, where P1, ..., Pm are atoms (from the decomposition 
of A) and F = A is either a logical axiom or a regular sequent. Thus also 
Pi, ..., Pm, r = A is either a logical axiom or a regular sequent. -1 

From the two cases of noninvertible rules we see that typical formulas 
that need not be regular are disjunctions that contain an implication, and 
implications that contain an implication in the antecedent. But sometimes 
even these are regular, such as the formula (A D B) D (A D C). 

In the next section we show that the class of regular formulas consists 
precisely of the formulas the corresponding rules of which commute with 
the cut rule. The reason for adopting Principle 2.1 will then be clear. 

2.2. Extension of classical systems with nonlogical rules. We use the clas- 
sical multisuccedent sequent calculus G3cp in which all structural rules are 
built in. It is obtained from G3ipm, in the notation of the table above, by 
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permitting in the R > rule a premiss with succedent A, B, thus removing the 
intuitionistic restriction to one formula, and by having in the first premiss of 
the LD rule A, A as succedent. 

All rules of G3cp are invertible, but instead of analysing regularity of 
formulas through decomposability, we can use the existence of conjunctive 
normal form in classical propositional logic: each formula is equivalent 
to a conjunction of disjunctions of atoms and negations of atoms. Each 
conjunct can be converted into the classically equivalent form Pi &.. .&Pm D 
Q v ... v Qn which is representable as a rule of inference. We therefore have 

PROPOSITION 2.6. All classical quantifier-free axioms can be represented by 
formulas in regular normalform. 

Thus, to every classical quantifier-free theory, there is a corresponding 
sequent calculus with structural rules admissible. 

2.3. Conversion of axiom systems into systems with rules. Conversion of a 
Hilbert-type axiomatic system into a Gentzen-type sequent system proceeds, 
after quantifier-elimination, by first finding the regular decomposition of 
each axiom, and then converting each conjunct into a corresponding rule 
following Principle 2.1. Right contraction is unproblematic due to the ar- 
bitrary context A in the succedents of the rule scheme. In order to handle 
left contraction, we have to augment this scheme. So assume we have a 
derivation of A, A, F = A, and assume the last rule is nonlogical. Then 
the derivation of A, A, F X= A can be of three different forms. First, nei- 
ther occurrence of A is principal in the rule; second, one is principal; third, 
both are principal. The first case is handled by a straightforward induction, 
and the second case by the method, familiar from the work of Kleene and 
exemplified by the LD rule above, of repeating the principal formulas of the 
conclusion in the premisses. Thus, the general rule-scheme becomes 

P1,...,Pm, ,r A ... P,... ,Pm, Qn,r AR 
PI,...,Pm,rx A Reg 

Here Pi, ..., Pm in the conclusion are principal in the rule, and Pi, ..., Pm 
and Q1 ... , Qn in the premisses are active in the rule. Repetitions in the pre- 
misses will make left contractions commute with rules following the scheme. 
For the remaining case, with both occurrences of formula A principal in 
the last rule, consider the situation with a Hilbert-type axiomatization. We 
have some axiom, say ~ (a < b & b < a) in the theory of strict linear order, 
and substitution of b with a produces , (a < a & a < a) that we routinely 
abbreviate to ~ a < a, irreflexivity of strict linear order. This is in fact a 
contraction. For systems with rules, the case where a substitution produces 
two identical formulas that are both principal in a nonlogical rule, is taken 
care of by the 
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CLOSURE CONDITION 2.7. Given a system with nonlogical rules, if it has a 
rule where a substitution instance in the atoms produces a rule ofform 

Pi, ., Pm-2, P, P, Ql, F A ... P1I..., Pm -2, P, P, Qn, F = A 
Pi,...,Pm-2, P, P, F A 

then it also has to contain the rule 
PI ., I Pm-2, P, Ql,r = A ... Pi, Pm-2, P, Qn, r => A 

P1,..., Pm-2, P, F =A Reg 

This condition is unproblematic, since the number of rules to be added to 
a given system of nonlogical rules is bounded. Often the closure condition is 
superfluous; for example, the rule expressing irreflexivity in the constructive 
theory of strict linear order is derivable from the other rules. 

?3. Admissibility of cut for sequent systems with rules. In this section we 
shall prove the admissibility of the structural rules of weakening, contraction 
and cut for extensions of logical systems with nonlogical rules of inference. 
We shall deal in detail with constructive systems, and just note that the 
proofs go through for classical systems with inessential modifications. 

We shall denote by G3ipm* any extension of the system G3ipm with rules 
following our general rule-scheme. Starting from the proof of admissibility 
of structural rules for G3ipm in the style of Dragalin (see [2], also [3] for a 
more detailed exposition), we then prove admissibility of the structural rules 
for G3ipm*. This proof is a generalization of the method, found in Negri 
[10], of extending admissibility of structural rules to the calculi of apartness 
and constructive order. 

We say that an admissible rule is height-preserving if whenever the premisses 
are derivable with derivation of height < n then the conclusion is derivable 
with the same bound on the derivation height. 

PROPOSITION 3.1. The rules of weakening 
F A F=A RW A,Fr => A w A, A 

are admissible and height preserving in G3ipm*. 
PROOF. For left weakening, since the two axioms and all rules have an 

arbitrary context in the antecedent, adding the weakening formula to the 
antecedent of each sequent will give a derivation of A, 1r A. For right 
weakening, adding the weakening formula to the succedents of all sequents 
that are not followed by an instance of the R D rule will give a derivation of 
F=r A,A. -1 

The proof of admissibility of contraction rules and the cut rule for G3ipm 
requires the use of inversion lemmas (see [12, p. 66]). We observe that all 
the inversion lemmas holding for G3ipm hold for G3ipm* as well. This is 
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achieved by having only atomic formulas as principal in nonlogical rules, a 
property guaranteed by the restriction given in Principle 2.1. 

THEOREM 3.2. The rules of contraction 
r,A,A A rF A,A,A 

F, A A rF = A,A 
are admissible and height-preserving in G3ipm*. 

PROOF. For left contraction, the proof is by induction on the height of the 
derivation of the premiss. If it is an axiom, the conclusion is also an axiom. 

If A is not principal in the last rule (either logical or nonlogical), apply 
inductive hypothesis to the premisses and then the rule. 

If A is principal and the last rule is logical, for L& and LV apply height- 
preserving invertibility, inductive hypothesis and then the rule. For LD apply 
inductive hypothesis to the left premiss, invertibility and inductive hypothesis 
to the right premiss, and then the rule. If the last rule is nonlogical, A is an 
atomic formula P and there are two cases. In the first case one occurrence 
of A belongs to the context, another is principal in the rule, say A = Pm 
(= P). The derivation ends with 

PI ..., Pm-1, P, Q, P, F' => A ... P1, .. ., P P Qn, P, th =r A 
P1, . . ., Pm-i, P, P, dF v Aeg 

and we obtain 
P1i, ...,Pm-, P, Q1, P, F = A P1, . . ., Pm-1, P, Qn, P, r = A Ind 
P1,..., Pm1, P, Q,t A ... Pn i,... P 1, P, Qn, rs ^ A 

Reg 
P1,...,Pm_i,P,rF X A 

In the second case both occurrences of A are principal in the rule, say 
A = Pm -1 = Pm = P, thus the derivation ends with 

P1 ...P -2, P2, P, QP, F1 r A ... Pi,..., Pm-2, P, P, Qn, F' = A R Reg 
P, ? ? ? , Pm-2, P, P,rt X A 

and we obtain 
P1, . . ., Pm-2, P, P, Ql, F : A P1,..., Pm,-2, P, P, Qn, F := A 

Ind Ind 
P1,..., Pm-2, P, Qe1,r F r A ... P1,..., Pm-2, P, Qn,'t F ^ 

Reg 
Pi,..., ,Pm-2, P, r A Reg 

with the last rule given by Closure condition 2.7. 
The proof of admissibility of right contraction in G3ipm* does not present 

any additional difficulty with respect to the proof of admissibility in G3ipm 
since in nonlogical rules the succedent in both the premisses and the con- 
clusion is an arbitrary multiset A. So in case the last rule in a derivation 
of rF A, A, A is a nonlogical rule, one simply proceeds by applying the 
inductive hypothesis to the premisses, and then the rule. -I 
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THEOREM 3.3. The cut rule 
r =A,A A,F'> C Cut 

F,F' ==> A,A' 
is admissible in G3ipm*. 

PROOF. The proof is by induction on the length of A with subinduction on 
the sum of the heights of the derivations of F r A, A and A, F' = A'. We 
consider here in detail only the cases arising from the addition of nonlogical 
rules and refer to [2] and its elaboration in [3] for the remaining cases. 

1. If the left premiss is a nonlogical axiom, then also the conclusion is 
a nonlogical axiom, since nonlogical axioms have an arbitrary context as 
succedent. 

2. If the right premiss is a nonlogical axiom with A not principal in it, the 
conclusion is a nonlogical axiom for the same reason as in 1. 

3. If the right premiss is a nonlogical axiom with A principal in it, A is 
atomic and we consider the left premiss. The case that it is a nonlogical 
axiom is covered by 1. If it is a logical axiom with A not principal, the 
conclusion is a logical axiom; else F contains the atom A and the conclusion 
follows from the right premiss by weakening. In the remaining cases we 
consider the last rule in the derivation of F =X A, A. Since A is atomic, A 
is not principal in the rule. Let us consider the case of a nonlogical rule 
(the others being dealt with similarly, except RD that is covered in 4). We 
transform the derivation, where Pm stands for P, ..., Pm, 

Pm, Qr,F" => A,A ... Pm, Qn, " =r A, A 
Pm,r F=" A, A A,t =^A' 

cut 
Pm, Fr, F" :=> A, ACut 

into 
Pm Ql,F" A, A A, F A Pm,Qn,F" => A, A A,r=A F', A' 

Pm, Ql, rF, Fr 
n 

: -: A, A/ ... Pm,rl Qn, Fr F A, ' cut 

Pm,F, Fr :=> A,A eg 

where the cut has been replaced by n cuts with left premiss with derivation 
of lower height. 

Let us now consider the cases in which neither premiss is an axiom. 
4. A is not principal in the left premiss. These are dealt with as above, with 

cut permuted upwards to the premisses of the last rule used in the derivation 
of the left premiss, except for RD. By the intuitionistic restriction in this rule, 
A does not appear in the premiss, and the conclusion is obtained without 
cut by RD and weakening. 

5. A is principal in the left premiss only. Then A has to be a compound 
formula. Therefore, if the last rule of the right premiss is a nonlogical rule, A 
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cannot be principal in the rule, because only atomic formulas are principal 
in nonlogical rules. In this case cut is permuted to the premisses of the right 
premiss. If the right rule is a logical one with A not principal in it, the usual 
reductions are applied (as in [3]). 

6. A is principal in both premisses. This case can only involve logical 
rules, and is dealt with as in the usual proof for pure logic. -I 

The conversions used in the proof of admissibility of cut show why it is 
necessary to formulate the nonlogical rules so that they have an arbitrary 
context in the succedent, both in the premisses and in the conclusion. Be- 
sides, as already observed, active and principal formulas have to be atomic 
and appear in the antecedent. Thus nonlogical rules have the form of left 
rules. 

Admissibility of all structural rules holds also for extensions of the classical 
calculus G3cp with nonlogical rules. 

?4. Extension of predicate logic. We show that admissibility of structural 
rules is maintained in extensions of predicate logic, and then show how this 
result can be applied to obtain a structural proof theory of predicate logic 
with equality. 

4.1. Admissibility of structural rules for extension of predicate logic. We 
add rules for quantifiers to the propositional calculi G3ipm and G3cp, to 
obtain two calculi denoted G3im and G3c. The rules for the classical cal- 
culus are, with repetition of the principal formula in LV and R3 to obtain 
admissibility of contraction, 

A(t),VxA(x, A A (x), A() 
VxA(x) A A,xA(x)r A r xA( 

A(x), r = A r > A, 3xA(x), A(t) 
3xA(x), r = A L => A, 3xA(x) 

The restriction in RV and L3 is that x must not occur free in F, A. The rules 
for intuitionistic predicate logic are the same, except that in the succedent of 
the premiss of the RV rule only one formula is permitted and the restriction 
is that x must not occur free in r. 

Similarly to the propositional case, extensions of the two calculi by rules 
following the rule-scheme and satisfying the closure condition are denoted 
by G3im* and G3c*. The proofs of admissibility of structural rules in such 
extensions are extensions of the corresponding proofs for the purely logical 
calculi, similarly to the propositional case in Section 3. We shall therefore 
not dwell more on these proofs, but just note the results: 
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THEOREM 4.1. The rules of weakening, contraction and cut are admissible in 
G3im* and G3c*. 

4.2. Cut-free predicate logic with equality. Axiomatic presentations of 
predicate logic with equality assume a primitive relation a = b with the 
axiom of reflexivity, a = a, and the replacement scheme, a = b & A (a) A(b). 
In sequent calculus, the usual way of treating equality is to add regular 
sequents with which derivations can start (as in [12, p. 98]). These are of 
form =? a = a and a = b, P(a) => P(b), with P atomic, and Gentzen's 
"extended Hauptsatz" says that cuts can be reduced to cuts on these equal- 
ity axioms. For example, symmetry of equality is derived by letting P(x) 
be x = a. Then the second axiom gives a = b, a = a b = a, and a cut 
with the first axiom => a = a gives a = b => b = a. But there is no cut-free 
derivation of symmetry. Note also that in this approach, the rules of weak- 
ening and contraction must be assumed, and only then can cuts be reduced 
to cuts on axioms. (Weakening could be made admissible by letting arbi- 
trary contexts appear on both sides of the regular sequents, but contraction 
not.) 

By our method, cuts on equality axioms are avoided. We first restrict the 
replacement scheme to atomic predicates P, Q, R, ... and then convert the 
axioms into rules, 

a =a,F A Rf a =b,P(a),P(b),F =r A 
Ref Repl F = A a =b,P(a),Fr A 

There is a separate replacement rule for each predicate P, and a = b, P(a) 
are repeated in the premiss to obtain admissibility of contraction. By the 
restriction to atomic predicates, both forms of rules follow the rule-scheme. 
A case of duplication is produced in the conclusion of the replacement rule 
in case P(x) is x = b. The replacement rule concludes a b, a = b, F = A 
from the premiss a b, a = b, b = b,F r A. We note that the rule where 
both duplications are contracted is an instance of the reflexivity rule so that 
the closure condition is satisfied. We therefore have the 

THEOREM 4.2. The rules of weakening, contraction and cut are admissible in 
predicate logic with equality. 

Next we have to show the replacement rule admissible for arbitrary predi- 
cates. 

LEMMA 4.3. The replacement axiom a = b, A(a) = A(b) is derivable for 
arbitrary A. 

PROOF. The proof is by induction on length of A. If A = L, the sequent 
is an axiom, and if A is an atom, it follows from the replacement rule. If 
A = B & C or A = B V C, we apply inductive hypothesis to B and C and 

429 



SARA NEGRI AND JAN VON PLATO 

then left and right rules. If A = B D C, we have the derivation 

b=a,B(b) = B(a) w,w 
a=b,a=a,b = a,B(b) = B(a) 

a=-b,a=a,B(b) = B(a) Rep 

a = b, B(b) =: B(a) a = b, C(a) => C(b) W W 
a = b, B(a) D C(a), B(b) =* B(a) a = b, C(a), B(b) = C(b) 

a = b, B(a) D C(a), B(b) = C(b) 
a = b, B(a) D C(a) =X B(b) D C(b) 

If A = VxB(x), the sequent a = b, Vx B(x, a) = VxB(x, b) is derived from 
a = b, B(x, a) => B(x, b) by applying first LV and then RV. Finally, the 
sequent a = b, 3x B(x, a) =V 3xB(x, b) is derived by applying first R3 and 
then L3. - 

THEOREM 4.4. The replacement rule 

a =b, A(a), A(b), rF> R Repl 
a=b,A(a),r = A 

is admissible for arbitrary predicates A. 

PROOF. By the lemma, a = b, A(a) => A(b) is derivable. A cut with the 
premiss of the replacement rule and contractions lead to a = b, A(a), F => A. 
Therefore, by admissibility of contraction and cut in the calculus of predicate 
logic with equality, admissibility of the replacement rule follows. -I 

Our cut- and contraction-free calculus is equivalent to the usual calculi: 
the sequents =~ a = a and a = b, P(a) = P(b) follow at once from the 
reflexivity rule and the replacement rule. In the other direction, the two 
rules are easily derived from => a = a and a = b, P(a) => P(b) using cut and 
contraction. 

?5. Application to axiomatic systems. All classical systems permitting 
quantifier-elimination, and most intuitionistic ones, can be converted into 
systems of cut-free nonlogical rules of inference. Theories of equality, apart- 
ness, and order, as well as theories with operations, such as lattices and 
Heyting algebras are presented in Negri [10] as cut-free intuitionistic sys- 
tems. On the other hand, it is noted that the intuitionistic theory of negative 
equality does not admit of a good structural proof theory under the present 
approach: this theory has a primitive relation a # b and the two axioms 
- a # a and - a & c& b f c D - a b expressing reflexivity and transitivity 
of negative equality. 

The properties of sequent systems representing axiomatic systems are 
based on the subformula principle for systems with nonlogical rules: 
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THEOREM 5.1. If r => A is derivable in G3im* or G3c*, then allformulas 
in the derivation are either subformulas of the endsequent or atomic formulas. 

PROOF. Only nonlogical rules can make formulas disappear in a derivation, 
and all such formulas are atomic. -1 

The subformula principle is weaker than that for purely logical systems, 
but sufficient for structural proof-analysis. Some general consequences are 
obtained: consider a theory having as axioms a finite set D of regular for- 
mulas. Define D to be inconsistent if => I is derivable in the corresponding 
extension, and consistent if it is not inconsistent. For a theory D, incon- 
sistency surfaces with the axioms through regular decomposition, with no 
consideration of the logical rules: 

THEOREM 5.2. Let D be inconsistent. Then 

(i) All rules in the derivation of =X I are nonlogical, 
(ii) All sequents in the derivation have I as succedent, 

(iii) Each branch in the derivation begins with a nonlogical rule ofform 
P1 ,... ,Pm ==> _ 

(iv) The last step in the derivation is a rule ofform 
Q1 =- ... Qn . => 

= I 

PROOF. (i) By Theorem 5.1, no logical constants except I can occur in the 
derivation. (ii) If the conclusion of a nonlogical rule has A as succedent, the 
premisses of the rule also have. Since the endsequent is = I1, (ii) follows. 
(iii) By (ii) and by I not being atomic, no derivation begins with P, F = P. 
Since only atoms can disappear from antecedents in a nonlogical rule, no 
derivation begins with L, F => I. This leaves only zero-premiss nonlogical 
rules. (iv) By observing that the endsequent has an empty antecedent. -1 

It follows that if an axiom system is inconsistent, its formula traces contain 
negations, and atoms or disjunctions. Therefore, if there are neither atoms 
nor disjunctions, the axioms are consistent, and similarly if there are no 
negations. 

By our method, the logical structure in axioms as they are usually ex- 
pressed, is converted into combinatorial properties of derivation trees, and 
completely separated from steps of logical inference. This is especially clear 
in the classical quantifier-free case, where theorems to be proved can be 
converted into a finite number of regular sequents F = A. By the sub- 
formula principle, derivations of these sequents use only the nonlogical 
rules and axioms of the corresponding sequent calculus. As applications 
of this result, we can use proof theory for syntactic proofs of mutual in- 
dependence of axiom systems, as follows. Let the axiom to be proved 
independent be expressed by the logic-free sequent F = A. When the 
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rule corresponding to the axiom is left out from the system of nonlogi- 
cal rules, underivability of r =~ A is usually very easily seen. For ex- 
ample, it is possible to prove the independence of Euclid's fifth postu- 
late in affine plane geometry in this way. Another application of the fact 
that logical rules can be dispensed with is proof search. We can start 
bottom-up from the logic-free sequent F =X A to be derived; the succe- 
dent will be the same throughout in derivations with nonlogical rules, and 
in typical cases very few nonlogical rules match the sequent to be de- 
rived. 

Extension of the above to theorems with quantifiers is straightforward in 
the classical case: first convert the theorem to be proved into prenex form, 
then the propositional matrix into the variant of conjunctive normal form 
used above. Each conjunct corresponds to a regular sequent, without logical 
structure, and the overall structure of the derivation is as follows: first the 
regular sequents are derived by nonlogical rules only, then the conjuncts 
by L&, RV and RD. Now R& collects all these into the propositional 
matrix, and right quantifier rules lead into the theorem. The nonlogical rules 
typically contain function constants resulting from quantifier elimination. 
In the constructive case, these methods apply to formulas in the prenex 
fragment admitting a propositional part in regular normal form. 

A simplified example from elementary geometry may illustrate the above 
structure of derivations: let x #y express that points x and y are distinct, and 
let Inc(x, z) express that point x is incident on line z. For any two points, 
there is a line on which the points are incident, 

VxVy(x # y D 3z(Inc(x, z) & Inc(y, z))). 

In prenex normal form, with the propositional matrix in implicational con- 
junctive normal form, this is equivalent to 

VxVy3z((x ~ y D Inc(x, z)) & (x = y D Inc(y, z))). 

In a quantifier-free approach, we start instead from a connecting line con- 
struction, a function constant ln(a, b) giving for any two distinct points a, b 
as value a line. The nonlogical rules 

a zb,Inc(a, ln(a,b)),F = A a b, Inc(b, ln(a,b)), F A 
Inc Inc a b,F= A Inc a b,Fr A Inc 

express the incidence properties of such constructed lines in a quantifier-free 
form. We have the following derivation, with repetition of x / y left out in 
the premisses of the incidence rule to narrow down the derivation tree: 
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Inc(x, ln(x, y)) = Inc(x, ln(x, y)) Inc(y, ln(x, y)) X Inc(y, ln(x, y)) InxInc(x, ln(x, Y RD Y Inc(y, ln(xIn R 
x i y D=: Inc(x, ln(x, y)) = x 7 y = Inc(y, ln(x, y)) R D RD 

x / y D Inc(x, ln(x, y)) = x y D Inc(y, ln(x, y)) 
= (x # y D Inc(x, ln(x, y))) & (x # y D Inc(y, ln(x, y))) 

= 3z((x = y D Inc(x, z)) & (x y D Inc(y, z))) 
=> Vx\y3z((x 7 y D Inc(x, z)) & (x # y D Inc(y, z))) 

Derivations with nonlogical rules and all but two of the logical rules do 
not show whether a system is classical or constructive. The difference only 
appears if classical logic is needed in the conversion of axioms into rules. 

?6. Concluding remarks. We have shown how classical first-order theories 
admitting quantifier-elimination can be turned into cut-free systems of non- 
logical rules, and determined what class of constructive systems has the same 
property. All methods used, in particular those for proving the admissibility 
of cut, are purely syntactical. 

When logical sequent calculi are extended by rules corresponding to math- 
ematical axioms, the strict subformula property cannot be maintained. We 
have shown, partly by general results, and partly by small examples, how 
structural proof analysis proceeds under the weak subformula property. In 
Negri [10], similar arguments are applied to much more complicated prob- 
lems of conservativity between elementary intuitionistic theories. 

In the introduction, we listed previous attempts at extending cut elimina- 
tion to axiomatic systems. To these, the attempt by Uesu [13] we recently 
discovered has to be added. This work contains the correct way of presenting 
atomic axioms as rules of inference. As to the use of conjunctive normal 
form in sequent calculus, we owe it to Ketonen's thesis [9] of 1944, in which 
the invertible sequent calculus for classical propositional logic was discov- 
ered. (An accessible summary of Ketonen's main results is given in Bernays 
[1].) 

For uniformity and ease of exposition, we have chosen for intuitionistic 
propositional logic a multi-succedent sequent calculus. However, all the 
results presented here hold mutatis mutandis if a single-succedent calculus 
is used. In addition, by using a single-succedent calculus, we easily obtain 
an extension of the disjunction property for constructive systems with rules. 
Specifically, if the formula traces of the regular decomposition of a set of 
regular formulas have no atoms or disjunctions, then no rules like Atom or 
Vel are added to the system, and therefore the only way to derive = A V B 
is by either deriving => A or = B. This result goes beyond the disjunction 
property under assumptions that are Harrop formulas. Negri [10] gives 
a single-succedent calculus for the intuitionistic theories of apartness and 
order, and proves the admissibility of structural rules for it. 
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To translate our results into natural deduction, a single-succedent sequent 
calculus needs to be used. The rule-scheme is restricted to one formula in 
the succedent, and the single-succedent intuitionistic calculus G3i is then 
extended by rules following the modified scheme. The cut-free derivations in 
these extensions translate into normal natural deductions, where the natural 
deduction rules are obtained from the translation of the rule-scheme for 
sequents, 

[Ql] [Qn] 

Pi...Pm C ... C 
c C 

This is the natural deduction scheme for nonlogical elimination rules. 
In Hallnas and Schroeder-Heister [8], regular sequents P1, ..., Pm => Q 

are translated, for the purposes of logic programming, into natural deduction 
nonlogical introduction rules, of the form 

Pi ... P 
Q 

The two kinds of nonlogical natural deduction rules are interderivable. The 
relation of these two ways of extending natural deduction is analogous to 
the situation in sequent calculus: extension of sequent systems with regular 
sequents does not in general permit cut-free derivations, whereas extension 
with nonlogical rules does. This is seen clearly in the example of predicate 
logic with equality. 

In the case of classical systems, extensions of natural deduction can be 
given through the cut-free single-succedent sequent calculus for classical 
propositional logic of von Plato [11]. This calculus is obtained by adding 
to the intuitionistic calculus G3ip a left rule of excluded middle for atomic 
formulas. Translation of this rule into natural deduction gives a generaliza- 
tion of the principle of indirect proof with the property that also inferences 
on disjunctions by the new rule convert to ones on atoms, whereas with 
indirect proof, this is not always the case. Thus, there is a uniform method 
for obtaining extensions of natural deduction permitting normal form, for 
any classical free-variable theory. 
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