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Abstract

Contraction-free sequent calculi for intuitionistic theories of apartness and order are
given and cut-elimination for the calculi proved. Among the consequences of the result
is the disjunction property for these theories. Through methods of proof analysis and
permutation of rules, we establish conservativity of the theory of apartness over the theory
of equality defined as the negation of apartness, for sequents in which all atomic formulas
appear negated. The proof extends to conservativity results for the theories of constructive
order over the usual theories of order.

1 Introduction

In constructive theories a notion of apartness is often taken as basic, and equality appears as
a defined concept, the negation of apartness. The same can be done with order relations, and
weak linear order can be defined as the negation of a strict linear order. The expression of
order relations in positive terms can be pushed further so as to include partial order, lattices
and Heyting algebras (as in [vP]). Here we take up the task of investigating the proof theory
of these apartness and positive order relations.

The extension of sequent calculi to axiomatic theories presents a well known problem,
namely, that cut elimination is not necessarily maintained in such extensions. We establish
a way of adding to the logical calculus for intuitionistic propositional logic G3ip the (free
variable) axioms of the theories under consideration in the form of sequent calculus rules.
These are put in a form that guarantees admissibility of contraction and cut to be maintained
also for these extensions of the calculus. This will work for axioms of the form =P, =(P&Q),
PD>@Q, PO>QV R, where P,Q, R are atomic formulas of the theory under consideration.

Although the calculi do not have the subformula property, typical consequences of the
subformula property like the disjunction property follow from a weaker subformula property,
namely, in a derivation only subformulas of the endsequent or atomic formulas occur.

We pose the question of whether the positive theories, based on apartness or positive
order relations, are conservative over those based on equality or weak order when these are
defined as the negations of the positive relations. This is not just a question of application
of proof theory to the study of mathematical structures but was originally prompted by the



application of positive Heyting algebras for a semantics of refutation for intuitionistic logic
(cf. [vP, NvP]).

With sequent calculi in which cut is admissible we can prove conservativity of positive
theories over the usual theories in an elementary and direct way, using only induction on
derivations. By techniques of analysis and manipulation of proofs, we show how to transform
derivations of a sequent (with all atoms negated) in theories based on apartness or positive
order into derivations of the same sequent in the corresponding theories based on defined
equality or partial order. The proof of conservativity thus obtained is also modular, fitting
all the theories considered.

The paper is organized as follows: In Section 2 we review from [vP] the basic definitions
for the intuitionistic theories of apartness and order. After recalling in Section 3 the sequent
calculus G3ip for intuitionistic propositional logic, we give in Section 4 sequent calculi for the
theories of apartness and order. In Section 5 we show that in these calculi all the structural
rules are admissible. In Section 6 we prove conservativity of apartness over equality defined
as the negation of apartness. In the final section the conservativity result is extended to a
proof of conservativity of positive theories of order over the theories based on partial order
defined as the negation of positive order.

2 Intuitionistic theories of apartness and order

We recall here the axioms of the intuitionistic theories of apartness and order. For a general
discussion of these axioms we refer to [vP] where the positive axiomatizations, based on
apartness and excess, are introduced and contrasted to the usual ones based on equality and
weak partial order. Our notation for these theories follows [S] and [vP], with the symbol #
in place of # for denoting apartness.

The intuitionistic theory of apartness (Heyting) poses the following two axioms for a
relation a #b, where —a#b abbreviates azb > L:

APl —a#a, AP2 az2bDazcVbzc.

By setting a for ¢ in AP2, we get a #b D b#a, that is, symmetry is derivable.
The negation of apartness,
a=b =g a# b

is then easily seen to be an equivalence relation.
The intuitionistic theory of (positive) linear order (Scott) has a relation a<b with the
axioms

PLO1 = (a<b&b<a), PLO2 a<bDa<cVe<h.
It follows that a < b is irreflexive, asymmetric and transitive.

The negation of a positive linear order

agb :dfﬂb<a

defines a (weak) linear order, which is reflexive and transitive.
Apartness can be defined by taking the symmetrization of a positive linear order

azb :dfa<b\/b<a .



A positive linear order with minimum and mazimum is obtained by adding to PLO1 and
PLO2 the operations min(a, b) and maz(a, b) axiomatized by:

MNL —a<min(a,b) MXL = maz(a,b)<a ,

MNR  —b<min(a,b), MXR - maz(a,b)<b,

MNU  min(a,b)<cDa<cVb<e, MXU c<maz(a,b) dDe<aVe<h.
The classical uniqueness axioms for min and maz in a weak linear order,

cga&eghbDdegmin(a,b), agc&bge D maz(a,b)ge

are obtained by taking the contrapositions of MNU and MXU.

Just as a positive linear order is the constructive counterpart of a (weak) linear order,
an excess relation is the positive, or constructive, counterpart of a (weak) partial order. An
excess relation is a relation a ¢ b, read a exceeds b, such that

PPO1 -aga, PPO2 agbDagceVegh.

Since such a relation is the positive counterpart of a partial order, we may loosely call it a
positive partial order; 1t is not however a partial order, for transitivity does not in general
hold, but a relation the negation of which is a partial order.

By putting
agh =0k b

~

a (weak) partial order, i.e., a reflexive and transitive relation, is obtained.
A positive linear order can be obtained from a positive partial order by adding the axiom

“(agb&bga) .
We can define apartness from an excess relation by posing
a#b :dfagb\/ bta
so the negation of apartness satisfies
—a#bDCagb&bga.

Therefore, if equality is defined, antisymmetry holds by definition, i.e., the relation < is a
partial order in the usual sense.

A positive lattice is obtained by adding to PPO1 and PPO2 the lattice operations aab and
avb, axiomatized by:

MTL —anbga JNL —agavh,
MTR —anbgb, JNR —bgavb,
MTU ecganbDegaVegh, JNU avbgcDageVbgce.

A positive Heyting algebra is obtained by adding to a positive lattice the positive Heyting
arrow operation a—b. The axioms are:

PHI —ana(a=b)¢b, PHU ecga—=bDecragh .
For top and bottom elements, 1 and 0, we add the axiom

PHB —0ga,
and define the top element 1 by 1 =4 0-0.



3 Sequent calculus for intuitionistic propositional logic

We recall here the sequent calculus for intuitionistic propositional logic G3ip (see [TS]).
We use Greek upper case I', A ...for finite multisets of formulas, P, @, R, ... for atomic
formulas, A, B,C, ... for arbitrary formulas.

G3ip
Axioms:
[ [, A
PT=pP ™" Ir=am
Rules:
A, B, I'=>C I'= A I'= B
A&B,l' = C & I'=> A&B fi
AT =C B,I'=C = A =28
AVBTIr=C W T=AvB ™ T=AvB ™
ADB,I'=> A B,I'=C Al'= B
LD =5 RD
ADB,T'=C I'= ADB

As the notation suggests, we regard axioms as zero premise rules. However, we shall
sometimes omit the inference line for such rules and refer to them as axioms. Observe that
it is not restrictive to consider only atomic formulas in the first axiom since it can be proved,
by induction on the complexity of an arbitrary formula A, that A, = A is provable. This
feature of the calculus is essential in the proofs of admissibility of cut of Section 5 and in the
proofs of conservativity of Section 6. Also, it is necessary in order to prove admissibility of
cut that the rule of ex falso quodlibet is not restricted to atomic formulas. Moreover L has to
be regarded as a logical constant, not as an atomic formula (cf. [D], p. 11).

In the above system the structural rules are built in: This is guaranteed by the fact that
in the rule L D the principal formula is repeated in the left premise, as in Dragalin’s GHPC
(cf. [D]), of which the above calculus is a single succedent version. In fact, the system is a
simplified variant of Kleene’s G3 (see [K1], Section 80) where the repetition of the principal
formulas also occurs in L& and LV.

4 Sequent calculi for intuitionistic theories of apartness and
order

In this section we give sequent calculus formulations for intuitionistic theories of apartness
and order. These sequent calculi are obtained by adding to G3ip the axioms of the theories in
the form of rules. These rules are put in such a way that the structural rules stay admissible
also in these extensions of the purely logical calculus. As we shall see in Section 5 the proof of
cut elimination for these extensions is routine, once the correct way of formulating the axioms
as rules has been found. The general idea is to absorb the logical content of these axioms into
the geometry of the sequent calculus rules in such a way that only atomic formulas will occur
as principal in non-logical rules of the extended calculi. We begin with some guidelines for



passing from a Hilbert style axiomatization, with axioms added to the calculus, to a sequent
calculus where the axioms are built in, as inference rules.

Let P, (), R, ... denote atomic formulas of the theory (for instance, of the form a#b for
the theory of apartness, or of the form a ¢ b for the theories of positive order). Axioms of the
form — (P & ()) are translated into the zero premise rule (non-logical axiom)

PQ,I'=C

Notice that the alternative way of translating such axioms, namely as the rule

PQT= L

does not allow a cut free calculus, as, for instance, the following derivation

E
PQT =1 | =C i
POT=C ot

cannot be transformed into a cut free one.
Axioms of the form P D @ V R are translated into sequent calculus rules of the form

P,Q,FiC P,R,FﬁC
Pl=C

where the repetition of P in the premises is needed for admissibility of contraction.

Axioms of the form = P and P D () also follow this pattern, since they can be seen as
degenerate forms of the previous types (with one conjunct and one disjunct only, respectively)
and thus translate into sequent calculus rules of the form

PQ,I'=C
Pl'=C Pl'=C

4.1 Apartness

The sequent calculus for the theory of apartness is obtained by adding to the purely logical
rules of G3ip the axioms AP1 and AP2 of an apartness relation in the form of the sequent
calculus rules irref and split, respectively,

azbazc, ' = C azbbzc, ' = C
azb ' = C

wrref split

azta,l' = C

The resulting calculus will be denoted by G3AP.
In the rule split the principal formula a#b has to be repeated in the premises in order
to get a contraction-free calculus, similarly to the rule L O of G3ip (cf. the discussion in

D, Dy, TS]).
4.2 Positive partial and linear order

The sequent calculus G83PPO for the theory of positive partial order is obtained by adding

to G3ip the rules

agbage, ' = C agbcgh ' = C
agh T = C

wrref split

aga,l'=C



The two rules are of the same logical form as the corresponding rules of the calculus of
apartness and therefore the proof-theoretic properties of G3AP will hold for G3PPO as
well. This is also the reason why we call the axioms and rules by the same names in both

calculi.
The calculus for positive linear order G3PLO is obtained by adding to G3PPO the rule

asym .

aghbga,l' = C
Observe that, in the presence of split, irref can be derived from asym, so we can regard

G3PLO as G3ip plus split plus asym, and use freely irref.

4.3 Positive lattices

The calculus for positive lattices G3PLT is obtained by adding to G3PPO appropriate rules
for join and meet

— mil — nl
anbga,l' = C " agavh,l' = C "
abgbr=c " bgavh, U = C 7"
cganb,cga,l' = C cganb,cgb, ' = C
ctanb, ' = C miu
avbgec,age, I = C avbge,bge, ' = C
jnu

avbge, I' = C

These reduce to the rules for min and maz in the case of linear order.

4.4 Positive Heyting algebras

The calculus G3PHA for positive Heyting algebras is obtained by adding to G3PLT the fol-
lowing sequent calculus rules corresponding to the axioms PHI and PHU for positive Heyting
arrow

Y cta=b,ernagh ' = C
a/\(a—>b);{\b,F:>Cp Z cta=b = C

phu

The rule corresponding to PHB is

———— phb .
Oga,F:>Cp

5 Cut elimination

We recall that a (schematic) rule

S

SI
is admissible in a logical calculus G if for every derivation of an instance of S there is one of
the corresponding instance of S’. Similarly for rules with several premises.



In this section we shall prove that the cut rule

I'= A Al = C
rLr=c

is an admissible rule in each of the sequent calculi for the theories of apartness and positive
order introduced in the previous section. The proof of admissibility of cut for these systems
follows quite closely the proof done for G3 in [TS], which, in turn, follows the proof presented
in [D] for GHPC (see [Dyl] for a more elaborate exposition). The starting point is the proof
of admissibility of the structural rules of weakening and contraction.

Lemma 5.1 The rule of weakening

I = B
Al = B

is admissible in the systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA.

Proof: For each system, the proof is by induction on the derivation of I' = B. If ' = B is
an axiom, then also A,I' = B is an axiom. Otherwise weakening is permuted upwards with
the last rule used in a derivation of I' = B and the inductive hypothesis is used. O

The proof of admissibility of contraction for G3 requires an inversion lemma (cf. [TS],
p. 66). This result can be extended as follows to each of the systems G3AP, G3PPO,
G3PLO, G3PLT, G3PHA. We write I, I' = A if the sequent I' = A has a derivation of
height < n in the system considered.

Lemma 5.2 In each of the systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA the
following hold:

(i) IfF, A&B,I' = C, thent, A, B,I' = C.
(i) Ift, AVB,I' = C, thent, A,I' = C and -, B,I' = C.
(iii) If+, ADB, ' = C, thent, B,I' = C.

Proof: Since all the statements have similar proofs we shall show only the first. We proceed
by induction on n. If n = 0 then A&B,' = C' is an axiom. By the restriction to atomic
formulas for the first logical axiom and the fact that only atomic formulas occur as principal
in non-logical axioms, we have that also A, B,I' = ('is an axiom, and the conclusion follows.
Suppose now that the statement has been proved for n and we establish it for n+ 1. Suppose
Fpne1 ALB, ' = C. If A&B is principal in the last rule used in a derivation of A&B, 1" = C|,
then the premise of the rule is A, B,I' = (' and therefore we have -, A, B,[' = (' and a
fortiori F,41 A, B,I' = C. If A&B is not principal, then we apply the inductive hypothesis
to the premise(s) of the last rule applied in a derivation of A&B,I' = C and then apply the
same rule. Observe that all the rules added to G3ip for the theories of apartness and order
fall under this case since their principal formulas are atomic. O

In the sequel we shall use the notation A = B for literal identity of the expressions A and
B.

Lemma 5.3 In each of the systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA we
have:

Ifbn A, AT = C, then -, A,T = C.



Proof: By induction on n. If n = 0 then A, A,I' = C is an axiom, and also A,[' = (' is an
axiom. We remark here that in the case we are dealing with G3PLO and the axiom is asym,
with A = a¢a, then we have A, ' = C by irref.

Suppose now the statement holds for n and we prove it for n + 1.

If A is not principal in the last rule of the derivation of A, A,I" = C, apply the inductive
hypothesis to the premise(s) of the last rule and the rule so that a derivation of height < n+1
of A,I' = (' is obtained.

If Ais principal, say D&B, the premise is D, B, D&B, ' = (', and by Lemma 5.2 (i) we get
a derivation of D, B, D, B,I' = (' with height < n, so by inductive hypothesis applied twice
we get -, D, B,I' = C'. By applying L& the conclusion follows. The case with A =DV B
is treated similarly. If A = D D B, the derivation ends with

D>B,DD>B,I'= D B,DO>B,I'=>C
DO>B,DD>B,I'=C

From the left premise, by the induction hypothesis, we get -, DD B,[' = D; from the
right premise, by the inversion lemma, we get -, B, B,I' = (' and by inductive hypothesis
F. B, = C. The conclusion follows by applying L. D.

The only cases left are those with A principal and atomic, that is, those specific to the
theories under consideration.

If we are considering G3AP and A = a#b, the derivation ends with

a#b,atb,atc, I = C a#b,azb,btc, T = C
a#b,azb, ' = C

splat

This case is simply dealt with by applying the inductive hypothesis to the premises and then
split. The non-logical rules for all the other systems are treated similarly. We observe that
the proof goes through owing to the form of the rules, with the repetition of the principal
formula in the premises. O

Corollary 5.4 The rule of contraction

A AT = C
AT = C

C

is admissible in the systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA.

We observe that we could have proved Corollary 5.4 directly, without the stronger Lemma
5.3 that we shall not need. However, the direct proof uses induction on the complexity of
the contracted formula, with subinduction on the height of the derivation of the premise of
contraction, so it would be no real simplification.

The argument used by Dragalin in [D] in the proof of cut-elimination for GHPC also
works for the sequent calculus systems for apartness and positive order:

Theorem 5.5 The cut rule
I'= A AT = C

rr=c
is admissible in G3AP, G3PPO, G3PLO, G3PLT, G3PHA.




Proof: Let D and D’ be the derivations of I' = A and A,I" = C, respectively. The proof
is by induction on the complexity of the cut formula with subinduction on the sum of the
heights of D and D’. We distinguish three cases:

1. At least one of the premises is an axiom.

2. The formula A is not principal in at least one of the premises and none of them is an
axiom.

3. The formula A is principal in both premises.

The first case, when logical axioms are involved, and second case are dealt with in a straight-
forward way asin [D, TS]. If ' = A is a non-logical axiom of the theory, then also I', 1" = C
is. If A,1” = (C'is a non-logical axiom in which A is not principal, then also I',1" = C'is a
non-logical axiom. If A is principal in the axiom then the cut has the form (in G3AP)

D
I' = aza ata,l" = C

rr=c«c

We analyze D to show how this cut can be permuted upward in the derivation. The atomic
formula a#a is not principal in the last rule of D so if this rule is a one-premise rule we
transform

I = a#a
I = a#a rule aza, "= C
17 =C cut
into
I = ata ata,l” = C
T T = C cut
I

If the last rule of D is a two-premise rule (different from L D) we trasform

I = aa I'" = a#a

I'= a#a rule azta,l" = C
I =C cut
into
I'" = asa aza, I’ = C I'" = a#a ata, ' = C
"1 = C ot 1= C ot
: = : rule
Y

If the last rule of D is L D, with ' = A D B, ', we transform

ADB, "= A B, 1" =a+a .
ADB,I" = a+a o azta, "= C
ADB, " 1" = C

cut

into
ADBI" = A Bl"=aza a#a,l"=C

ADB, I 1"= A B,F”,F’:>CL
ASB, I ' = C o

cut




where the dots denote possibly repeated applications of weakening.

Also in the third case we proceed as in [D, TS] for non-atomic A. This exhausts all possible
cases since the formula A cannot be atomic and principal in both premises, for atomic and
principal formulas only occur on the left of the sequent arrow in the systems G3AP, G3PPO,
G3PLO, G3PLT, G3PHA. O

We observe that some authors, beginning with Gentzen in [G], have considered extensions
of sequent calculus with “basic mathematical sequents” of form Pi,..., P, = @) as extra
axioms. For these extensions the cut elimination theorem becomes a reduction of cuts to
cuts on axioms (cf. Theorem 4.4.1 in [TS]). In our extensions we deal both with non-logical
axioms and with non-logical rules. From this perspective our result can be summarized as
follows: Thanks to the form of these rules, contraction stays admissible in these extension.
Since cut commutes with non-logical rules, the cuts in a derivation can be reduced to cuts on
axioms. Further, our non-logical axioms have an arbitrary formula as succedent that makes
them closed under cut, and therefore cut can be eliminated.

Corollary 5.6 The systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA enjoy the dis-
junction property, that is, if = AV B, then = A or = B.

Proof: For each of the systems, by inspection of the sequent calculus rules, = AV B can
only derive by VR from a derivation of = Aorof = B. O

The calculi for the theories of apartness and positive order do not enjoy the subformula
property owing to the form of the rules added. Nevertheless a weak subformula property holds,
namely:

In a derivation only subformulas of the conclusion plus atomic formulas can occur.

The weak subformula property will be crucial in the proof of conservativity of Section 6.
The systems defined by means of rules are equivalent to the systems obtained by adding

to the logic the axioms of apartness and order in the form of sequents with empty antecedent.

In these latter systems, which we call H-systems, the structural rules are not built in, but

have to be added.

Definition 5.7 Let H-G3AP be the system obtained by adding to G3ip+w+c+cut the az-
woms

= —a#a (i),

= azbDazcVbzc (s)

Then we have:

Proposition 5.8 The systems H-G3AP and G3AP are equivalent, that is, the same se-
quents are provable.

Proof: If I' = A is provable in H-G3AP then it is provable in G3AP since the axioms i and
s are provable in G3AP

Az Az

azbatc = a#c azbbtc=bzc”

R R
azbaztc = azcVbze v azbbzc=> azcVbze \l/,t
spli

irref

ata = 1 " axb = atcVbzc
= azaD L = azbDatcVbte

RD

10



For the converse, it is enough to prove that the rules irref and split are derivable in H-G3AP.
The derivations are as follows:

= a#a2> Ll T,a#a,a#0aD 1L = L . B
IMNazta= 1 T =sc ™
INazta=C

cut

Ta#ba#tc=C T,a#bb#tc= C
Lv

atbatbdatcVb#c = afcVb#c Fya#bjatcVb#tce = C
= a#bdatcVb#te T,a#ba#ba?bdatcVbitec= C cut
TaZbaZb= C cut
La#b=C

where we have omitted the derivation of the sequents of the form I'y A, AD>D B = B. O
The systems H-G3PPO, H-G3PLT, etc., are defined in a similar way by adding to

G3ip+w+c+cut the axioms for positive partial order, positive lattices, etc.. We have:

Proposition 5.9 Fach of the systems G3AP, G3PPO, G3PLO, G3PLT, G3PHA s
equivalent to the corresponding H-system.

6 Conservativity of apartness over equality

Classically equality is given as a primitive notion, by means of a relation a =05 satisfying the
axioms of reflexivity and transitivity

a=a
a=c & b=cDa=0b

Intuitionistically equality is defined as the negation of apartness
a="b =y 0# b.

In this way a constructively stronger theory is obtained: For example, defined equality is
stable, that is == (a=b) D a=0b holds, whereas primitive equality is not.

The usual axioms of reflexivity and transitivity for equality defined as the negation of
apartness assume the form

—a#a (refl)
—“atc& —bteD—azb (trans)

By theory of equality G83EQ we refer to the theory with the above two axioms (with no
further properties assumed on #) added to G3ip plus the structural rules.

Within the theory of apartness we can single out a suitable class of formulas, in which all
occurrences of apartness are negated:

Definition 6.1 We say that A is a negatomic formula if all its atoms are negated and that
I' = A is a negatomic sequent if all the formulas in the sequent are negatomic.

11



As we noted earlier, L is not to be considered an atomic formula. Thus, according to the
above definition, | is negatomic, for all its atoms are vacuously negated.

We remark that the theory of equality defined as the negation of apartness is equivalent
to the theory of stable equality, i.e., the theory with = as primitive and reflexivity, symmetry,
transitivity and stability as axioms. More precisely, if A is a negatomic formula provable in
the theory of defined equality, then the formula A* obtained by translating —a#6b into a=5
is provable in the theory of stable equality. Conversely, if A is an equality formula provable
in the theory of stable equality, then the formula A° obtained by the symmetric translation
is provable in the theory of defined equality, as stability for negations is logically derivable.

In this section we shall prove that the theory of apartness is conservative over the theory
of equality, that is:

If a negatomic sequent I' = A is derived in the theory of apartness, then it can
also be derived in the theory of equality.

Unlike for the theory of apartness, we do not have for the theory of equality a calculus with
structural rules admissible (and we conjecture that this is not possible due to the form of the
axiom of transitivity), but this suffices for our purposes: When defining the transformation
establishing conservativity we only need full control on derivations for the source theory
(apartness) whereas for the target theory (equality) any derivation goes, structural rules or
not.

The proof of conservativity is performed by analyzing and manipulating derivations:
First, by the weak subformula property, since subformulas of a negatomic formulas are either
negatomic or atoms, we have the following crucial fact:

(x) A derivation of a negatomic sequent I' = A in G3AP can only contain atomic or
negatomic formulas.

The manipulation of derivations uses the technique of permutation of rules dating back
to [K] in 1952. This technique is used here for “pulling down” applications of the rule split,
by permuting them downwards in all possible cases. In turn, these permutations are used to
prove (Proposition 6.3) that all occurrences of split in a derivation of a negatomic sequent in
G3AP can be brought to the form

atbazte,l'= L azbb#tc, = L
azb,I'=> 1

?

that is, a form in which they can be replaced by transitivity of equality, as we shall see.
In the sequel we shall call split formula the principal formula of the split rule. We have:

Lemma 6.2 [n a derivation of a negatomic sequent ' = A in G3AP, the rule split permutes
with L&, R&, LV, RV, L. D and with RD in case the split formula is not active in RD .

Proof: The proof consists of a series of conversions. We remark once and for all that we freely
use weakening since it is an admissible rule of the system, furthermore it does not affect the
property (*) of sequents since its use is here limited to atomic formulas. We also observe
that in all the occurrences of split preceding a left rule, the split formula cannot be an active
formula of the rule, for otherwise the conclusion of the rule would contain a sequent with a
formula of the form Ao a#b (where ois &, V or D) which is ruled out by the property (x).

12



If split occurs above L& we transform

azb,atc,A,B,I" = C azb,b#c, A, B, " = C

split
a%b, A, BT = C !
a#b, A&B, 1" = C
into
a#tb,atc, A, B,T' = C atbbtc, A, B, 1" = C

L& L&
a#tbatc, A&B,I" = C a#bb#c, A&B,T" = C i
azb, ALB, 1T = C g

If split occurs above R& we transform

atb,aze, ' = A azb,bzc, T = A »
azb, " = A U agb ' = B .
azb 1" = A&B

&

into
a#b,T" = B a#b,T' = B
w w
a#bazce, ' = A a;éb,a;éc,F':>BR& azbb#te, TV = A a¢b,b¢c,F’:>BR&
a#b,atc, T = A&B azb b#c, T = A&B i
a#b T = A&B o
If split occurs above LV we transform
azbazc, AT = C azbbztec, A, T = C i
Spit
azb, AT = C g azhBI'= C
azb, AV B,1" = C Y
into
azb, B, T = C a#b, B, T = C
w w
azbaztc, AT = C a;éb,a;éc,B,F':>CL azbbtc, AT = C a;éb,b;éc,B,F’:>CL
atbatc,AVBT = C Y a#bb#c, AVBT = C i Y
spli

azb, AV BT = C

If split occurs above RV, we transform

azb,atc, I = A azb,bzc, 1" = A
azb, 1" = A
RV
azb "= AV B

split

into
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atb,aztc, ' = A Ay a#bbze, ' = A "
azbaze, "= AVB azbbzrc, "= AV B it
azb "= AV B

Vi

If split occurs above L D, since this rule is not symmetric, we have to distinguish two cases
according to whether it occurs above the left or right premise. We also observe that, in this
latter case, B is negatomic so it cannot be the split formula. In the first case we transform

ADB,a#batc,I"=> A ADB,azbb#c,I' = A it
Spir
ADB,azb T = A g Ba#hT' = C
ADB,a#b 1" = C

into

B,a#b T = C B,aZ b T = C
w w
ADB,a#ba#Fc, " = A Ba#baFc D' = C ADB,a#bbFc,T' = A Ba#FbbFc, ' = C
LD L
ADB,aZtbaZe, T = C ADB,a#EbbF#e, T = C it
spla

ADB,a#b T = C

In the second case we transform

Bya#ba#c, "= C Baghbzce "= C

split
ADB,a#bT' = A B,a#bT' = C 5
L
ADB,a#b T = C
into
ADB,a#bT! = A ADB,a#b T = A
w
ADB,aZbaFe D = A B,a#baZte T = C ADB,aZbbZEe, ' = A Ba#EbbF#e D =C
LD
ADB,aF#baFte D = C ADB,aF#bbF# e, T = C

split
ADB,a#bT = C

If split occurs above R D with split formula not active, we trasform
Aya#b,atce, 7' = B Aya#bb#e, T = B

Aazb T = B
RD
a#b,T'= ADB

split

into
Aja#bate, 1" = B Aja#b bte, 1" = B

a¢b,a¢c,F’:>ADBRD azbbtc, " = ADB RlD,t
Spit
azb1T'=> ADB !

We shall call a derivation in which all occurrences of split have L on the right of the
sequent arrow a derivation with split reduction.

We have:

Proposition 6.3 A negatomic sequent ' = A derivable in G3AP has a derivation with split
reduction.
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Proof: Let D be a given derivation of I' = A and suppose that D contains n occurrences of
the split rule with succedent different from L. We show by induction on n that D can be
transformed into a derivation D’ with split reduction. If n = 0, D is already a derivation with
split reduction. If n > 0 we consider among the n splits with succedent different from L one
with none of these splits below it. By permuting this split downwards, the succedent formula
of the split stays the same or becomes more complex, except when the split is left premise of
[.D, because then the split after permutation inherits the succedent from the second premise.
If the succedent of second premise is L, then we are done, the offending instance of split has
disappeared. If not, we continue permuting downwards. Ultimately we must arrive at a split
with L in the succededent; for its conclusion eventually becomes either the premise of a RD
rule with the split formula active in it, or the premise of a split with L as succedent. (Observe
that it cannot become the last rule in the derivation, since the endsequent is negatomic). In
the former case the principal formula of RD is of form a#b D B and, by property (%), B has
to be L, therefore the split thus transformed has 1 as succedent. Also in the latter case
the conclusion of split has | as succedent. The derivation thus obtained has n — 1 splits
with succedent different form L and by inductive hypothesis it can be transformed into a
derivation with split reduction. O

The following lemmas constitute the core of the proof of conservativity (Theorem 6.7).
They are necessary for dealing with those rules (implication rules) in which the premises of
negatomic conclusions are not necessarily negatomic.

Lemma 6.4 Let I' be negatomic, and assume to have a derivation with split reduction of
height m in G3AP of
U'yay #by,...,0,#b, = a#b .

Then:
a; = b; for some i, or
azb=a;2b; for some i, or

Iyay b1, ...,a,#b, = = azb has a derivation of height < m in G3AP.

Proof: By induction on m. If m =0, ', a1 £b1,...,a,#b, = a#bis an axiom. If it is ex falso
quodlibet, then ', a1 #b1,...,an#b, = " —a#£b also is. If it is irref then a; = b; for some 1.
Ifit is IV, P = P then a#b = a; #b; for some 1.

If m > 0, suppose the statement true for m and we prove it for m + 1. Consider the last
rule applied in the derivation of the given sequent. Since we are considering a derivation with
split reduction, the last rule has to be a logical rule. Moreover, the last rule has to be a left
rule.

If the last rule is L& or LV then apply the inductive hypothesis to the premise(s), which
are of the same form of the conclusion, and possibly the same rule.

If the last rule is 1D, then ' = T, ADB and the derivation ends with

", ADB,ay #by,...,an#b, = A 1", B,a;#£b1,...,a,#b, = a#b
IV, ADB,a1#by,...,a,#b, = a#b

Since AD B is negatomic, B is negatomic, so the inductive hypothesis applies to the right
premise. Thus a; = b; forsomei,ora#b = a;#b; forsomei,or ', Byay #b1,...,a,#£b, => 7 —a#b

15



has a derivation of height < m. In this last case the conclusion is obtained by applying LD
to this latter sequent and the left premise. O

It thus follows that in a derivation in G3AP of a sequent with negatomic antecedent and
atomic succedent the third conclusion of the lemma obtains, and we can replace the atom by
its double negation while continuing to have a correct derivation and preserving the height

bound:

Corollary 6.5 Let I' be negatomic, and assume to have a derivation with split reduction of
height < n in G3AP of ' = a#b. Then I' = ——a#b has a derivation of height < n in
G3AP.

Lemma 6.6 Let ' and A be negatomic, and assume to have a derivation with split reduction
in G3AP of
l‘,al;ébl, .. .,an;ébn = A.

Then either a; = b; for some i, or there is a derivation in G3EQ of
F,ﬁ—!alyébl,...,—!—!an;ébn = A.

Proof: By induction on the derivation of the sequent I',ay £b1,...,a,#b, = A.
If the sequent is an axiom, then it cannot be an axiom of the form I', P = P since A is
negatomic, therefore either I' contains 1, and thus

Fa_'_‘al?ébla-"a_'_‘an?ébn = A

is an axiom in G3EQ, or it is an instance of the axiom érref, thus a; = b; for some 7, and we
have proved the claim.

If the sequent comes from & rules or V rules, we distinguish two cases, according to whether
the rule has one or two premises. In the first case, we apply the induction hypothesis to the
premise. If it gives a; = b; for some 7, we are done. Otherwise we obtain a derivation with
double negations in G3EQ, to which we apply the same rule. If the rule has two premises
and for at least one the inductive hypothesis gives a; = b; for some ¢, we are done. Else we
obtain two derivation with double negations in G3EQ, to which we apply the same rule.

If the sequent comes from a L D rule with both active formulas negatomic we proceed
as above. Otherwise the principal formula is of the form a2b> L and the last step of the
inference is

IMaz2bD L,a1#b1,...,a,#b, => azb TV, L,a1#by,...,a,#b, => A
[, a2bD L,ar#b1,...,a,#b, => A

where ' =T",a#b> L. By Lemma 6.4 applied to the left premise, we either have a; = b; for
some 7, and we are done, or a#b = a; # b; for some ¢, and therefore the sequent

F/,a;ébD Lom—ay1#by,...,m—a,#b, = A

is provable in G3EQ, or we have a derivation with height bounded by the height of the
derivation of the left premise of

I azbD> L,ay#by,...,a,#£b, = " —a#b.
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Now the succedent is negatomic and we can thus apply the inductive hypothesis to this
derivation and the one of the right premise. If for at least one the inductive hypothesis gives
a; = b; for some 7, we are done. Otherwise we have a derivation in G3EQ of

Fl,a;ébD J_,—|—|a1;éb1,...,—|—|an;ébn:>—|—|a;éb (1)

and of
F,,J_,—!—!algébl,...,—!—!an¢bn:>A. (2)

By means of logical steps (1) gives
F/,(J,;éb:) J_,ﬂﬂal;ébl,...,—‘—'an;ébn = 1
and thus by cut, together with (2), we obtain a derivation in G3EQ of
F,—|—|a1;éb1,...,—|—|an7£bn = A.

If the sequent comes from R D> with both active formulas negatomic, then we proceed as
we did for & and V rules. Otherwise the inference step has the form
Uyay#by,... a0, #2bp,c#4d = L
Uyay#£b1,...,a,#b, = c£dD L

(which, as an aside, explains why the statement of this lemma cannot be restricted to one
atomic formula). Then either a; = b; for some 7, or ¢ = d, or we have a derivation in G3EQ

of
F,—|—|a1;éb1,...,—|—|an;ébn,—|—|c;éd:> 1.

In the first case we have finished. If ¢ = d, then by refl we have a proofin G3EQ of = —c#d,
and thus the conclusion follows by (repeated applications of) weakening. In the last case, we
obtain, by applying R D, a derivation in G3EQ of

F,—|—|a17&b1,...,—|—|an¢bn = —|—|—|C;éd
hence of
F,ﬂﬂal;ébl,...,—‘ﬂan;ébn = —c#d .

If the sequent comes from a split rule, since this is a derivation with split reduction, it is
of the form
F,al;&bl, .. .,an;ébn,alqécl = 1 F,(Zl;ébl, .. .,an;ébn,bl;écl = 1
F7a1¢b1a"'7an¢bn = 1

By induction hypothesis applied to the left premise we have threee cases: either a; = b; for
some 7, or a7 = ¢q, or we have a derivation G3EQ of

Fa_'_‘”’li‘ébla-''7_'_‘(1’715"5[)71’_‘_‘(1’15‘é(f'1i 1. (3)
In the first case we are done. In the second case, in the right premise we have by a; = ¢;
F,alyébl,...,an;ébn,bl;éal = 1

to which we apply the inductive hypothesis that gives, via symmetry of equality and via
contraction, the conclusion. In the third case, we have to analyze what is known from the
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inductive hypothesis applied to the right premise. Except for cases symmetrical with those
already considered, we are left with a derivation in G3EQ of

F,—|—|a1¢b1,...,—|—|an7ébn—|—|b1¢61, = 1 . (4)
By applying to (3) and (4) the rule R D we obtain
Uym=mar#by,. oy nnap#by, = nnnar#0

and
F,—|—|(J,1;ﬁb1,...,—|—|an;&bn = b0

which by logical steps and transitivity give in G3EQ
F,_|_|(Z] ;éb1,...,—|—|an;ébn = a ;éb]

hence
F’—|—|a17&b1’__.’—|—|an;ﬁbn = 1 .

We observe a connection here: The above lemma is structurally similar to a central lemma
of another proof of conservativity, namely the syntactic proof in formal topology of the localic
Hahn-Banach theorem [CCN].

We are now ready to give the syntactic proof of conservativity:

Theorem 6.7 G3AP is conservative over G3EQ for negatomic sequents.

Proof: Let I' = A be a negatomic sequent derivable in G3AP. Then by Proposition 6.3
it has a derivation with split reduction. We prove by induction on this derivation that the
sequent is also derivable in G3EQ.

If ' = Ais an axiom it can only be a logical axiom since I' is negatomic. So the conclusion
holds.

If ' = A is derived by a & rule, or by a V rule, or by a I D rule with negatomic active
formulas, then the premise(s) is (are) negatomic if the conclusion is. We can thus apply the
inductive hypothesis to the premise(s) and the same rule.

If I' = Ais derived by a L. O rule with an atomic active formula, i.e.,

lazbD L = azb T, 1L = A
FazbD> L = A

then by Corollary 6.5 we get a derivation in G3AP, with the same height of the derivation
of the left premise, of
IazbD L = ——azb.

By inductive hypothesis applied to this latter negatomic sequent we obtain a derivation in
G3EQ of the same sequent, and therefore, by logical steps, I';azbD> 1 = L1 in G3EQ.
The right premise is negatomic so by inductive hypothesis we obtain a derivation of it in
G3EQ. By cut of I'axbD> L = 1 with ', L = A we obtain the conclusion.

The same reasoning used for & and V rules applies to a RD rule in case the premise is a
negatomic sequent. If it is not, the last step of the derivation has the form

Mazb= 1L
I' = —azb
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By the previous lemma, either ¢ = b, and therefore I' = —a#b in G3EQ, or we have a
derivation in G3EQ of I',m—a#b = L. From the latter we obtain the conclusion by means
of logical steps.

The last rule cannot be split since I' is negatomic, and therefore the proof is finished. O

7 Conservativity results for positive order

The proof of conservativity of apartness over equality can be extended to a proof of conser-
vativity of theories of excess over theories of order. In these latter theories the partial order
they are based upon is defined through the negation of excess

agb :dfﬁa;(b

and the axioms are obtained by taking the negative axioms for excess and the contraposition
of the positive ones. For instance, the axioms for defined partial order are

—aga (refl)

—age & ~bgeDd—agh (trans)
We call GBLO, G3PO, G3LT, G3HA the theories based on a partial order thus obtained
from G3PLO, G3PPO, G3PLT, G3PHA, respectively.

The analogue to conservativity of apartness over equality for the theories of order can be
stated as follows:

If a negatomic sequent I' = A is derived in a theory of positive order, then it can
also be derived in the corresponding theory of partial order.

Indeed, the proof of this general result follows the pattern of the proof of conservativity
of equality over apartness: First we observe that property () of derivations of negatomic
sequents also holds for derivations in the calculi of positive order G3PLO, G3PPO, etc..
Then all the non-logical rules are shown to be permutable with the logical rules as in Lemma
6.2 so that it is guaranteed that in a derivation of a negatomic sequent they all can be
brought to the form with L on the right of the sequent arrow. We call such a derivation a
reduced derivation. At this point the derivation can be transformed into a derivation in the
corresponding theory of partial order.

Since the proofs all follow the same pattern, we shall just limit here to giving explicit
statements of the intermediate steps and proofs in outline for conservativity of the theory of
positive Heyting algebras over the usual theory of Heyting algebras with partial order defined
as negation of excess.

By permuting downward the non-logical rules of G3PHA as in Lemma 6.2 we obtain, by
an easy adaptation of the proof of Proposition 6.3:

Proposition 7.1 A negatomic sequent I' = A derivable in G3PHA has a reduced deriva-
tion.

The following lemma can be proved along the lines of the proof of Lemma 6.4:

Lemma 7.2 Let I' be negatomic, and assume to have a reduced derivation of height m in
G3PHA of
Liaygby,...,angb, = agh .

Then:
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a; = b; for some i, or
agh=a;¢b; for some i, or

Uya1¢by,...,a,¢b, = ~—agb has a derivation of height < m in G3PHA.

Corollary 7.3 Letl' be negatomic, and assumet, I' = a#b in GBPHA. Thent, ' = ——a#b
in G3PHA.

Then we have

Lemma 7.4 Let ' and A be negatomic, and assume to have a reduced derivation in G3PHA

of
F,(Il;(bl,...,(lln;{bn = A .

Then either a; = b; for some © or we have a derivation in G3HA of
F,ﬁﬁal;{\bl,...,—!—!an%bn = A.

Proof: By induction on the derivation of the sequent I'ya; £ by,...,a, ¢ b, = A.

If the sequent is an axiom, we proceed as in Lemma 6.6 in case it is a logical axiom. If
the sequent is a non-logical axiom, then we distinguish all possible cases. If it is irref, then
a; = b; for some 7, and therefore we have proved the claim. If it is a lattice axiom, for instance

I'yanbga,ag by, ... 0,80, = A

we observe that in GBHA we have = —aabga and thus by logical steps the conclusion
follows.
If the sequent is an instance of the axiom phi, e.g.

[, (a=sb)ragb,azgba,...,angb, = A
then we use the fact that in GBHA we have = - (a—b)aa¢b and therefore
['— = (a=b)ragh = A

is provable in G3HA. The conclusion then follows by weakening.

If the sequent is an instance of the axiom phb, we argue in a similar way, using that in
Heyting algebras we have = —0g¢a.

If the last rule of the derivation is a & rule, or a V rule, or a R D rule with negatomic
active formulas we proceed as in Lemma 6.6.

If the last rule is . D with an atomic active formula then we proceed as we did for Lemma
6.6 by using here Lemma 7.2.

If the last rule is a R D rule where the implication has atomic antecedent, i.e.,

Faal?{\bla'''aa’n?{\bna(:?{di 1
Uyar by, .. .,angb, = —cgd

then, by the inductive hypothesis, either a; = b; for some ¢, and we are done, or ¢ = d, and
we conclude by using reflexivity of partial order plus weakening, or we have a derivation of
I'y==aygby,...,m—a,¢b,,~—c¢d = 1 in G3HA. From this latter derivation we get the
conclusion by RD .
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If the last rule is a non-logical rule, then it must have L on the right of the sequent arrow
since we are considering a reduced derivation. If it is a lattice rule, for instance
Fyavbge,age,ar by, ...,angb, = L Tiavbge,bge,a1¢by,...,a,¢b, = L
Lyavbge,a1¢bq,...,a,£b, = L

then we apply the inductive hypothesis to the premises. Then either we have a; = b; for some
i, or avb = ¢, or a = ¢, or b = ¢ (and we conclude easily) or we have derivations in G3HA of

[y==—avbge,~—age,~—arghy,...,~—a,¢b, = L

F,ﬂﬂavb;{c,—'—'b;{c,—'—'m;{bh...,—'—'an;{bn = 1

From these we obtain
[y——avbge,~—a1gby,...,m—a,¢b, = -agc

[y=—avbge,~—ar¢by,...,m—a,¢b, = —bgc
and thus, by the lattice laws of G3HA,

[y=—avbge,~—a1¢by,...,m—a,¢b, = —avbgc

and the conclusion follows by propositional logic.
If the last rule is a Heyting arrow rule we argue in a way similar to the above, by using
the axiom of G8BHA —caagbD-cga—=b. O

Theorem 7.5 G3PHA is conservative over G3HA for negatomic sequents.

Proof: By induction on a reduced derivation of the given negatomic sequent. Since the
conclusion is negatomic, the last rule cannot be a non-logical rule. The proof proceeds as the
proof of Theorem 6.7, and Corollary 7.3 and Lemma 7.4 are applied in case the last rule is a
LD ora RD with atomic antecedent. O

Concluding remarks

We have given sequent calculus formulations for the theories of apartness and positive order
and shown admissibility of all the structural rules for these calculi. As cut does not have to
be taken as a primitive rule, proof analysis is made possible and applied to a syntactic proof
of conservativity.

The disjunction property for the theory of apartness, obtained here by direct syntactic
methods, can also be obtained, by indirect classical reasoning, with the method of gluing of
Kripke models (Dirk van Dalen, personal communication).

A characterization of the equality fragment for the first order theory of apartness has been
given by van Dalen and Statman in [vDS]. The equality fragment of the theory of apartness
is characterized as follows: let

vy =, w=y, vy = Va2 Vy#").
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Then the equality fragment of apartness is the theory SEQY obtained by adding to the pure
theory of equality the generalized stability axioms:

Vey(—z ¢ "y — z=y)

for all natural numbers n. The method is an analysis of normal natural deductions in the
theory of apartness. Afterwards, Smorynski showed in [Sm] how to obtain this result by
means of Kripke semantics.

In our proof the weak subformula property is crucial. Also in [vDS] this property is
essential, although it is not explicitly stated. It is needed there for justifying the restriction
to atomic occurrences only of formulas containing apartnesses in normal derivations of equality
formulas (p. 106).

Our conservativity theorem relates to the result by van Dalen and Statman as follows: If A
is an equality formula derivable in the theory with the axioms of apartness and stable equality,
then, by the remark at the beginning of Section 6, A° is a negatomic formula derivable in
the theory of apartness. By our conservativity result, A° is derivable in the theory of defined
equality, hence (A°)* = A is derivable in the theory of stable equality. Summing up, this
shows that for the propositional part, stability suffices as an extra property of equality to
characterize the equality fragment of apartness.

We have also given a conservativity result for systems with several rules of split form. It
would have to be studied separately how to normalize derivations in a corresponding natural
deduction system with several non-logical elimination rules.

Originally our proof of conservativity was done using as a logical part of the calculus the
system Gd4ip, introduced independently by Dyckhoff and Hudelmaier in [Dy] and [H]. The
characteristic feature of this calculus, namely the refinement of the LD rule according to the
form of the antecedent, allowed a better control on negatomic formulas, and some difficulties
here occurring in the case of the implication rules were not present. However, the proof relied
on the admissibility of cut for the extension of G4ip with the rules for apartness. Such an
extension of cut admissibility could not be proved using the technique in [Dy], because the
proof there is by induction on the weight of sequents; therefore it is only suitable for systems
in which the premises have a smaller weight than the conclusion, whereas the rules added for
the theory of apartness have premises that are greater in weight than the conclusion. This
problem was one of the motivations for an alternative direct syntactic proof of admissibility of
cut for G4ip. A proof of admissibility of structural rules for G4ip using induction on weight
of formulae and on height of derivations rather than on weight of sequents, and avoiding use
of metatheorems about calculi based on G3i, together with an extension to the first-order
case G4i, is given in [DN]. Proofs for various extensions of G4ip, including the theories of
apartness and positive order, will be given in [DN1].

Acknowledgements

I thank Jan von Plato for posing the problem of conservativity that led to this work. 1
have benefitted from helpful comments by Roy Dyckhoff and the collaboration with him in
[DN, DN1]. Some remarks by a referee have been very useful.

22



References

[CCN] J. Cederquist, T. Coquand, S. Negri. The Hahn-Banach theorem in type theory, to

[vDS]

[D]

[Dy]

[DN]

[DN1]

[K1]
[NvP]

[vP]

[Sm]

[T5]

appear in Twenty-Five Years of Constructive Type Theory G. Sambin and J. Smith
(eds), Oxford University Press.

D. van Dalen, R. Statman. Equality in the presence of apartness, in J. Hintikka et al.
(eds), Essays in Mathematical and Philosophical Logic, pp. 95-116, Reidel, Dordrecht,
1979.

A. Dragalin. Mathematical Intuitionism. An Introduction to Proof Theory, American
Mathematical Society, Providence, Rhode Island, 1988. Russian original 1979.

R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic, The Journal of
Symbolic Logic, vol. 57, pp. 795-807, 1992.

R. Dyckhoff. Dragalin’s proofs of cut-admissibility for the intuitionis-
tic sequent calculi G3i and G3i’, Research Report CS/97/8, Com-
puter Science Division, St Andrews University, 1997, available from
“http://www-theory.dcs.st-and.ac.uk/~rd/publications/”.

R. Dyckhoff, S. Negri. Admissibility of structural rules in contraction-free systems for
intuitionistic logic, submitted, 1998.

R. Dyckhoff, S. Negri. Admissibility of structural rules in extensions of contraction-free
systems for intuitionistic logic, in preparation, 1998.

G. Gentzen. New version of the consistency proof for elementary number theory, in
The Collected Papers of Gerhard Gentzen, M.E. Szabo ed., North-Holland, pp. 252-
277, 1969.

J. Hudelmaier. Bounds for cut elimination in intuitionistic propositional logic, Archive
for Mathematical Logic, vol. 31, pp. 331-354, 1992.

S. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ, Memoirs of the
American Mathematical Society, vol. 10, pp. 1-26, 1952.

S. Kleene. Introduction to Metamathematics, North—Holland, Amsterdam, 1952.

S. Negri, J. von Plato. From Kripke Models to Algebraic Counter-valuations, in The-
orem Proving with Analytic Tableauxr and Related Methods, H. de Swart ed., Lecture
Notes in Artificial Intelligence 1397, Springer Verlag, pp. 247-261, 1998.

J. von Plato. Positive Heyting algebras, manuscript, 1997.

D. Scott. Extending the topological interpretation to intuitionistic analysis, Compo-
sitio Mathematica, vol. 20, pp. 194-210, 1968.

C. Smorynski. On axiomatizing fragments, The Journal of Symbolic Logic, vol. 42,
pp- 530-540, 1977.

A.S. Troelstra, H. Schwichtenberg. Basic Proof Theory, Cambridge University Press,
1996.

23



