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Abstract

We give a direct proof of admissibility of cut and contraction for the contraction-free
sequent calculus G4ip for intuitionistic propositional logic and for a corresponding multi-
succedent calculus; this proof extends easily in the presence of quantifiers, in contrast
to other, indirect, proofs, i.e. those which use induction on sequent weight or appeal to
admissibility of rules in other calculi.

1 Introduction

In this work we present a direct proof of admissibility of cut and other structural rules for a
certain sequent calculus for intuitionistic logic. This calculus is called G4i in [TS], of which
we henceforth follow the notation (except for AD B in place of A — B). Several papers ([Dy1],
[H1], [H2], [H4], [LSS], [V], [W]) and the book [TS] have shown the admissibility of contraction
and cut for G4ip, the propositional part of G4i, or for its variants. These calculi have (in
contrast to the calculi G1lip, G2ip and G3ip) the useful feature that root-first proof search
terminates without any loop-detection; this is exploited in various implementations ([BB],
[DP], [Dy2], [H4], [Pa], [LWB], [M1], [BSS], [Sto] and [Ten]) and in Pitts’ influential work [P]
on second-order quantification.

All these proofs of admissibility use inductions on formula weights and on derivation
heights: these are unproblematic. But they also use the corresponding results for G3ip and
an induction on sequent weight (based on the weights of formulae in the sequent): their
extension, for extensions of G4ip, is therefore problematic, unless the extensions use only
rules in which the weight of each premise is less than that of the conclusion. (There are also
non-constructive, model-theoretic approaches in [PD], [AF] and [MMO]: however, we prefer
constructive reasoning.)

We present here a direct proof (along the lines, using inversion lemmas, exploited by
Dragalin [D]) of the admissibility of contraction and cut for G4ip. We show how it can be
extended when one adds to G4ip the rules (Section 8) for first-order syntax (as in [H0]). The
proof adapts with little difficulty to the multi-succedent calculus G4ip’ (Section 7).

Our new proof is direct, in that it makes no use of similar metatheorems for G3ip and no
use of induction on sequent weight. It is also routine: all details can easily be filled in by any
reader familiar with the technique in [D]. In [Dy1] the first author wrote that “a direct proof
of cut-elimination ... seems difficult”. Now that we have it, we regard the indirect proofs
as the difficult ones. The difficulty was in the proof of admissibility of contraction; this is
overcome by means of two lemmas, 4.1 and 4.2.



2 Background

Zero-order and first-order formulae A, B,C, D, E are built up as usual: but P and () range
over atomic formulae and L is not an atomic formula. In zero-order examples p,q,... are
proposition variables, i.e. atomic formulae. I'; A and © range over multisets of formulae.
Judgments are of the form I' = A. The primitive rules of the calculus G4ip are

TP = p Aviom rLiske Mt
I'NA,B= F I'=A I'=B
U ALB = kL = agn &
A= FE F,B:>EL I'= A; R
I'VAVB = F v ' = Ag Vv Ay v
I,PB=E A= B
T,P.P5B = E 02 T = ASB
I,Co>(DDoB) = E I,C>B,DOB = FE

L&D VD

I (C&D)>B = E T, (CVDDoB=E Y

¢, DoB=D I'B=FE

T (CoD)>B= E  ©2°

Note that we use a slight variant of the LD rule used in [Dy1] and [TS], and that in axioms
I', P = P and rules L.0D the formula P is atomic. Loosely, we refer to sequents I, L = I as
“axioms”. Derivations are the labelled trees whose leaves are axioms and whose other nodes
match rules: each node contains a judgment and each internal node is labelled by the name
of the rule or of the lemma where the rule is shown to be admissible. We use the label Ind
where appealing to an induction hypothesis.

The weight w(A) of a formula A is defined as follows:
w(l) =

w(P) =1 for any atomic formula P,

E

ACB) =24 w(A) + w(B),
w(AV B) =34+ w(A)+w(B).

w

(
(
w(ADB) = 1+ w(A) +w(B),
(A&
(

“Lighter” is synonymous with “of lower weight”. We use induction on formula weight
rather than on formula size or sequent weight. The height of a derivation (using primitive
rules) is just its height as a tree; so a tree with one node has height 0. “Height” is undefined
for derivations using the non-primitive rules.

Let G be a logical calculus. We recall that a (schematic) rule

S
S/



in G is admissible in G iff for every derivation of an instance of S there is one, of the corre-
sponding instance, of S’. (Similarly for multi-premise rules.)

Definition 2.1 The rule g

s
is strongly admissible iff for every n and every derivation of height n of an instance of S
there is a derivation of height < n of the corresponding instance of S’.

We don’t use anywhere the strong admissibility of rules but include some results about
strong admissibility for future reference.

Lemma 2.2 The Weakening rule
= A

F,F’:>AW

is strongly admissible.

Proof: Routine induction on the height of the derivation of the premise. O

3 Basic lemmas

We give here some routine lemmas similar to those established in [D] prior to the proof
of admissibility of Contraction and not really specific to the “contraction-free” approach of
G4ip. Our inversion lemmas can be stated as (strong) admissibility of certain rules, converses
of the primitive inference rules.

Lemma 3.1 The following rules are strongly admissible in G4ip:

s I'A&LB = F

" T,AB=E’

) I'= A&B  I'= A&B

' r=4 "~ TI'=sB ’

3 rAvB=F T AVB=F
' A=k I'B=FVE '’
y [, (C&D)OB = F

" I,C>(DD>B) = E’

5 I, (CvD)DB = FE

" I,CoB,DOB=FE’

s LPoB= B

" I,B=F

; I, (CoOD)DB = F

' I,B=F ’

P I'= ADB

A= B



Proof: By induction on the height n of the derivation d of the premise of each item. If n =0
the premise is an axiom and so the conclusion is an axiom. (Sequents of the form I', K = F
are axioms iff L € I" or £ is an atom.) If n > 0 we distinguish two cases, according to
whether the main formula (the one in the premise that does not appear in the conclusion)
of the inference is principal or not in the last step of d. If it is principal, then a premise of
the last inference gives the conclusion; otherwise, one applies the inductive hypothesis to the
premise(s) and then uses the rule again. O

Use of one of these rules will be indicated by /nv in derivation trees. In fact, the rules of
Gd4ip are all invertible except for RV and LD D; the latter is (partially) invertible w.r.t. the
second premise, as seen in item 7 of the lemma.

Lemma 3.2 Judgments of the following form
1. T,A = A (generalized axiom)
2. I'yA,ADB = B (modus ponens)

are derivable in G4ip.

Proof: 1. By induction on w(A). If Ais L or an atomic formula, then I'y 4 = A is an axiom.
If A= B&C, we have the derivation

rBC=B F,B,C:>Chjgf
[,B.C=BLC r
I, B&C = B&C
If A= BV we have the derivation
F,B:ws*lnld%v F,C:>C]ngv
I,B=BvC "' I''C=BvC "*

rBvC = BVC(C

If the outermost connective of A is an implication, we cannot prove the claim without relying
on 2, the proof of which, in turn, relies on 7. This can be carried out by a simultaneus
induction, but an alternative is to analyze the structure of the antecedent, as follows: If
A = PDB we have the derivation

T,P,B= B ]”Ldo
T,P,POB = B RD
[,P>B = PoB '*°

For A = (C&D)D>B we have the derivation

Ind
3.1,8
3.1,8
L&D
L&

[,C>(D>B) = C>(D>B)
I,C>(D>B),C = DOB
I C>(DDoB),C,D = B
I, (C&D)>B,C,D = B
I, (C&D)D>B,C&D = B

T, (C&D)>B = (C&D)5B 12




where induction applies since w(C'D(DDB)) < w((C&D)DB). For A = (C'VvD)DB, consider
the derivation

Ind
3.1,8

ILCOB,DoB = COB I'COB,DOB = DDB g"idg
3.1,

I,oB,DOB,C = B ICoB,DOB,D = B
[,CoB,DoB,CVD = B Lv
[, (CVD)>B,CVD = B
[, (CVD)>B = (CvD)oB 12

LvVD

Finally, for A = (CD>D)DB, the judgment is derived as follows

Ind

', DOB D D
,DOB,CD>D = CD 3.1.8

I, DOB,COD,C = D
I, (CoD)>B,C>D =B n
I, (CoD)oB = (CoD)DOB =

T.B.CoD= B ™
L5

2. By 1, the judgment 'y ADB = ADB is derivable, and the conclusion follows by invert-
ibility of RD. O

4 Other key lemmas

We proceed by showing that a weak version of the LD rule of G3ip is admissible in G4ip.
The proof is similar to that of Lemma 4 in [H2] of admissibility of the stronger LD rule,
with DD B in the antecedent of the first premise; as we mention in Section 9, that proof only
works if D is atomic, because of an unconsidered case where DD B is principal. By leaving
the formula DD B out of the premise we get a result weaker (in that the premise is stronger)
but also stronger (D is unrestricted to being atomic).

Lemma 4.1 The rule
I'=D I'B= K

I,DOB = E

is admissible in G4ip.

Proof: By induction on the height n of the derivation d of the first premise. If » = 0, then
the premise is an axiom: if L € I', then the conclusion is an axiom, and if D is an atom, and
D € T, then the conclusion follows by applying L0D to the second premise. Now let n > 0
and argue by cases.

1. If the last inference of d is by an invertible left rule, apply the corresponding inversion
lemma to the right premise, then use the inductive hypothesis and the rule.

2. If the last inference of d is by R&, with D = D& D3, apply the inductive hypothesis
to the second premise and obtain I', D;DB = F. Again by the inductive hypothesis,
using the first premise, we get I, D;D(D2DB) = K and the conclusion follows by L&D.

3. If the last inference of d is by RV, use the inductive hypothesis, admissibility of weak-
ening and LVD.



4. If the last inference of d is by RD, with premise I', D1 = D3, by admissibility of weaken-
ing we obtain I', Do DB, Dy = Day; by LDD the conclusion I', (D12 D2)DB = F follows.

5. Finally, suppose that the last inference of d is by a non-invertible left rule, that is,
LoD with I'=T1", (FOG)DH and premises I, GDH,F = G and I'", H = D. Thus we
obtain

I (FOG)OH,B = E

I'"'\GoH,F = G I'"H= D I"'H,B= F

I'"GoH,F,DO>B = G IYH,DD>B = F .
1" (FOG)DH,DD>B = K

Inv

Ind

0D

The following lemma constitutes the essential step in the proof of admissibility of contrac-
tion.
Lemma 4.2 The rule
I',(CoD)oB = E
r,c,DoB,DOB = F

is admissible in G4ip.

Proof: By induction on the height n of the derivation of the premise. For n = 0, the premise
is an axiom and the conclusion is an axiom. If the last inference is by a right rule or by a
left rule with (C'>D)D B non-principal, the induction is straightforward. If the last inference
is by LDD with (CD>D)DB principal, the premises are I';C, DDB = D and I', B = FE; we

now construct
IB=F

I,C.,D5B=D T.C.DS5B.B=E "W
[,C,DOB,D>B = E Lemma 4.1

The lemma is surprising because the repetition of DD B in the conclusion might appear

to make contraction-elimination harder rather than easier. However, the key point is that
DD B is a lighter formula than (C>D)DB.

5 Admissibility of Contraction

Proposition 5.1 The Contraction rule

I'A, A= F

I A= E Contr

is admissible in G4ip.

Proof: By induction on the weight of the contracted formula A, and, for each weight, on the
height n of the derivation d of the premise.

For A atomic or L, if n = 0, then the premise and the conclusion are both axioms. If
n > 0, then A is not principal; the conclusion follows by applying induction to the premise(s)
and then using the same rule as in the last inference of d.



For compound A, if n = 0, then L € I' or £ € I' and the conclusion follows. If n > 0
and A is not principal, apply the inductive hypothesis to the premises and then use the rule
again. For principal A, if Ais C&D, C'v D, POB, (C&D)DB or (C'V D)DB we proceed in
a uniform way by using an inversion lemma (3.1), contraction on lighter formulae, and then
the rule again. The handling of A = (CD>D)DB requires the use of Lemma 4.2: in this case
the derivation ends with

I',DDB,(CoD)DB,C =D I,(COD)DB,B= E
I',(Co>D)D>B,(C>D)>B = E

and by the lemma the left premise gives I', DDB,C, DDB, DD B,C = D; thus by applying
three contractions, on the lighter formulae C' and DD B, we obtain I', DDB,C' = D. The
right premise gives, by an inversion lemma (3.1) and contraction on B, the sequent I', B = F.
By LDD the conclusion I'y A = F follows. O

Strictly speaking, uses of the Contr rule in the above proof are illegitimate, since the proof
is for the calculus in which Contris not primitive. We should interpret the above proposition
just to mean that any G4ip derivation of the premise can be transformed to a G4ip derivation
of the conclusion: the contractions apparently used in the results of transformation are smaller
and thus can in turn be transformed, beginning if necessary with any topmost one. Similar
remarks apply later to the proof of admissibility of Cut.

As a consequence of admissibility of contraction for G4ip, we obtain a direct proof of
admissibility in G4ip of the LD rule from G3ip:

Proposition 5.2 The rule

rAoB=A [''B=F
I'ADB = F

LD

is admissible in G4ip.

Proof: Weaken the second premise with AD B, use Lemma 4.1 and contract ADB. O

It follows that all the rules of G3ip are admissible in G4ip. The converse is easy (since Cut
is admissible in G3ip); so the two calculi are equivalent. As a consequence Cut is indirectly
proved to be admissible in G4ip, but we will argue for admissibility of Cut directly.

In Lemma 3.1 partial invertibility of the LD rule has been proved (as strong admissibility)
only for antecedent A of the form P or CDD. As a consequence of admissibility of contraction,
we are now able to prove the following for arbitrary antecedent A:

Proposition 5.3 The rule
I,ADB = F
IB=F

is admissible in G4ip.

Proof: By induction on the weight of A with subinduction on the height n of the derivation
dof 'y ADB = F. For any A, if the premise is an axiom, also the conclusion is an axiom,
so we suppose n > 0. If A is atomic, the conclusion follows by Lemma 3.1. If A is L, then
L DB is not principal in the last rule of d, so the conclusion follows by applying induction to
the premise(s) of the rule and the rule again.



If Ais compound and ADB is not principal in the last rule of d, we argue as above. If ADB
is principal, the only cases yet to be considered are those with A = C&D and A =CVv D. In
the first case the premise of the last rule of D is I';CD(DDB) = E. By induction we get a
derivation of I', DDB = FE, and by induction again, since D is lighter than A, we obtain the
conclusion. In the second case the premise is I',CDB, DD>B = F, and we argue in a similar
way to obtain a derivation of ', B, B = F. The conclusion then follows by admissibility of
contraction. O

This proof does not extend to the quantifier case in Section 8; so, rather than using this
lemma in the next section we argue directly, using induction and cut on lighter formulae.

6 Admissibility of Cut
Our proof is based on that in [D]; see also [Dy3] for details.
Theorem 6.1 The Cut rule

= A I"A= F
ILI'=FE

Cut
is admissible in G4ip.

Proof: By induction on the weight of A, with a subsidiary induction on the sum of the heights
of the derivations of I' = A and of I", A = F.
There are four cases:

1.I'=> AorIY,;A = F is an axiom;
2. Neither premise is an axiom and A is not principal in the left premise;

3. Neither premise is an axiom and A is principal in the left premise but not in the right
premise;

4. A is principal in both premises.

The first and second cases are dealt with as in [D]; so is the third case for all rules, except
when the derivation of the right premise ends in L0D; and so is the fourth case for A = B&C
and A = BV C. In the third case, we can permute (A being principal in the left premise, it
cannot be atomic)

AP B 1" = FE
' A AP POBI"=FE
I,P,POB, 1" = F

L0D
Cut

to
r'=A APBIT'"=FE

I, 1" P,B=FE
I, P,PO>B = E

ut

L0D

The subcase of implication in case 4 splits into four sub-sub-cases:
1. A= PDB: The derivation ends as follows, where I = T'”, P:



IP=B " PB=FE
= PoB 2 V. poB=k
I = kK

L0D

Cut

We transform this to

I,P=B " PB=E
I, 1" PP=FE
I 1'= E

ut

Contr

where the cut formula B is lighter than PDB.
2. A= (C&D)D>B: The derivation ends as follows:

I,C&D = B ", Co>(Do>B) = K "
= (C&D)OB > T/, (C&D)>B = E g -
L1 = E

ut

We transform this to to

r,c&b =B
I,cC,.D= B ‘"
T,C = DoB R}?)
I'= CO(DDB) I',C>(D>B) = E
1= kK
where the cut formula C'D(DDB) is lighter than (C&D)DB.
3. A= (C'Vv D)DB: Similar to the previous cases, using the inversion lemma for LV, cut

(twice) on lighter formulae and contractions on I'.
4. A= (CD>D)DB: The derivation ends with

ut

I,CoD = B P I"DoB,C=D I"'B=F
I'= (COD)D>B o I, (CoD)>B = E
"=k

LD>D

ut

and is transformed into the following derivation with four cuts on the lighter formulae DD B,
CDD (twice) and B:

D.C= D 2
D= CDOD INCoD =B
D= B ut
F= poB 12 I,D>B,C = D
=D ut
nr'=scobn > rco>bD=B
I, = B Cut v g4 p
oo T = E Cut
W Contr
O

We remark that in order to deal with the last case in the above proof we could have used
Proposition 5.3 in order to obtain I', D = B from I',CD>D = B. But, as noted above, the



proof of that proposition does not extend to the quantifier case. We could also replace the
earlier uses of Inv by further cuts.

Corollary 6.2 All instances of the Cut rule in a derivation in G4ip4+Cut are eliminable.

Proof: As usual, by induction on the number of instances, selecting for elimination any
topmost cut instance. O
Of course, this argument is already needed in the proof of the theorem.

7 Extension with multiple succedents

We consider here the modifications needed for a multi-succedent calculus G4ip’, along the
lines of the calculus GHPC of [D]. The primitive rules are modified to allow an arbitrary
multiset of formulae in the succedent. Sequents I' = A in which I' and A have an atomic
formula in common are axioms, as are those with 1. € I'. The two RV rules merge into the
single rule

I'= A, B,A
I'= AVBA

and the first premise of the LD D rule has a single succedent (following [D] rather than 3.4.9D
of [TS]). Here are the rules:

I, P = pA Aviom N
I'A,B = A & I'=> A A T'=> BA &
T, AkB= A L = ALB,A I
A=A I''B=A I'= A BA

T,AVB= A MV T= AvB,A

I'yP,B= A L I''A= B
TP P>B = A 02 [ = A5B,A 12
T,C>(DOB) = A [,CoB,DoB = A
( ) L&D LVD

I, (C&D)OB = A

e, DoB=D 1I',B= A
I (CO>D)OB = A

I, (CVvD)DB=A

LD>D

The basic lemmas of Section 3 are still true, mutatis mutandis, except that RD is no longer
invertible. There are also new inversion lemmas for the R& and RV rules, needed because
they have no copy of the principal formula in the premise(s). We also have:

Lemma 7.1 Judgments of the following form
1. T,A = A A (generalized axiom)
2. I'yA,ADB = B, A (modus ponens)

are derivable in G4ip’.

10



Proof: Roughly as before. Note that in the proof we need to use the invertibility of RD only
in the case where A is empty. O

Proposition 7.2 The Contraction-Right rule

I'= A, A A

T= AA Contr-R

is admissible in G4ip'.

Proof: Consider first the case where A = A1 D Aj isintroduced by RD, with premise ['; A; = Aj:
from this we get ' = A, A by RD. The other cases use induction and inversion lemmas as
before. O

Lemma 7.3 The rule
I'= D, I''B= A

T,DoB = ©,A

is admissible in G4ip’.

Proof: By induction first on the weight of D and then on the height n of the derivation d of
the first premise. Let d’ be the derivation of the second premise.
For n = 0, the first premise is an axiom: if L € I’ or if I' and © have an atom in common,
then the conclusion is an axiom; and if D is an atom in I', use L0D on d’ and weaken with ©.
For n > 0, argue by cases:

1. If d ends with an invertible left rule L#, we invert d’, use the inductive hypothesis and
then Lx.

2. If d ends with R&, there are two cases:

(a) D = Dy&Dy is principal, with premises I' = Dy,0 and I' = D;,0: apply the
inductive hypothesis to I' = D3, © and obtain [', D:DB = O, A. Again by the
inductive hypothesis, using I' = D, 0, we get I', D1D(D3DB) = 0,0, A and the
conclusion follows by Contr-R and L&D.

(b) D is non-principal, with premises I' = D, F;,0" and I' = D, K5, ©': use induction
(twice) and then R&.

3. If d ends with RV, there are two cases:

(a) D = Dy V Dy is principal, with premise I' = Dy, Dy, A. By inductive hypothesis
we get I', D1DB = D3,0,A. By another use of the inductive hypothesis we get
I'yD1DB,Dy;DB = ©,A, A, which we follow with a contraction on the right. (It
is here that, in contrast to the single-succedent case, we are forced to use induction
on the weight of D.) Then we use LV D.

(b) D is not principal: use the inductive hypothesis and then RV.
4. If d ends with RD, there are two cases:

(a) D = DD Dy is principal, with premise I', Dy = D;. Weakening with Dy;D B we
obtain I', D3> B, Dy = Dg; by LDD the conclusion I', (D12 D3)DB = A follows.
Now weaken with ©.

11



(b) D is not principal; then I', Fy = Ej for some E1DF; in O. So I' = E1DFs: now
weaken with DD B, A and the rest of O.

5. If d ends with LD>D, with (FOG)DH principal and premises [',GDH, ' = G and
I"H = D,0 for I' =1", (FOG)DH, we obtain

I'",(FOG)DH,B = A
1" GOH,F = G - I"H= D,© I"H,B= A
I GDH,F,D>B = G I'H,DDB = 0,A

I, (FOG)DH,DD>B = 0,A

Inv
Ind

LD>D

O

Lemma 7.4 The rule
I'=D I''B=A

I,DoB = A

is admissible in G4ip’.
Proof: By Lemma 7.3, with © empty. O
Lemma 7.5 The rule

I'(CoOD)OB = A
I',C,DoB,D>B = A

is admissible in G4ip'.

Proof: By induction on the height n of the derivation d of the premise. For n = 0, the premise
is an axiom and so the conclusion is an axiom. If the last inference is by a right rule or by a
left rule with (C'>D)D>B non-principal, the induction is straightforward. If the last inference
is by LDD with (CD>D)D>B principal, the premises are I',C; DODB = D and I', B = A; we
now construct

IB=A

I,C,Dd>B=D T,C,DOB,B= A
[,C,DOB,D>B = A

w

Lemma 7.4

O

Proposition 7.6 The Contraction-Left rule

I A A= A

FASA Contr-L

is admissible in G4ip'.

Proof: By induction on the weight of the contracted formula A, and, for each weight, on the
height n of the derivation d of the premise. For A atomic or L, if n = 0, then the premise
and so also the conclusion are both axioms. If n > 0, then A is not principal in the premise;
the conclusion follows by applying the inductive hypothesis to the premise(s) of the last step
and then using the same rule as in the last inference of d.

12



For compound A, if n = 0, then L € ' or I' meets A in an atom and the conclusion
follows. If n > 0 and A is not principal, we apply the inductive hypothesis to the premises
and then use the rule again. For principal A, if A is C&D, C'Vv D, POB, (C&D)DB or
(C'V D)DB we proceed in a uniform way by using an inversion lemma, contraction on lighter
formulae, and then the rule again. For A = (CDD)DB the derivation ends with

I',D>B,(COD)>B,C = D T,(COD)DB,B = A
I',(COD)D>B,(CoD)D>B = A

and by Lemma 7.5 the left premise gives ', DDB,C, DD>B, DD B, = D and thus by apply-
ing three contractions, on the lighter formulae C' and DD B, we obtain I', DD B,C = D. The
right premise gives, by an inversion lemma and contraction on B, the sequent I', B = FE. By
L>D the conclusion I'y A = A follows. O

Proposition 7.7 The rule
ADB=A [I''B=A

IADB = A

is admissible in G4ip’'.

Proof: By weakening the second premise with ADB, Lemma 7.4 and Contr-L. O

It follows that all the rules of G3ip’ are admissible in G4ip’. The converse is easy (since
Cut is admissible in G3ip’); so the two calculi are equivalent: but we do not use this in the
proof of Theorem 7.8.

Theorem 7.8 The Cut rule

= AA T/ A= A
L0 = A A

ut

is admissible in G4ip'.

Proof: By induction on the weight of A, with subsidiary inductions on the sum of the heights
of the derivation of ' = A, A and of the derivation of I, A = A’. There are four cases:

1. At least one premise is an axiom;
2. Neither premise is an axiom and A is not principal in the first premise;
3. Neither premise is an axiom and A is principal in only the first premise;

4. Neither premise is an axiom and A is principal in both premises.

The first three cases are dealt with as in [D], as well as the fourth case for A = B&C' and
A= BV (. For example, in case 3, with A= BD>C and I' =T" (FD>G)DH,

I'B=C A" F,GOH =G A1" H= A
T = 4A 112 AT (FoG)oH = A
0,17 (FoG)oH = A, A/

LoD

ut

is transformed to

13



I'B=C I''B=C

T= A4 9 A FGoH =G cy A RS 41 0= A -
U,1", F,GoH = G ! LI H = A “
U1 (FOG)DOH = A’ -
Weak-R

[, 1" (FOG)DH = A, A’

In case 4, the subcase of implication splits into four further subcases:
1. A= PDB: The derivation ends as follows, where I = ', P:

I',P=B " P,B= A
= PoB,A 2 " poB= A
00 = AA

L0D
Cut

We transform this to

I,P=B 1" PB= A
01" PP = A

I, = A/

01 = AA

Cut
Contr-1L
Weak-R

where the cut formula B is lighter than PDB.
2. A= (C&D)DB: The derivation ends as follows:

I,C&D = B I, C>(DD>B) = A’
[ = (C&D)oB,A 2 T/ (C&D)>B = A’
I = A A

L&D

Cut

We transform this to to

r,c&bD = B
T.C,D= B ™
r,C = poB 12
I'= Co(DoB),A 2 1,co(DB) = A
L= AA

where the cut formula C'D(DDB) is lighter than (C&D)DB.

3. A= (CV D)DB: Similar to the previous cases, using the inversion lemma for LV, RD,
Cut (twice) on lighter formulae and left contractions on T'.

4. A= (CDD)DB: The derivation ends with

Cut

I,CobD = B R I, DoO>B,C =D 1" B= A L5
[ = (CoD)>B,A '*- (CoD)oB = A
017 = A, A u

14



and is transformed into the following derivation with four cuts on the lighter formulae C'D D,
DD>B and B:

Dc=Dn !
D= C>D I¢o>D=18H
I,D= B ut
T = DoB 2 I, DoB,C = D
I,T'.C = D Cut
L= Ccob IN¢oDb =18
I, = B “ oA Cut
TR 7 u
% Contr, W
o

Note again that we could have used more cuts in place of the appeal to Inv.
Following [D], we have chosen a particular form of the DD rule without the succedent
of the conclusion appearing in the first premise. There is a possible variant, summed up in

Proposition 7.9 The rule LOD"

DOB,I'= COD,A B,I'= A
(CoD)OB,T'= A

LDD”
is admissible in G4ip'.
Proof: In G4ip’+Cut we have

(CoD)>B,C>D =B B,I'= A
DOB,I'= CDD,A (CoD)>B,COD,I' = A
(Co>D)>B = DOB DDOB,(COD)DB,I''T = AA
(COD)DB,(COD)>B, I, I' = A A
(COD)DB,T' = A

Cut

ut

Cut

Clontr

from which the cuts and contractions can now be eliminated. The two unjustified premises
are easily derived using Cut, RD and Lemma 7.1. O

Corollary 7.10 G4ip’ is equivalent to G4ip”, the calculus with the rules of G4ip’ except
for LDD" in place of LDD.

Proof: By the proposition, every rule of G4ip” is admissible in G4ip’. Conversely, it is easy
to see that 1,DD is admissible in G4ip”. O

Example: The rule
C,DO>B,I'= D,A B,I'= A

(CoOD)DB,I' = A

LD D///

is not admissible in G4ip’, by consideration of the non-derivable sequent (p>¢)Dr,rDp = p.
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8 Extension with quantifiers

We consider the extension G4i of G4ip obtained by adding the quantifiers. Quantified
formulae are weighted by w(VzA) := 1+ w(A) and w(3zA) := 1+ w(A). Besides the usual

rules

I\VeAz, At = F I'= Ay
TVadz = B LY Tovaas Y
Ay = FE

Y I3 = At e

IdzAz = F I'=> dz Az

for V and 3 we have the rules for the refinement of the LD rule in the cases where the
antecedent of the principal formula is quantified:

I''VzAz2DB = VzAz I[''B=F I',Vz(A2DB) = F
[ VzAz>B = E ° T, 3:425B = E

L3>

The usual restrictions (cf. [D]) on variables apply for RV and L3.
In order to extend admissibility of contraction of G4ip to G4i we need the inversion
lemmas for each left rule that does not duplicate its principal formula into the premise(s).

Lemma 8.1 The following rules are strongly admissible in G4i:

[, (VzAz)DB = E

1.
B=F ’
P I',dzAz2DB = £
" I',Vz(AzDB) => E’
3 I dzAz = F
' At = F

Proof: Routine. O

Lemma 8.2 Judgments of the following form
1. T,A = A (generalized axiom)
2. I'yA,ADB = B (modus ponens)

are derivable in G41i.

Proof: 1. Following the proof of Lemma 3.2, we consider the extra cases with A of the
form VzGz, JzGr, VeGzDC and FzGxDC: By induction we have I',Gz = Gz (choosing z
not free in I'), from which the conclusions I',VaGz = VazGz and I',JaGz = JaGz follow by
obvious logical steps. For A = Va2G2DC' we have the derivation

I',\VeG2DC,VzGr = VoG Ind
I\VaGaDC,\VaeGre = C R
I, V2GzDC = VaGzD(C =

U0 VaGa = C 1M
v
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and for A = J2G'2DC we have the derivation (choosing z not free in I', C')

nvm«mgcyc%30:>axmjé?g
I',V2(GzDC),GedC, Gz = C =
IVz(GzDC), Gz = C
I',Va(GzDC),J2Ge = C ]LJgD
I, d2G2DC, 2Gr = C
I',J2G2DC = J2GzDC o

2. Follows from 1 as in the proof of lemma 3.2. O

Then we have:
Proposition 8.3 The Contraction rule is admissible in G4i.

Proof: We only have to add in the proof of admissibility of Contraction for G4ip the following
cases:
A =VaCzDB: the derivation ends with

I,VzC2DB,V2C2DB = VaCz T1',V2C2zDB,B = F
IWVaCzDB,VaC2DB = F

LVD

By inductive hypothesis the left premise gives I', VaC2 DB = VaCz; by the (partial) inversion
lemma 8.1 for L¥YD and the inductive hypothesis the right premise gives I', B = F and the
conclusion follows by LVD.

A = d2CzD B: the derivation ends with

I',32CzD>B,Vz(CzDB) = F
I342C2>B,32C2D>B = F

L3>

By the inversion lemma for 13D the premise gives I',Vz(C2DB),Yz(CzDB) = F, hence the
conclusion follows by applying contraction on the lighter formula Vz(C2D>B) and then the
L3D rule.

The cases with A = VaCz and A = JzC'x are dealt with as in [TS] or [D]. O

Theorem 8.4 The Cut rule is admissible in G41.

Proof: In the proof of Theorem 6.1 we consider the extra cases in which the cut formula A is
principal in both premises and it is VaC'zDD or J2CzDD or YazCz or JzC'z.
A =VazCzDD: the derivation

I,V2Czx = D 1",Vz2C2DD = Va2Cx 1',D = F
[ = VaCzoD '~ ' V2CzoD = E
U= E

LYD

ut

is transformed into

' = VzC2DD 1',V2CzDD = VaCz Cut
[, = VaeCz w I'VaeCz = D
0,0 = D

t
Cut o g

0,0 1"=E Cut

= E

Contr

17



using one cut on A with right premise of smaller height and two cuts on lighter formulae.
A =JzCa2DD: the derivation

I',32Cx = D 1" Vz(CaDD) = K

== 1D 7 L3D

I'= J2C2DD I, 32Cz2>D = F ;
"= E u

is transformed, using the inversion lemma for L3, into
r,Cy=D

I'= CyoD
I'= Va(CzDD)

RD
RY

1",Vz(CzDD) = K
I = E

ut

so the cut is replaced by a cut on a lighter formula.
The cases with A = VaCz and A = JzC'x are dealt with as in [TS] or [D]. O

9 Related work

Hudelmaier [HO], [H1], [H2] argues for the admissibility of Contraction and Cut in G4ip
by a combination of induction on derivation height, on sequent weight and reduction to the
result for G3ip. Dyckhoff [Dy1] argues similarly, as do the authors of [L.SS] and also those
of [TS] and [W]. The proof in [H2] contains an error [H3] found by Gordeev: the proof of
admissibility in G4ip of the standard G3i rule for introduction of implication on the left with
AD B principal only works (but is only needed [S]) for atomic A.

The joint paper [PD] of the first author with Luis Pinto, on the relationship between the
multisuccedent calculus G4ip’ and Kripke models, contains a minor error (pointed out by
Uwe Egly): the rules for the refutation calculus CRIP do not include one for dealing with
formulae of the form 1 DB in the antecedent. We take this opportunity of correcting this
error: an appropriate rule is

I'#% A
I1>B # A

The omission of a corresponding rule from G4ip and G4ip’ is deliberate: it is an instance of
the admissible rule of Weakening.

There is a semantic proof [MMO] by Miglioli et al of some related results. Rules slightly
different from those of G4ip are used, with extra complexities arising from a primitive nega-
tion operator and with, for example, the invertible rule L0D replaced by a non-invertible
rule. Such proofs need substantial technical machinery about Kripke models, in contrast to
the routine constructive nature of the present direct proof.

10 Conclusion

We have given a direct proof of admissibility of the usual structural rules for the sequent
calculus G4ip and shown how to extend the proof when the calculus is extended with first-
order syntax and with multiple succedents.

The problem originally arose from a question of conservativity of apartness over equality
(defined as the negation of apartness) and of theories based on excess over theories based

18



on partial order (defined as the negation of excess), as formulated in [vP]. This problem
led to the need to extend Cut admissibility from logical calculi to calculi with non-logical
rules of inference in which the weights of the premises may be greater than the weight of the
conclusion [N].

Here we have shown admissibility of the structural rules for the basic contraction-free
systems of intuitionistic logic based on G4ip. In a sequel we will deal with extensions: non-
logical rules for the theories of apartness and order, Dummett logic, lax logic and Kuroda
logic.
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