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Abstract. The decision problem for positively quantified formulae in the theory of linearly ordered Heyt-
ing algebras is known, as a special case of work of Kreisel, to be solvable; a simple solution is here presented,
inspired by related ideas in Gödel-Dummett logic.

1. Introduction

This paper presents a simple decision method for positively quantified formulae of the classical first-
order theory LOHA of linearly ordered Heyting algebras, where by positively quantified we mean
that universal quantifiers appear only in positive positions and existential quantifiers appear only
in negative positions. Π1-formulae are examples. In particular, word problems, either in LOHA or
in the more restrictive theory LOL of linearly ordered lattices, with or without bounds 0 and 1, are
solvable by this method, as are word problems in Gödel algebras (i.e. those Heyting algebras that
satisfy the condition ∀xy.(xy∨yx = 1), but are not necessarily linearly ordered). Since zero-order
Gödel-Dummett logic LC has free Gödel algebras as its Lindenbaum algebras [17], the method
can be used to decide formulae in that logic, e.g. by interpreting each formula A as a term h(A)
of LOHA and showing that 1 6 h(A) is derivable.

Our presentation is, as befits the subject, in algebraic terminology. Key technical contributions
are already made in the logical setting by various authors, as discussed below; the algebraic
presentation however is novel, compact and easily implemented. It is also slightly more general,
in the absence of a method to interpret such quantified formulae into Gödel-Dummett logic. The
decidability of the full first-order theory was first shown by Kreisel [21]; this was later rediscovered
([12], [24]), as pointed out in [29]. We do not claim to cover the full first-order theory; but we give
a method that offers relative simplicity in important but restricted cases.

The first-order definability of lattice operations means that (e.g.) any atom r 6 s∨t can be
rewritten using a quantifier as ∀x.((s 6 x∧t 6 x) ⊃ r 6 x). The same applies to the exponentiation
operator in Heyting algebras, where (e.g.) rs 6 t can be rewritten as ∀x.(s∧x 6 r ⊃ x 6 t). However,
applied to an atomic formula in negative position, this creates a universal formula in negative
position; in effect, this increases the logical complexity of the problem to be solved. In the linear
case, use of quantifiers can be avoided, as shown below, and so the logical complexity is not
increased. In fact, for reasons associated with space complexity, discussed below, there are good
reasons for using some rewritings by means of quantifiers, observing the positivity constraint
overall, by a different method.
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2. Background

Posets (partially ordered sets) (X, 6) are linearly ordered just when the order relation 6 is linear,
i.e. satisfies all instances of the disjunctive formula r 6 s ∨ s 6 r. A poset is bounded when it has
elements 0, 1 satisfying ∀x.(0 6 x) and ∀x.(x 6 1). The notion of bounded linear order is similarly
defined; the corresponding first-order theory we call BLO.

Lattices are posets with (associative and commutative) operations “meet” (∧) and “join” (∨)
satisfying all instances of the equivalences

(t 6 r ∧ t 6 s) ⇐⇒ (t 6 r∧s)
(r 6 t ∧ s 6 t) ⇐⇒ (r∨s 6 t).

The symbols for meet and join are small, to be distinguished from the larger symbols used for
conjunction and disjunction. A lattice is linearly ordered (resp. bounded) just when the underlying
order relation is linear (resp. bounded). Linearly ordered lattices are easily shown to be distributive.
LOL will denote the theory of linearly ordered lattices.

Heyting algebras are bounded lattices with an “exponentiation” operation, ts, satisfying all
instances of the equivalence

r 6 ts ⇐⇒ r∧s 6 t.

Such an algebra is non-trivial provided that 1 6 0 is false. We deal only with non-trivial algebras
henceforth.

A linearly ordered Heyting algebra is a Heyting algebra of which the order relation is linear.
A Gödel algebra is a Heyting algebra satisfying ∀xy.(1 6 (xy∨yx)). It is known [17] that Gödel
algebras — also called “L-algebras” [17], also called “linear Heyting algebras” [20], and also called
“relative Stone algebras with 0” [7] — form a variety, consisting of the subdirect products of linearly
ordered Heyting algebras. LOHA will denote the theory of linearly ordered Heyting algebras.

We now present more formally the syntactical notions implicit in the above description of
various theories. Let X be an arbitrary set, the elements of which we call variables. The language
L(X) of Heyting algebras over X is constructed as the set of terms freely generated by the syntax
definition: All variables x, y, ... are terms; the constants 0, 1 are terms; if s, t are terms, then s∧t,
s∨t and st are terms.

Atoms (i.e. atomic formulae) are just inequalities s 6 t between terms. Since equality s = t can
be defined as the conjunction of s 6 t and t 6 s, we ignore it. We define the constants true and
false using (e.g.) the inequality 1 6 1 and its negation; variations appropriate to the fragment of
our language without 0, 1 are left to the reader.

Atoms of the form x 6 y, where x, y are constants or variables, are called simple atoms.
(Zero-order) formulae A are built up from atoms using the zero-order logical operations

∧,∨, ⊃ ,¬. A Π1-formula is of the form ∀x1 . . . xn.A where A is a zero-order formula. More
generally, a positive formula is a first-order formula built up from atoms and with all its universal
(resp. existential) quantifiers occurring only in positive (resp. negative) position.

The method presented below decides validity of such positive formulae, in any of the theories
mentioned that include linearity.

A sequent is a formal expression Γ ⇒ ∆ where Γ , ∆ are multisets of formulae. It is simple iff
every formula therein is a simple atom.

3. Bounded linear order

The theory BLO of “bounded linear order” is fundamental. For this section, we forget the lattice
and Heyting algebra operations, but keep the constants 0, 1 and the associated conditions. Sequents
in this language are, of course, simple. The following definition is taken from the literature, e.g.
[2] and [29], adapted to deal with the constants 0, 1.

Definition 1. A sequent Γ ⇒ ∆ is cyclic iff there exists a finite sequence t1, . . . , tn of terms, such
that, for each i, either ti 6 ti+1 is in ∆ or its converse ti+1 6 ti is in Γ , with at least one such
inequality in ∆ (so n > 1), and we have at least one of the following:

tn ≡ t1 t1 ≡ 0 tn ≡ 1.
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Note that every sequent having one of the following forms is cyclic:

Γ ⇒ ∆, t 6 t Γ ⇒ ∆, 0 6 t Γ ⇒ ∆, t 6 1 s 6 t, Γ ⇒ ∆, s 6 t.

It is known from (e.g.) [29] (except for non-consideration of 0 and 1) that a simple sequent
is valid in BLO iff it is cyclic. Efficient tests for cyclicity are mentioned in Section 8 below. The
terminology “cyclic” is appropriate when 0 and 1 are not used; by abuse of language, we allow it
in the more general case.

Lemma 1. Cyclic sequents are closed under Cut, i.e. if Γ ⇒ ∆, s 6 t and s 6 t, Γ ′ ⇒ ∆′ are
cyclic then so is Γ ′, Γ ⇒ ∆, ∆′.

Proof. Routine: see Theorems 5.1 and 7.2 of [29], where neither 0 nor 1 is considered. (The argu-
ment is just that if the cut atom plays an essential role in both cycles, the two cycles are glued
together (with omission of the links given by the atom); otherwise, the conclusion Γ ′, Γ ⇒ ∆, ∆′

already contains a cycle from at least one premiss.)

It follows that the standard rules [28] of the Gentzen-Ketonen-Kleene sequent calculus G3cp
for classical propositional logic are valid, invertible and complete for the zero-order theory of
bounded linear order, provided that cyclic sequents (rather than those of the form A,Γ ⇒ ∆, A)
are taken as the initial sequents.

4. Non-trivial bounded linear order

As noted above, a bounded linear order is non-trivial when 1 6 0 is false. The results of the previous
section extend to non-trivial bounded linear orders (the theory NBLO provided we change the
definition of cyclic to read as follows:

Definition 2. A sequent Γ ⇒ ∆ is cyclic iff there exists a finite sequence t1, . . . , tn of terms, such
that (i) for each i, either ti 6 ti+1 is in ∆ or its converse ti+1 6 ti is in Γ and (ii) either at least
one such inequality in ∆ (so n > 1) and we have at least one of the following:

tn ≡ t1 t1 ≡ 0 tn ≡ 1

or all inequalities ti+1 6 ti are in Γ , with tn ≡ 1 and t1 ≡ 0.

Since our focus in what follows is on linearly ordered Heyting algebras, this is what we mean by
cyclic in such a context; the earlier definition should be used for tackling problems in the theory
LOL.

5. Properties of linearly ordered Heyting algebras

The following fact (especially the equivalence between (1), (5), (6), and (8)) is crucial:

Proposition 1. In any linearly ordered Heyting algebra, the following are equivalent for all r, s, t:
1. rs 6 t
2. ∀x.(s∧x 6 r ⊃ x 6 t)
3. ∀x.((s 6 r ∨ x 6 r) ⊃ x 6 t)
4. ∀x.((s 6 r ⊃ x 6 t) ∧ ∀x.(x 6 r ⊃ x 6 t)
5. r 6 t ∧ (s 6 r ⊃ 1 6 t)
6. (r 6 t ⊃ s 6 r) ⊃ 1 6 t
7. (∀x.((r 6 x ∧ x 6 t) ⊃ s 6 x)) ⊃ 1 6 t
8. ∃x.(((r 6 x ∧ x 6 t) ⊃ s 6 x) ⊃ 1 6 t)

Proof. (1) and (2) are equivalent in any Heyting algebra, since s∧x 6 r ⇐⇒ x 6 rs. (2) and (3)
are equivalent, since, by linearity, s∧x 6 r ⇐⇒ s 6 r ∨ x 6 r. (3) and (4) are equivalent, in any
Heyting algebra. (4) and (5) are equivalent, since (a), by transitivity of 6 , ∀x.(x 6 r ⊃ x 6 t) ⇐⇒
r 6 t and (b), by ∀x.x 6 1, ∀x.(s 6 r ⊃ x 6 t) ⇐⇒ s 6 r ⊃ 1 6 t. (5) and (6) are equivalent, using
only the properties of bounded linear order, including the fact that 1 6 t ⊃ r 6 t. (7) implies (6),
since the antecedent of (6) easily implies the antecedent of (7). (6) implies (8): just instantiate the
bound variable x by r. (8) implies (7), by classical first-order logic. ut
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6. A rewriting system for linearly ordered Heyting algebras

We first describe the method, for simplicity, in the case of Π1-formulae. Our method of deciding
the validity of such a formula consists (in essence) of stripping off the universal quantifiers and
eliminating (by rewriting) the lattice and Heyting operations. We then use the logical rules of the
calculus G3cp [28] to reduce the problem to simple sequents, of which the cyclicity (and thus
validity in NBLO) can then be decided. The rewriting steps and the logical steps can, of course,
be interleaved.

If universal quantifiers are in the formula to be decided, then, provided they appear only
positively, the usual technique of choosing a fresh variable to replace the bound variable suffices.
Similarly for negative occurrences of existential quantifiers.

The essence of our method is the following rewriting system, where the validity of a rule means
the equivalence between its two sides:

1. t 6 1 −→ 0 6 1 2. 0 6 t −→ 0 6 1

3. r 6 s∧t −→ r 6 s ∧ r 6 t 4. r∧s 6 t −→ r 6 t ∨ s 6 t

5. r 6 s∨t −→ r 6 s ∨ r 6 t 6. r∨s 6 t −→ r 6 t ∧ s 6 t

7. r 6 ts −→ r 6 t ∨ s 6 t 8. rs 6 t −→ r 6 t ∧ (s 6 r ⊃ 1 6 t).

For efficiency reasons, we also use

8′. rs 6 t −→ (r 6 t ⊃ s 6 r) ⊃ 1 6 t.

Proposition 2. 1. Rules 1 and 2 are valid in the theory BLO of bounded linear order (and in
its non-trivial version NBLO).

2. Rules 3, 4, 5, and 6 are valid in the theory LOL of linearly ordered lattices.
3. Rules 7, 8, and 8′ are valid in the theory LOHA of linearly ordered Heyting algebras.

Proof. (7) is justified by the equivalence between r 6 ts and r∧s 6 t, together with (4). (8) and
(8′) are justified by those between (1), (5) and (6) of Proposition 1. Others are routine. ut

Zero-order formulae (and even Π1-formulae) in the language of LOHA are thus reduced to
zero-order formulae in the language of NBLO (non-trivial bounded linear order), then reduced
by root-first proof search to a conjunction of simple sequents; these are decided by considering
cyclicity.

It is straightforward to combine rewriting with proof search, using the rules of G3cp; for
example, rewriting by (3) of an atom to a conjunction can be combined with an immediate analysis
of the conjunction, the combination being treated as one step. In the discussion below of the
complexity of our procedure we assume this is done. For example, an occurrence of an atom rs 6 t
leads, by (8′) and (8) respectively, to proof rules that we may represent as

r 6 t, Γ ⇒ ∆, s 6 r 1 6 t, Γ ⇒ ∆

rs 6 t, Γ ⇒ ∆
LL∗ Γ ⇒ ∆, r 6 t s 6 r, Γ ⇒ ∆, 1 6 t

Γ ⇒ ∆, rs 6 t
RL∗

.

7. Complexity improvements

It is not always necessary to reduce atoms to simple atoms; heuristics to close a branch of the
derivation, as soon as, for example, a non-simple atom s 6 s appears in the succedent, may easily
be added.

More seriously, consider e.g. the rewriting of an atom r 6 s∧t occurring in the antecedent of a
sequent; this leads to the sequent calculus rule
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r 6 s, r 6 t, Γ ⇒ ∆

r 6 s∧t, Γ ⇒ ∆
LR∧

where the two occurrences of the term r may lead to derivations of exponential depth. Similar
issues arise with all rules except (1) and (2).

The following simple method, approximated by Larchey-Wendling in [22] and Fiorino in [13]
(but originating in the work of Hudelmaier [18] or earlier), avoids the problem in this case; in
the premiss, replace r (if compound) by a fresh variable x, and add the new atom r 6 x to the
antecedent:

r 6 x, x 6 s, x 6 t, Γ ⇒ ∆

r 6 s∧t, Γ ⇒ ∆
LR∧′

Similar methods deal with the other rules, the new atom in each case being added to the
antecedent. Of course, if the two occurrences are on different branches, nothing needs to be done.
In the case just mentioned, where r 6 s∧t occurs negatively, we are in essence using the easy
equivalence between r 6 s∧t and ∃x.(r 6 x ∧ x 6 s ∧ x 6 t).

Consider in particular the rule LL∗ for analysing an antecedent atom rs 6 t, i.e. an atom of
this form occurring negatively. Using (8) of Proposition 1, when r is compound, we can use instead
of LL∗ the rule (with x fresh)

r 6 x, x 6 t, Γ ⇒ ∆, s 6 x 1 6 t, Γ ⇒ ∆

rs 6 t, Γ ⇒ ∆ LL∗′

Summarising, then, we give the rules of our calculus in full:

Definition 3. The calculus G3-LOHA (including in (7) the six rules just obtained) is as follows:

1. Initial sequents are both the cyclic simple sequents and those sequents of the form Γ ⇒ ∆, t 6 1
or Γ ⇒ ∆, 0 6 t;

2. The rules for analysing 0 and 1, as follows:

Γ ⇒ ∆
0 6 t, Γ ⇒ ∆

LL0 Γ ⇒ ∆
t 6 1, Γ ⇒ ∆

LR1

3. The rules of G3cp [35] for zero-order logical operators;
4. The rules (in which x is not free in Γ , ∆ and A is any formula)

A,Γ ⇒ ∆

∃x.A, Γ ⇒ ∆
L∃

Γ ⇒ ∆, A

Γ ⇒ ∆,∀x.A
R∀

for analysis of existential quantifiers in negative position and universal quantifiers in positive
position;

5. Rules for the lattice operators (in which x is any simple term):

Γ ⇒ ∆, r 6 s Γ ⇒ ∆, r 6 t

Γ ⇒ ∆, r 6 s∧t
RR∧

x 6 s, x 6 t, Γ ⇒ ∆

x 6 s∧t, Γ ⇒ ∆
LR∧

Γ ⇒ ∆, r 6 x, s 6 x

Γ ⇒ ∆, r∧s 6 x
RL∧

r 6 t, Γ ⇒ ∆ s 6 t, Γ ⇒ ∆

r∧s 6 t, Γ ⇒ ∆
LL∧

Γ ⇒ ∆, x 6 s, x 6 t

Γ ⇒ ∆, x 6 s∨t
RR∨

r 6 s, Γ ⇒ ∆ r 6 t, Γ ⇒ ∆

r 6 s∨t, Γ ⇒ ∆
LR∨

Γ ⇒ ∆, r 6 t Γ ⇒ ∆, s 6 t

Γ ⇒ ∆, r∨s 6 t
RL∨

r 6 x, s 6 x, Γ ⇒ ∆

r∨s 6 x, Γ ⇒ ∆
LL∨
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6. Rules for the exponentiation operator (in which x is any simple term):

Γ ⇒ ∆, r 6 x, s 6 x

Γ ⇒ ∆, r 6 xs RR∗ Γ ⇒ ∆, r 6 t s 6 r, Γ ⇒ ∆, 1 6 t

Γ ⇒ ∆, rs 6 t
RL∗

r 6 t, Γ ⇒ ∆ s 6 t, Γ ⇒ ∆

r 6 ts, Γ ⇒ ∆
LR∗ x 6 t, Γ ⇒ ∆, s 6 x 1 6 t, Γ ⇒ ∆

xs 6 t, Γ ⇒ ∆
LL∗

7. Rules that replace the ordinary rules when the duplicated term (r, r, t, t, t, r respectively) is
compound. In each case x is a variable and must be fresh, i.e. not free in r, s, t, Γ ,∆.

r 6 x, x 6 s, x 6 t, Γ ⇒ ∆

r 6 s∧t, Γ ⇒ ∆
LR∧′

x 6 r, Γ ⇒ ∆, x 6 s, x 6 t

Γ ⇒ ∆, r 6 s∨t
RR∨′

t 6 x, Γ ⇒ ∆, r 6 x, s 6 x

Γ ⇒ ∆, r∧s 6 t
RL∧′

x 6 t, r 6 x, s 6 x, Γ ⇒ ∆

r∨s 6 t, Γ ⇒ ∆
LL∨′

t 6 x, Γ ⇒ ∆, r 6 x, s 6 x

Γ ⇒ ∆, r 6 ts RR∗′
r 6 x, x 6 t, Γ ⇒ ∆, s 6 x 1 6 t, Γ ⇒ ∆

rs 6 t, Γ ⇒ ∆ LL∗′

Definition 4 (Size of a term, of an atom, of a formula, and of a sequent).

1. The size ‖r‖ of a term r is defined as the number of operations in r; thus ‖0‖ = ‖1‖ = ‖x‖ =
0, ‖r∧s‖ = ‖r∨s‖ = ‖rs ‖ = 1 + ‖r‖+ ‖s‖.

2. The size ‖r 6 s‖ of an atom r 6 s is defined as ‖r‖+ ‖s‖.
3. The size ‖A‖ of a formula A is defined as the sum of the sizes of its atoms and the number of

logical connectives, each counted with its appropriate multiplicity.
4. The size ‖Γ ⇒ ∆‖ of a sequent Γ ⇒ ∆ is defined as the sum of the sizes of the formulae in

Γ , ∆, each counted with its appropriate multiplicity.

It follows that simple sequents are those with size 0. Note that, in contrast to [10], [13], and [18],
no special weighting of the operators is involved. The logical operators in those papers correspond
to our algebraic operators; the latter just have weight 1.

Proposition 3. Derivations in the calculus G3-LOHA have depth bounded by the size of the
end-sequent.

Proof. For each rule, the size of each premiss is less than the size of the conclusion. ut

Theorem 1. The calculus G3-LOHA is complete for positively quantified formulae of the theory
LOHA: if such a formula A is valid in that theory, then the sequent ⇒ A is derivable.

Proof. By Proposition 3, root-first search for a derivation of the sequent terminates, and each
step replaces a sequent by zero or more sequents whose conjunction (augmented with appropriate
quantifiers) is equivalent to the replaced sequent. The result then follows by the characterisation
of cyclic sequents as those valid in the theory BLO. ut

Each simple sequent constructed by the above method involves at most n variables, where n
is the the number of variables in the original sequent, plus its size, since each rewriting step or
logical step (maybe combined as one step) reduces the sequent size by 1 and adds at most one
new variable. (Of course, each such step may replace one sequent by two; but they are on different
branches.)

Similarly, the number of atoms in any simple sequent so constructed from a sequent of size m
and with k formulae is at most 2m + k, since each rewriting step (combined if appropriate with a
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logical step or two) replaces one atom by at most three and each purely logical step replaces one
formula by at most two.

This may be compared with rules of [22] that use logical equivalences similar to those expressed
by our rules; these begin operating on a sequent (constructed by some pre-processing steps) at
most about 5 times the size of the original sequent, and are subject to similar remarks about the
number of steps in a branch being bounded by the size (measured after the pre-processing) of the
sequent; cf. also [13].

8. Cyclicity testing

This paper proposes no new method for testing cyclicity; it is straightforward to adapt the ideas
of Larchey-Wendling [22] and [23] to implement the test for cyclicity of a simple sequent in time
linear in the length (i.e. the number of atoms) of the sequent. The method outlined in [22] for
reducing a sequent to a simple sequent adds many new variables, and corresponding atoms, one
new variable for each compound subformula (in our notation, subterm) of the original sequent.
However, this is to simplify the construction of a single structure in which the cyclicity of many
sequents can be checked simultaneously; it is not yet clear whether this single structure can be
generalised to the algebraic setting.

9. Relation to Gödel-Dummett logic

For background on Gödel-Dummett logic, see [22]; it is intuitionistic logic extended by linearity
axioms, i.e. formulae of the form (A ⊃ B) ∨ (B ⊃ A). As noted in [33], it has its origins in the
neglected work of Skolem, who by 1919 had defined and studied those several kinds of algebra
that later came to be known as Heyting algebras, as Gödel algebras, and (respectively) as linearly
ordered Heyting algebras. The Lindenbaum algebra of any consistent zero-order theory in this logic
is, as shown by Horn [17], a Gödel algebra, i.e. a subdirect product of linearly ordered Heyting
algebras.

Formulae A of this logic are routinely interpreted as terms h(A) of Heyting algebra; e.g.

h(A ⊃ B) = h(B)h(A). The problem of deciding a formula A is then replaced by the problem of
deciding the atom 1 6 h(A) in the theory of Gödel algebras. As that is (in effect) an equation, it
suffices to decide the atom in the theory LOHA, since, by universal algebra, the same equations
are valid in both theories. (This is not true for arbitrary formulae, the linearity axioms being
obvious examples.)

Early work on decision procedures for this logic (using a tableau calculus) is by Corsi [9]. Key
contributions were made by Avron & Konikowska [2], who first identified the equivalence expressed
by our rewriting rule (8). When used for an antecedent occurrence, the logical version LL∗ of this
rule goes back to (at least) [10]; it is the (non-invertible) rule ⊃⇒∗∗

4 for a terminating multi-
succedent calculus for intuitionistic logic. Its invertibility in Gödel-Dummett logic was noticed
and exploited in [1] and [11].

Avron & Konikowska’s methodology [2] of “Rasiowa-Sikorski decomposition systems” is here
expressed in algebraic terms; but we have adopted nothing analogous to their variations employing
hyper-sequents.

Larchey-Wendling, in [22] and [23], presents details of the state-of-the-art implementation,
including sophisticated methods for cyclicity testing, using graph theory and binary decision di-
agrams. His methods for eliminating compound formulae are similar to some of ours (for terms),
but we are unable to match them up in detail.

Baaz, Fermueller & Ciabattoni [4] present a “Sequent of relations calculus”; this has the same
idea of reduction of complex terms by invertible operations to logical combinations of simpler
terms. Our atoms correspond to their sequents; our disjunctions of atoms correspond to their
hypersequents, with our antecedent simple atoms x 6 y moved to the succedent in the form y < x.
We find it simpler to deal with a single relation 6.

Fiorino [13] presents, for Gödel-Dummett logic, tableaux calculi that suffer, like the calculi of
[1], [9] and [11], from unnecessary duplication of effort in deciding the logical equivalent of our
simple sequents; they do however have evident linear bounds on search depth.
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10. Other related work

Gentzen-style proof systems for the theories of partial order, of linear order, and of lattice theory
have been developed in [29] and [30] exploiting a variety of techniques, including a systematic
method, expounded in [28], for conversion of universal axioms to inference rules. Ideas [26] based
on this method led to the genesis of the present paper; various refinements designed to ensure
efficient root-first proof search and simplifications based on the symmetry between left and right
of the sequent arrow have disguised the application of this technique.

Jipsen [20] gives a Gentzen calculus for residuated lattices, with a completeness theorem based
on non-commutative phase spaces; the underlying algorithm is attributed to Okada & Terui [31]
and the calculus is attributed to Ono & Komori [32]. The idea there however is to represent an
ordering s 6 t between two terms s and t as a sequent s ⇒ t, and thus is (quite apart from the
extra emphasis on semantic methods) rather different from our approach.

Other Gentzen-style methods for ortholattices, showing decidability of the word problem in
the theory of free ortholattices, have been developed by Tamura [34], based on earlier work on
lattice theory by Matsumoto. These, and Jipsen’s work, differ from our work in that only atoms
s 6 t, rather than formulae, are decided.

There is (we believe) no connection with Haiman’s work [16] on proof theory of “linear lattices”;
these are called “linear” despite not being linearly ordered.

It is of interest to speculate on how second-order propositional quantifiers of Gödel-Dummett
logic (which are known to be eliminable [5]) can be interpreted, presumably as first-order quanti-
fiers, and to what extent and by what means such first-order quantifiers are also eliminable.

Without the linearity condition, one has a corresponding problem for the theory HA of Heyting
algebras. The reduction rules in Proposition 2 are now valid only in part; specifically, (1), (2), (3),
and (6) are valid in HA, (4) can be replaced for positive occurrences by

r∧s 6 t −→ ∀x.((x 6 r ∧ x 6 s) ⊃ x 6 t),

(5) can be replaced for positive occurrences by

r 6 s∨t −→ ∀x.((s 6 x ∧ t 6 x) ⊃ r 6 x).

(7) can be replaced by r 6 ts −→ r∧s 6 t, and (8) can be replaced, for positive occurrences, by

rs 6 t −→ ∀x.(x∧s 6 r ⊃ x 6 t).

But, it is an open problem to give appropriate rules for simplifying negative occurrences of r∧s 6 t,
of r 6 s∨t or of rs 6 t. Since it would suggest a simple algorithm, without backtracking, for a
PSPACE-hard decision problem, a solution to this problem would be of general interest.
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