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Abstract. The basic preferential conditional logic PCL, initially proposed by Burgess, finds
an interest in the formalisation of both counterfactual and plausible reasoning, since it is at the
same time more general than Lewis’ systems for counterfactuals and it contains as a fragment
the KLM preferential logic P for default reasoning. This logic is characterised by Kripke models
equipped with a ternary relational semantics that represents a comparative similarity/normality
assessment between worlds, relativised to each world. It is first shown that its semantics can
be equivalently specified in terms of neighbourhood models. On the basis of this alternative
semantics, a new labelled calculus is given that makes use of both world and neighbourhood
labels. It is shown that the calculus enjoys syntactic cut elimination and that, by adding suitable
termination conditions, it provides a decision procedure.

1 Introduction

Conditional logics have been studied since the 60’s motivated by philosophical reasons, with seminal
works due to Lewis, Nute, Stalnaker, Chellas, Pollock and Burgess, among others.3 In all cases,
the aim is to represent a kind of hypothetical implication A > B different from classical material
implication, but also from other non-classical implications, like the intuitionistic one. There are two
kinds of interpretation of a conditional A > B: the first is hypothetical/counterfactual: “If A were the
case then B would be the case”. The second is prototypical: “Typically (normally) if A then B”, or in
other words “B holds in most normal/typical cases in which A holds”. The applications of conditional
logics to computer science, more specifically to artificial intelligence and knowledge representation,
have followed these two interpretations: the hypothetical/counterfactual interpretation has lead to
study the relation of conditional logics with the notion of belief change (with the crucial issue of the
Ramsey Test), the prototypical interpretation has found an interest in the formalisation of default and
non-monotonic reasoning (the well-known KLM systems) and has some relation with probabilistic
reasoning. The range of conditional logics is however much more extensive and this brief account
does not even touch the variety of conditional logics that have been studied in the literature in other
context such as deontic and causal reasoning.

The semantics of conditional logics is defined in terms of various kinds of possible-world models,
all of them comprising a notion of preference, comparative similarity or choice among worlds: intu-
itively, a conditional A > B is true at a world x if B is true in all the worlds most normal/similar/close
to x in which A is true. There are however different ways to formalise this notion of compari-
son/preference on worlds. Moreover, one may either assume that a most similar/close world to a
given one always exists, or not: the first option is known as the controversial Limit Assumption, ac-
cepted for instance by Stalnaker but rejected by Lewis. For this reason, in contrast with the situation
in standard modal logic, there is no unique semantics for conditional logics.

In this paper we consider the basic conditional logic PCL (Preferential Conditional Logic) de-
fined by preferential models. In these models, every world x is associated with a set of accessible
worlds Wx and a preference relation y ≤x z on this set; the intuition is that this relation assesses the
relative normality/similarity of a pair of y, z with respect to x. A conditional A > B is true at x if either
there are no accessible A-worlds (i.e. worlds where A is true) or for each accessible A-world u there

3 Cf. [11], [22], [23], [3], [20], [2].



is an accessible world y at least as normal as u and no worlds at least as normal as y satisfy A ∧ ¬B.
This definition works no matter whether ≤x-minimal worlds exist or not, making the aforementioned
Limit Assumption superfluous. The logic PCL generalises Lewis’ basic logic of counterfactuals,
characterised by preferential models where the relation is connected (or equivalent sphere models).
Moreover, its flat fragment corresponds to the preferential logic P of non-monotonic reasoning pro-
posed by Kraus, Lehmann and Magidor [9]. Stronger logics, as those of the Lewis family, can be
obtained by assuming further properties of the preference relation. An axiomatisation of PCL (and
the respective completeness proof) has been originally presented by Burgess in [2], where the system
is called S, and alternative completeness proofs are presented in [8] and in [6]. In particular, in the
former a finite model property for PCL is proved, establishing also PSPACE complexity.

In sharp contrast with the simplicity of its Hilbert axiomatisation, the proof theory of PCL
is largely unexplored and it is the object of this paper. Recent work on proof systems for other
conditional logics includes [18], [19], [Lellman and Pattinson 2012], [1], but as far as we know only
few systems are known for PCL: a labelled tableaux calculus has been given in [6] that makes use
of pseudo-modalities indexed on worlds and of an explicit preference relation in the syntax, with
termination obtained by relatively complex blocking conditions. Indexed modalities are used also
in [16] where a labelled calculus for Lewis’ logic VC (strictly stronger than PCL) is proposed:
the calculus is based on the preference relations ≤x (considered as a ternary relations) and does not
presuppose the limit assumption; it has good structural properties, first of all admissibility of cut, and
termination is obtained by blocking conditions. An optimal unlabelled sequent calculus for PCL is
presented in [21]: the calculus is obtained by closing one step rules by all possible cuts and by adding
a specific rule for PCL; the resulting system is undoubtedly significant, but the rules have a highly
combinatorial nature and are overly complicated.4

In this paper we take a different approach based on a reformulation of the semantics in terms
of neighbourhood models. Neihghbuorhood semantics has been successfully employed to analyse
non-normal modal logics, whose semantics cannot be defined in terms of ordinary relational Kripke
models. In these models every world x is associated with a (possibly empty) set of neighbourhoods
I(x) and each a ∈ I(x) is just an arbitrary (non-empty) set of worlds. The intuition is that each
neighbourhood a ∈ I(x) represents a state of information/knwowledge/affair to be taken into account
to evaluate the truth of modal formulas in world x. Our starting point is a semantical characterisation
of PCL in terms of Weak Neighbourhood Models (WNM). It can be shown on the one hand that
each preferential model gives rise to a WNM and on the other hand that PCL is sound with respect
to the WNM. Thus, since PCL is complete with respect to preferential models (as mentioned above),
we obtain that it is also sound and complete with respect to WMN. Thus WNM can be considered as
an ‘official’ semantics for this logic. This result is not unexpected: there is a known duality between
partial orders and so-called Alexandrov topologies, so that the neighbourhood models can be built
by associating to each world a topology of this kind, with the neighbourhoods being the open sets;
for conditional logics this duality is studied in detail in [12]. However, the topological semantics of
[12] imposes some closure conditions on the neighbourhoods (namely closure under arbitrary unions
and non-empty intersections) that are not required by the logic and that we do not assume. That is
why we call our neighbourhood models "weak". As remarked above, WNM suffices and provides a
‘lightweight’ semantics for PCL.

Building on WMN, we define a labelled sequent calculus for PCL. The calculus makes use of
both world and neighbourhood labels to encode the relevant features of the semantics into the syntax.
In particular, the calculus makes use of a new operator | for capturing the neighbourhood semantics
that involves both world and neighbourhood labels and contains rules for handling neighbourhood
inclusion. The obtained calculus is standard in the sense that each connective is handled exactly by
a dual Left and Right rule, both justified through a clear meaning explanation that respects the gen-
eral guidelines of inferentialism. In addition to simplicity and modularity, the calculus features good
proof-theoretical properties such as height-preserving invertibility and admissibility of contraction
and cut. We further show that the calculus can be made terminating by a simple (non-redundancy)

4 In particular, a non-trivial calculation (although a polynomial algorithm) is needed to obtain one backward
instance of the (S)-rule for a given sequent.



restriction on rule application and by a small change of the rules, thereby obtaining a decision pro-
cedure for PCL. No complex blocking conditions are needed. We also prove semantic completeness
of the calculus: from a failed proof of a formula it is possible to extract a finite WNM countermodel,
built directly from a suitable branch of the attempted proof. The last result provides a constructive
proof of the finite model property of PCL with respect to the WNM semantics.

Full proofs can be found in http://www.helsinki.fi/~negri/pclnstc.pdf.

2 The logic PCL

The language of Preferential Conditional Logic PCL is generated from a set Atm of propositional
atoms and boolean connectives plus the special connective > (conditional) by the following BNF:

A := P ∈ Atm | ⊥ | ¬B | B ∧C | B ∨C | B ⊃ C | B > C

PCL is axiomatised by the following set of axioms and rules:
(Class) Any axiomatization of classical propositional logic
(R-And) (A > B) ∧ (A > C) ⊃ (A > (B ∧C)) (ID) A > A
(CSO) ((A > B) ∧ (B > A)) ⊃ ((A > C) ⊃ (B > C)) (CA) ((A > C) ∧ (B > C)) ⊃ ((A ∨ B) > C)

(ModPon)
A A ⊃ B

B
(RCEA)

A ⊃⊂ B
(A > C) ⊃⊂ (B > C)

(RCK)
A ⊃ B

(C > A) ⊃ (C > B)
Some quick comments on the axioms: (Class), (R-And), (ModPon), (RCEA), (RCK) form the

axiomatisation of the minimal normal conditional logic CK. The remaining ones (ID), (CSO), (CA)
are specific of PCL. (CSO) is equivalent to the pair of well-known axioms of cumulative monotony
(CM) and restricted transitivity (RT):

(CM) ((A > B) ∧ (A > C)) ⊃ ((A ∧ B) > C) (RT) ((A > B) ∧ ((A ∧ B) > C)) ⊃ (A > C)

that are usually assumed in conditional logics for non-monotonic reasoning (such as KLM systems).
Axiom (CA) allows a kind a of reasoning by cases in conditional logics.

The standard semantics of PCL is defined in terms of preferential models that we define next.

Definition 1.
A preferential model M has the form (W, {Wx}x∈W , {≤x}x∈W , [ ]), where W is a non-empty set whose
elements are called worlds and

– For every x in W, Wx is a subset of W;
– For every x in W, ≤x is a binary reflexive and transitive relation in Wx;
– For every (atomic) formula P in Atm, [P] is a subset of W.

Truth conditions of formulas are defined in the usual way in the boolean case:

[A ∧ B] = [A] ∩ [B], [A ∨ B] = [A] ∪ [B], [¬A] = W − [A], [A ⊃ B] = (W − [A]) ∪ [B].

For conditional formulas we have:

(∗) x ∈ [A > B] iff ∀u ∈ Wx if u ∈ [A] then there is y such that y ≤x u, y ∈ [A], and for all z, if z ≤x y
then z ∈ [A ⊃ B].

We say that a formula A is valid in a model M if [A] = W.

The truth definition of a conditional is more complicated than it could be: it takes into account
the fact that minimal ≤x worlds in [A] do not neccesarily exist, as the relation ≤x (or more pre-
cisely its strict version) is not assumed to be well-founded. If we make this assumption, called Limit
Assumption, the truth condition of a conditional can be greatly simplified as follows:

http://www.helsinki.fi/~negri/pclnstc.pdf


(∗∗) x ∈ [A > B] iff Minx(A) ⊆ [B]

where Minx(A) = {y ∈ Wx ∩ [A] | ∀z ∈ Wx ∩ [A](z ≤x y → y ≤x z)}. The Limit Assumption
just asserts that if [A] ∩Wx , ∅ then Minx(A) , ∅. It is easy to show that for models satisfying the
limit assumption truths conditions (∗) and (∗∗) for conditionals are equivalent. Moreover, on finite
models the limit assumption is given for free. Finally, the preferential semantics enjoys the finite
model property, thus the Limit Assumption is irrelevant for the validity of formulas. All in all to sum
up the results known in the literature [2], [8], [6], we have:

Theorem 1. A formula is a theorem of PCL iff it is valid in the class of preferential models (with or
without Limit Assumption).

The preferential semantics is not the only possible one. We introduce an alternative semantics,
in the spirit of a neighbourhood or topological semantics. This semantics abstracts away from the
comparison relation of the preferential semantics.

Definition 2. A weak neighbourhood model (WNM) M has the form (W, I, [ ]), where W , ∅, [ ] :
Atm −→ Pow(W) is the propositional evaluation, and I : W −→ Pow(Pow(W)). We denote the
elements of I(x) by α, β.... We assume that for each α ∈ I(x), α , ∅. The truth definition for boolean
connectives is the same as in preferential models, and for the conditional operator we have

x ∈ [A > B] iff
∀α ∈ I(x) if α∩ [A] , ∅ then there is β ∈ I(x) such that β ⊆ α, β∩ [A] , ∅ and β ⊆ [A ⊃ B].

We say that a formula is valid in a WNM M if [A] = W.

No matter what is the kind of a model M, we use the notation M, x |= A to indicate that in M it
holds x ∈ [A]; when M it is clear from the context, we simply write x |= A. Moreover, given a WNM
M and α ∈ I(x), we use the following notations:

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α y |= A
α |=∃ A if α ∩ [A] , ∅, i.e. ∃y ∈ α such that y |= A

Observe that with this notation, the truth condition for > becomes:

(1) x |= A > B iff ∀α ∈ I(x) if α |=∃ A then there is β ∈ I(x) such that β ⊆ α and β |=∀ A ⊃ B.

By the definition, weak neighbourhood models are faithful to Lewis’s intuition of the conditional
as a variably strict implication. Moreover, the above truth conditions of > can be seen as a cru-
cial weakening, needed for counterfactuals, of the most obvious definition of strict implication in
neighbourhood models eg: x |= A⇒ B iff ∀α ∈ I(x), α |=∀ A ⊃ B.

Our aim is to prove that they provide an adequate semantics for PCL, that is, PCL is sound
and complete with respect to this semantics. For completeness we rely on the fact that preferential
models give rise to WPN in a canonical way, by taking as neighbourhoods the downward closed sets
with respect to the partial order.

Proposition 1. For any preferential model M = (W, {Wx}x∈W , {≤x}x∈W , [ ]) there is neighbourhood
model Mne = (W, I, [ ]) such that for every x ∈ W and every formula A we have:

M, x |= A iff Mne, x |= A

Proof. Given M as in the statement, we define Mne = (W, I, [ ]) by letting
I(x) ≡ {S ⊆ Wx : S is downward closed wrt. ≤x and S , ∅}.

The claim is proved by mutual induction on the complexity of formulas (defined in the standard
way). The base of induction is by definition; the inductive case easily goes through the boolean
cases, thus let us concentrate on the case of >. We use the notation z ↓≤x = {u ∈ Wx | u ≤x z}.

Suppose first that M, x |= A > B, let α ∈ I(x) such that α |=∃ A. Thus for some y ∈ α, we have
Mne, y |= A, and by induction hypothesis, we have M, y |= A. But then by hypotehsis we have that



there exists z ≤x y such that M, z |= A and for every u ≤x z, we have M, u |= A ⊃ B. Let β = z ↓≤x , we
have that β ∈ I(x), β ⊆ α (since z ≤x y and y ∈ α) and β |=∀ A ⊃ B; thus Mne, x |= A > B.

Conversely, suppose that Mne, x |= A > B. Let y ∈ Wx such that M, y |= A, by induction hypothe-
sis, Mne, y |= A, let α = y ↓≤x , we have that α |=∃ A. Thus by hypothesis there is β ∈ I(x), with β ⊆ α
such that β |=∃ A and β |=∀ A ⊃ B. Thus for some z ∈ β, Mn, z |= A, whence M, z |= A by induction
hypothesis. Let u ≤x z, we have u ∈ β (as it is downward closed), thus we have Mne, u |= A ⊃ B, so
that M, u |= A ⊃ B by induction hypothesis. This implies M, x |= A > B.

The converse proposition can also be proved by assuming that the neighbourhoods I(x) are closed
with respect to non-empty intersections. In this case we can define a preferential model Mpre f from
a WNM M by stipulating

Wx ≡
⋃
{α ∈ I(x)} for any x ∈ W and y ≤x z iff ∀γ ∈ I(x)(z ∈ γ → y ∈ γ).

and then we can prove that the set of valid formulas in the two models is the same.5 However, for
our purpose of showing the adequacy of the WNM semantics for PCL it is not necessary, and we
have:

Theorem 2. A formula is a theorem of PCL iff it is valid in the class of Weak Neighbourhood models.

Proof. (If) direction: first we show that if a formula A is valid in the class of WNM, then it is valid
in the class of preferential models and then we conclude by theorem 1. Let a formula A be valid
in WNM and let M be a preferential model, as in proposition 1 we build a WNM, Mne, then by
hypothesis A is valid in Mne, and by the same proposition it is also valid in M.
(Only if) direction: this is proved by checking that all PCL axioms and rules are valid in WNM
models. As an example we show the case of (CSO) and (CA), the others are easy and left to the
reader. For (CSO) let M be WNM, suppose that (i) x |= A > B, (ii) x |= B > A and (iii ) x |= A > C,
suppose α ∈ I(x), by (i) we get that there is β ∈ I(x), with β ⊆ α such that β |=∃ A and β |=∀ A ⊃ B,
thus also β |=∃ B, whence by (ii) there is γ ∈ I(x) with γ ⊆ β such that γ |=∃ B and γ |=∀ B ⊃ A, thus
also γ |=∃ A, whence by (iii), there is δ ∈ I(x), with δ ⊆ γ such that δ |=∃ A and δ |=∀ A ⊃ C, but we
also have δ |=∀ B ⊃ A, whence δ |=∀ B ⊃ C, since δ ⊆ α we are done.
For (CA), let M be WNM, and suppose that (i) x |= A > C, (ii) x |= B > C, let α ∈ I(x) and suppose
that α |=∃ A ∨ B: suppose that α |=∃ A then by (i) there is β ∈ I(x), with β ⊆ α such that β |=∃ A and
β |=∀ A ⊃ C, thus also β |=∃ A ∨ B. If β |=∀ ¬B then β |=∀ B ⊃ C, whence also β |=∀ (A ∨ B) ⊃ C and
we are done; if β |=∃ B, then by (ii) there is γ ∈ I(x) with γ ⊆ β such that γ |=∃ B and γ |=∀ B ⊃ C,
thus also γ |=∃ A∨ B, but since γ ⊆ β, we get γ |=∀ A ⊃ C as well, whence γ |=∀ (A∨ B) ⊃ C and we
are done again. The other case when α |=∃ B is symmetrical and left to the reader.

In the next section we give a labelled calculus for PCL based on Weak Neighbourhood models.

3 A labelled sequent calculus

The rules of labelled calculi are obtained by a translation of the semantic conditions, taking into
account some further adjustments to obtain good structural properties. However, unlike in labelled
systems defined in terms of a standard Kripke semantics, here the explanation of the conditional
is given in terms of a neighbourhood semantics. The quantifier alternation implicit in the semanti-
cal explanation is rendered through the introduction of new primitives, each with its own rules in
terms of the earlier one in the order of generalization. The idea is to unfold all the semantic clauses
“outside in”, starting from the outermost condition until the standard syntactic entities of Kripke
semantics (forcing of a formula at a world) are reached. So we start with the clauses for the “global
conditional”, i.e.

x : A > B ≡ ∀a(a ∈ I(x) & a
∃

 A→ x 
a A|B)

and proceed to those for the “local conditional”

5 This correspondence is known as the duality between partial orders and Alexandrov topologies and for
conditional logic is considered in [12].



x 
a A|B ≡ ∃c(c ∈ I(x) & c ⊆ a & c
∃

 A & c

∀

 A ⊃ B)

and finally to the “local forcing conditions”

a
∀

 A ≡ ∀x(x ∈ a→ x : A) and a

∃

 A ≡ ∃x(x ∈ a & x : A)

The calculus, which we shall denote by G3CL, is obtained as an extension of the propositional part
of the calculus G3K of [13], so we omit below the propositional rules (including L⊥); the contexts
Γ, ∆ are multisets:

Initial sequents

x : P, Γ ⇒ ∆, x : P

Rules for local forcing

x ∈ a, Γ ⇒ ∆, x : A

Γ ⇒ ∆, a
∀

 A

R
∀

 (x fresh)

x ∈ a, x : A, a
∀

 A, Γ ⇒ ∆

x ∈ a, a
∀

 A, Γ ⇒ ∆

L
∀



x ∈ a, Γ ⇒ ∆, x : A, a
∃

 A

x ∈ a, Γ ⇒ ∆, a
∃

 A

R
∃



x ∈ a, x : A, Γ ⇒ ∆

a
∃

 A, Γ ⇒ ∆

L
∃

 (x fresh)

Rules for the conditional

a ∈ I(x), a
∃

 A, Γ ⇒ ∆, x 
a A|B

Γ ⇒ ∆, x : A > B
R > (a fresh)

a ∈ I(x), x : A > B, Γ ⇒ ∆, a
∃

 A x 
a A|B, a ∈ I(x), x : A > B, Γ ⇒ ∆

a ∈ I(x), x : A > B, Γ ⇒ ∆
L >

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B, c
∃

 A c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B, c

∀

 A ⊃ B

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B RC

c ∈ I(x), c ⊆ a, c
∃

 A, c

∀

 A ⊃ B, Γ ⇒ ∆

x 
a A|B, Γ ⇒ ∆
LC(c fresh)

Rules for inclusion6:
a ⊆ a, Γ ⇒ ∆

Γ ⇒ ∆
Ref

c ⊆ a, c ⊆ b, b ⊆ a, Γ ⇒ ∆

c ⊆ b, b ⊆ a, Γ ⇒ ∆
Trans

x ∈ a, a ⊆ b, x ∈ b, Γ ⇒ ∆

x ∈ a, a ⊆ b, Γ ⇒ ∆
L ⊆

Before launching into full generality, we give an example of a derivation in the calculus to get
an idea of how the system works:

6 Observe that the right rule for inclusion
x ∈ a, Γ ⇒ ∆, x ∈ b
Γ ⇒ ∆, a ⊆ b

R ⊆ (x fresh) is not needed because in the logical

rules inclusion atoms are never active in the right-hand side of sequents. In other words, root-first proof
search of purely logical sequents does not introduce inclusion atoms in the succedent. This simplification of
the calculus is made possible by the use of a rule such as RC. The rule has two premisses rather than four,
as would result as a direct translation of the semantic truth condition for x 
a A|B, that would bring atomic
formulas of the form a ∈ I(x) and c ⊆ a in the right-hand side; at the same time this move makes initial
sequents for such atomic formulas superfluous. This simplification is analogous to the one for rule L^ of
basic modal logic from one to two premisses (cf. [13]).



Example 1. We show a derivation (found by root-first application of the rules of the calculus) of the
sequent x : A > P, x : A > Q⇒ x : A > P ∧ Q :

. . . , d
∃

 A⇒ d

∃

 A, . . .

. . . , d ⊆ c, y ∈ c, y ∈ d, y : A ⊃ Q, y : A ⊃ P, d
∀

 A ⊃ Q, c

∀

 A ⊃ P⇒ y : A ⊃ P ∧ Q

. . . , d ⊆ c, y ∈ c, y ∈ d, d
∀

 A ⊃ Q, c

∀

 A ⊃ P⇒ y : A ⊃ P ∧ Q

L
∀

 (twice)

. . . , d ⊆ c, y ∈ d, d
∀

 A ⊃ Q, c

∀

 A ⊃ P⇒ y : A ⊃ P ∧ Q

L ⊆

. . . , d ⊆ c, d
∀

 A ⊃ Q, c

∀

 A ⊃ P⇒ d

∀

 A ⊃ P ∧ Q

R
∀



d ⊆ a, d ∈ I(x), d ⊆ c, d
∃

 A, d

∀

 A ⊃ Q, c ∈ I(x), c ⊆ a, c

∃

 A, c

∀

 A ⊃ P, a ∈ I(x), a

∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

RC

d ∈ I(x), d ⊆ c, d
∃

 A, d

∀

 A ⊃ Q, c ∈ I(x), c ⊆ a, c

∃

 A, c

∀

 A ⊃ P, a ∈ I(x), a

∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

Trans

x 
a A|Q, c ∈ I(x), c ⊆ a, c
∃

 A, c

∀

 A ⊃ P, a ∈ I(x), a

∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

LC

c ∈ I(x), c ⊆ a, c
∃

 A, c

∀

 A ⊃ P, a ∈ I(x), a

∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

L >

x 
a A|P, a ∈ I(x), a
∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

LC

a ∈ I(x), a
∃

 A, x : A > P, x : A > Q⇒ x 
a A|P ∧ Q

L >

x : A > P, x : A > Q⇒ x : A > P ∧ Q
R >

here the derivable left premisses of both applications of L > have been omitted to save space and the

topsequents are easily derivable (by the
∃

 and the propositional rules respectively).

For the soundness of G3LC with respect to WNM we need the following:

Definition 3. Given a set S of world labels x and a set of N of neighbourhood labels a, and a weak
neighbourhood model M = (W, I, [ ]), an S N-realisation (ρ, σ) is a pair of functions mapping each
x ∈ S into ρ(x) ∈ W and mapping each a ∈ N into σ(a) ∈ I(w) for some w ∈ W. We introduce the
notion “M satisfies a sequent formula F under an S realisation (ρ, σ)” and denote it by M |=ρ,σ F,
where we assume that the labels in F occurs in S , N. The definition is by cases on the form of F:

– M |=ρ,σ a ∈ I(x) if σ(a) ∈ I(ρ(x))
– M |=ρ,σ a ⊆ b if σ(a) ⊆ σ(b)
– M |=ρ,σ x : A if ρ(x) |= A

– M |=ρ,σ a
∃

 A if σ(a) |=∃ A

– M |=ρ,σ a
∀

 A if σ(a) |=∀ A

– M |=ρ,σ x 
a A|B if σ(a) ∈ ρ(x) and for some β ⊆ σ(a) β |=∃ A and β |=∀ A ⊃ B

Given a sequent Γ ⇒ ∆, let S , N be the sets of world and neighbourhood labels occurring in Γ ∪ ∆,
and let (ρ, σ) be an S N-realisation, we define: M |=ρ,σ Γ ⇒ ∆ if either M 6|=ρ,σ F for some formula
F ∈ Γ or M |=ρ,σ G for some formula G ∈ ∆. We further define M-validity by

M |= Γ ⇒ ∆ iff M |=ρ,σ Γ ⇒ ∆ for every S N-realisation (ρ, σ)

We finally say that a sequent Γ ⇒ ∆ is valid if M |= Γ ⇒ ∆ for every neighbourhood model M.

We assume that the forcing relation extends the one of classical logic. We have:

Theorem 3. If Γ ⇒ ∆ is derivable in G3CL then it is valid in the class of Weak Neighbourhood
models.

The proof of admissibility of the structural rules in G3CL follows the pattern presented in
[15], section 11.4, but with some important non-trivial extra burden caused by the layering of rules
for the conditional, as we shall see. Likewise, some preliminary results are needed, namely height-
preserving admissibility of substitution (in short, hp-substitution) and height-preserving invertibility
(in short, hp-invertibility) of the rules. We recall that the height of a derivation is its height as a tree,
i.e. the length of its longest branch, and that `n denotes derivability with derivation height bounded
by n in a given system.

In many proofs we shall use an induction on formula weight, and finding the right definition
of weight that takes into account all the constraints that we need for the induction to work is a



subtle task. The following definition is found alongside the proofs of the structural properties, but
for expository reasons it is here anticipated. Observe that the definition extends the usual definition of
weight from (pure) formulas to labelled fomulas and local forcing relations, namely, to all formulas

of the form x : A, a
∀

 A, a

∃

 A, x 
a A|B.

Definition 4. The label of formulas of the form x : A and x 
a A|B is x. The label of formulas of

the form a
∀

 A, a

∃

 A is a. The label of a formula F will be denoted by l(F ). The pure part of a

labelled formula F is the part without the label and without the forcing relation, either local (
a) or
worldwise (:) and will be denoted by p(F ).

The weight of a labelled formula F is given by the pair (w(p(F )), w(l(F ))) where

– For all worlds labels x and all neighbourhood labels a, w(x) = 0 and w(a) = 1.
– w(P) = w(⊥) = 1,
w(A ◦ B) = w(A) + w(B) + 1 for ◦ conjunction, disjunction, or implication,
w(A|B) = w(A) + w(B) + 2,
w(A > B) = w(A) + w(B) + 3.

Weights of labelled formulas are ordered lexicographically.

From the definition of weight it is clear that the weight gets decreased if we move from a formula
labelled by a neighbourhood label to the same formula labelled by a world label, or if we move
(regardless the label) to a formula with a pure part of strictly smaller weight.

In our system, in addition to world labels, we have neighbourhood labels. The latter are subject
to similar conditions, such as the conditions of being fresh in certain rules, as the world labels.
Consequently, we shall need properties of hp-substitution in our analysis. Before stating and proving
the property, we observe that the definition of substitution of labels given in [13] can be extended in
an obvious way – that need not be pedantically detailed here – to all the formulas of our language
and to neighbourhood labels. We’ll have, for example, x : A > B(y/x) ≡ y : A > B and x 
a

A|B(b/a) ≡ x 
b A|B. Our calculus enjoys the property of hp-admissibility of substitution both of
world and neighbourhood labels, that is:

Proposition 2. 1. If `n Γ ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x);
2. If `n Γ ⇒ ∆, then `n Γ(b/a)⇒ ∆(b/a).

By a straightforward induction we can also prove:

Proposition 3. The rules of left and right weakening are hp-admissible in G3CL.

Hp-invertibility of the rules of a sequent calculus means that for every rule of the form Γ′⇒∆′

Γ⇒∆
,

if `n Γ ⇒ ∆ then `n Γ′ ⇒ ∆′, and for every rule of the form Γ′⇒∆′ Γ′′⇒∆′′

Γ⇒∆
if `n Γ ⇒ ∆ then

`n Γ
′ ⇒ ∆′ and `n Γ

′′ ⇒ ∆′′. We have:

Proposition 4. All the rules of G3CL are hp-invertible.

The rules of contraction of G3CL have the following form, where φ is either a “relational” atom

of the form a ∈ I(x) or x ∈ a or a labelled formula of the form x : A, a
∀

 A, a

∃

 A or x 
a A|B:

φ, φ, Γ ⇒ ∆

φ, Γ ⇒ ∆
LC

Γ ⇒ ∆, φ, φ

Γ ⇒ ∆, φ
RC

Since relational atoms never appear on the right, the corresponding right contraction rules will no be
needed. We do not need to give different names for these rules since we can prove that all of them
are hp-admissible:

Theorem 4. The rules of left and right contraction are hp-admissible in G3CL.

Theorem 5. Cut is admissible in G3CL.



Proof. By double induction, with primary induction on the weight of the cut formula and subinduc-
tion on the sum of the heights of derivations of the premisses of cut. The cases in which the premisses
of cut are either initial sequents or obtained through the rules for &, ∨, or ⊃ follow the treatment
Theorem 11.9 of [15]. For the cases in which the cut formula is a side formula in at least one rule
used to derive the premisses of cut, the cut reduction is dealt with in the usual way by permutation
of cut, with possibly an application of hp-substitution to avoid a clash with the fresh variable in rules
with variable condition. In all such cases the cut height is reduced.

The only cases we shall treat in detail on those with cut formula principal in both premisses of

cut and of the form a
∀

 A, a

∃

 A or x 
a A|B, x : A > B. We thus have the following cases:

1. The cut formula is a
∀

 A, principal in both premisses of cut. We have a derivation of the form
D

y ∈ a, Γ ⇒ ∆, y : A

Γ ⇒ ∆, a
∀


 A
R
∀



x : A, x ∈ a, a

∀


 A, Γ′ ⇒ ∆′

x ∈ a, a
∀


 A, Γ′ ⇒ ∆′
L
∀




x ∈ a, Γ, Γ′ ⇒ ∆, ∆′
Cut

This is converted into the following derivation:

D(x/y)
x ∈ a, Γ ⇒ ∆, x : A

Γ ⇒ ∆, a
∀

 A x : A, x ∈ a, a

∀

 A, Γ′ ⇒ ∆′

x : A, x ∈ a, Γ, Γ′ ⇒ ∆, ∆′
Cut1

x ∈ a, x ∈ a, Γ, Γ, Γ′ ⇒ ∆, ∆, ∆′
Cut2

x ∈ a, Γ, Γ′ ⇒ ∆, ∆′
Ctr∗

HereD(x/y) denotes the result of application of hp-substitution toD, using the fact that y is a fresh
variable; compared to the original cut, Cut1 is a cut of reduced height, Cut2 is one of reduced size of
cut formula, and Ctr∗ denote repreated applications of (hp-)admissible contraction steps.

2. The cut formula is a
∃

 A, principal in both premisses of cut. The cut is reduced in a way

similar to the one in the case above.
3. The cut formula is x 
a A|B, principal in both premisses of cut. We have the derivation

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B, c
∃

 A c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B, c

∀

 A ⊃ B

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B
RC

D

d ∈ I(x), d ⊆ a, d
∃

 A, d

∀

 A ⊃ B, Γ′ ⇒ ∆′

x 
a A|B, Γ′ ⇒ ∆′
LC

c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ ∆, ∆′
Cut

The transformed derivation is obtained as follows: First we have the derivationD2

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, x 
a A|B, c
∃

 A x 
a A|B, Γ′ ⇒ ∆′

c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ ∆, ∆′, c
∃

 A

Cut1 D(c/d)

c ∈ I(x), c ⊆ a, c
∃

 A, c

∀

 A ⊃ B, Γ′ ⇒ ∆′

c ∈ I(x)2, c ⊆ a2, c
∀

 A ⊃ B, Γ, Γ′2 ⇒ ∆, ∆′2

Cut2

where the upper cut Cut1 is of reduced height and Cut2 of reduced weight. Second, we have the
following derivationD3 which uses a cut or reduced height:

c ∈ I(x), c ⊆ a, Γ ⇒ ∆, c
∀

 A ⊃ B, x 
a A|B x 
a A|B, Γ′ ⇒ ∆′

c ∈ I(x), c ⊆ a, Γ, Γ′ ⇒ ∆, ∆′, c
∀

 A ⊃ B

Cut2

A cut (of reduced weight) of the conclusion ofD2 with that ofD3 gives the sequent

c ∈ I(x)3, c ⊆ a3, Γ2, Γ′3 ⇒ ∆2, ∆′3

from which the conclusion of the original derivation is obtained though (hp-)admissible steps of
contraction.

4. The cut formula is x : A > B, principal in both premisses of cut.
D

b ∈ I(x), b
∃


 A, Γ ⇒ ∆, x 
b A|B
Γ ⇒ ∆, x : A > B R >

a ∈ I(x), x : A > B, Γ′ ⇒ ∆′, a
∃


 A x 
a A|B, a ∈ I(x), x : A > B, Γ′ ⇒ ∆′

a ∈ I(x), x : A > B, Γ′ ⇒ ∆′
L >

a ∈ I(x), Γ, Γ′ ⇒ ∆, ∆′
Cut



The cut is converted into four cuts of reduced height or weight of cut formula as follows: First we
have the derivation (call itD2)

Γ ⇒ ∆, x : A > B a ∈ I(x), x : A > B, Γ, Γ′ ⇒ ∆, ∆′, a
∃


 A

a ∈ I(x), Γ, Γ′ ⇒ ∆, ∆′, a
∃


 A
Cut1

D(a/b)

a ∈ I(x), a
∃


 A, Γ ⇒ ∆, x 
a A|B
a ∈ I(x)2, Γ2, Γ′ ⇒ ∆2, ∆′, x 
a A|B

Cut2

where Cut1 is of reduced cut height and Cut2 of reduced weight of cut formula. Second we have the
derivation (call itD3) obtained from the given one with reduced weight of cut formula:

Γ ⇒ ∆, x : A > B x 
a A|B, a ∈ I(x), x : A > B, Γ′ ⇒ ∆′

a ∈ I(x), x 
a A|B, Γ, Γ′ ⇒ ∆, ∆′
Cut3

Finally the two conclusions ofD2 andD3 are used as premisses of a fourth cut (of reduced weight)
to obtain the sequent

a ∈ I(x)3, Γ3, Γ′2 ⇒ ∆3, ∆′2

and the original conclusion is obtained though applications of (hp-)admissible contraction steps.

To ensure the consequences of cut elimination we observe another crucial property of our system.
We say that a labelled system has the subterm property if every world or neighbourhood variable
occurring in any derivation is either an eigenvariable or occurs in the conclusion.7 By inspection of
the rules of G3CL, we have:

Proposition 5. Every derivation in G3CL satisfies the subterm property.

4 Completeness and termination

The calculus G3CL is not terminating as unrestricted root-first proof search may give rise to inde-

finetely growing branches. Consider rules L
∀

 and R

∃

. Root-first repeated applications of those

rules on the same pair of principal formulas is a priori possible and it would be desirable, to restrict
the search space, to show that they need to be applied only once on a given pair of matching principal
formulas.8 In fact, we have:

Lemma 1. In G3CL rules L
∃

 and R

∃

 need to be applied only once on the same pair of principal

formulas.

The avoidance of indefinitely applicable rules covered by the above lemma is not the only case
of restrictions that can be imposed to the calculus. Consider the following example:

a ∈ I(x), a
∃

 P, x : P > Q⇒ a

∃

 P, x 
a P|R

. . .⇒ c
∃

 P, x 
a P|R

.

.

.

.

d ∈ I(x), d ⊆ c, d
∃

 P, d

∀

 P ⊃ Q, c ∈ I(x), c ⊆ a, c

∃

 P, c

∀

 P ⊃ Q, a ∈ I(x), a

∃

 P, x : P > Q ⇒ x 
a P|R

x 
c P|Q, c ∈ I(x), c ⊆ a, c
∃

 P, c

∀

 P ⊃ Q, a ∈ I(x), a

∃

 P, x : P > Q⇒ x 
a P|R

LC

c ∈ I(x), c ⊆ a, c
∃

 P, c

∀

 P ⊃ Q, a ∈ I(x), a

∃

 P, x : P > Q⇒ x 
a P|R

L >

x 
a P|Q, a ∈ I(x), a
∃

 P, x : P > Q⇒ x 
a P|R

LC

a ∈ I(x), a
∃

 P, x : P > Q⇒ x 
a P|R

L >

x : P > Q⇒ x : P > R
R >

We can see in this special case how the proof search can be truncated, and then generalize the
argument through a suitable definition of saturated branch; this will be then strengthened to a proof
that in proof search saturated branches can always be obtained in a finite number of steps.

7 This property, restricted to world variables, is called analyticity in [4].
8 This desirable property is analogous to the property for basic modal systems established for rules L� and R^

in Lemma 6.3 and 6.4 [13].



Without loss of generality we can assume that a derivation of a given sequent is of minimal
height. Let D be the derivation of the upper rightmost sequent, and assume it has height n. Then by
hp-substitution we get a derivationD(c/d) of the same height of the sequent

c ∈ I(x), c ⊆ c, c
∃


 P, c
∀


 P ⊃ Q, c ∈ I(x), c ⊆ a, c
∃


 P, c
∀


 P ⊃ Q, a ∈ I(x), a
∃


 P, x : P > Q⇒ x 
a P|R

and by hp-contraction we obtain a derivation of height n of the sequent

c ∈ I(x), c ⊆ c, c
∃

 P, c

∀

 P ⊃ Q, c ∈ I(x), c ⊆ a, a ∈ I(x), a

∃

 P, x : P > Q⇒ x 
a P|R

and therefore, by a step of reflexivity, of height n + 1 of

c ∈ I(x), c
∃

 P, c

∀

 P ⊃ Q, c ∈ I(x), c ⊆ a, a ∈ I(x), a

∃

 P, x : P > Q⇒ x 
a P|R

Observe however that this is the same as the sequent that was obtained in the attempted derivation
in n + 2 steps, thus contradicting the assumption of minimality.

A saturated sequent is obtained by applying all the available rules with the exception of rules
application that would produce a redundancy such as a loop or a duplication of already existing
formulas modulo a suitable substitution of labels. There are two ways to treat uniformly the case of
redundancies arising from loops ad those ones arising from duplications: one is to write all the rules
in a cumulative style, i.e. by always copying the principal formulas of each rules in the premisses, a
choice pursued in [5]; another is to consider branches rather than sequents, as in [14]. Here we follow
the latter choice, and indicate ↓Γ (↓∆) the union of the antecedents (succedents) in the branch from
the end-sequent up to Γ ⇒ ∆.

Definition 5. We say that a branch in a proof search from the endsequent up to a sequent Γ ⇒ ∆ is
saturated if the following conditions hold:

(Init) There is no x : P in Γ
⋂
∆.

(L⊥) There is no x ∈ ⊥ in Γ.
(Ref) If a is in Γ, ∆, then a ⊆ a is in Γ.
(Trans) If a ⊆ b and b ⊆ c are in Γ, then a ⊆ c is in Γ.
(L∧) If x : A ∧ B is in ↓Γ, then x : A and x : B are in ↓Γ.
(R∧) If x : A ∧ B is in ↓∆, then either x : A or x : B is in ↓∆.
(L∨) If x : A ∨ B is in ↓Γ, then either x : A or x : B is in ↓∆.
(R∨) If x : A ∨ B is in ↓∆, then x : A and x : B are in ↓Γ.
(L⊃) If x : A ⊃ B is in ↓Γ, then either x : A is in ↓∆ or x : B is in ↓Γ.
(R⊃) If x : A ⊃ B is in ↓∆, then x : A is in ↓Γ and x : B is in ↓∆.

(R
∀

) If a

∀

 A is in ↓∆, then for some x there is x ∈ a in Γ and x : A in ↓∆.

(L
∀

) If x ∈ a and a

∀

 A and are in Γ, then x : A is in ↓Γ.

(R
∃

) If x ∈ a is in Γ and a

∃

 A is in ∆, then x : A is in ↓∆.

(L
∃

) If a

∃

 A is in ↓Γ, then for some x there is x ∈ a in Γ and x : A is in ↓Γ.

(R>) If x : A > B is in ↓∆, then there is a such that a ∈ I(x) is in Γ, a
∃

 A is in ↓Γ, and x 
a A|B is

in ↓∆.

(L>) If a ∈ I(x) and x : A > B are in Γ, then either a
∃

 A is in ↓∆ or x 
a A|B is in ↓Γ.

(RC) If c ∈ I(x) and c ⊆ a are in Γ and x 
a A|B is in ↓∆, then either c
∃

 A or c

∀

 A ⊃ B is in ↓∆.

(LC) If x 
a A|B is in ↓Γ, then for some c in I(x), we have c ⊆ a in Γ and c
∃

 A, c

∀

 A ⊃ B in ↓Γ.

(L⊆) If x ∈ a and a ⊆ b are in Γ, then x ∈ b is in Γ.

Given a root sequent⇒ x : A we build backwards a branch by application of the rules; the branch
is a sequence of sequents Γi ⇒ ∆i where Γ0 ⇒ ∆0 ≡ ⇒ x : A and each Γi+1 ⇒ ∆i+1 is obtained by
application of a rule R to Γi ⇒ ∆i.

To obtain a terminating proof search we modify (slightly) the calculus as follows:



– We replace the rule L> by the following rule:

a ∈ I(x), x : A > B, Γ ⇒ ∆, a
∃

 A a

∃

 A, x 
a A|B, a ∈ I(x), x : A > B, Γ ⇒ ∆

a ∈ I(x), x : A > B, Γ ⇒ ∆
L′ >

– We add the rule Mon∀
b ⊆ a, b

∀

 A, a

∀

 A, Γ ⇒ ∆

b ⊆ a, a
∀

 A, Γ ⇒ ∆

Mon∀

and we consider the respective saturation conditions:

(L>′) If a ∈ I(x) and x : A > B are in Γ, then either a
∃

 A is in ↓∆ or a

∃

 A and x 
a A|B are in ↓Γ.

(Mon∀) If b ⊆ a, a
∀

 A are in Γ, then b

∀

 A is in Γ.

We also distinguish between dynamic rules, i.e. rules that, root-first, introduce new world or neigh-
bourhood labels, and static rules, those that operate only on the given labels. Moreover we consider
the following strategy of application of the rules:

1. No rule can be applied to an initial sequent,
2. Static rules are applied before dynamic rules,
3. R> is applied before LC,
4. A rule R cannot be applied to Γi ⇒ ∆i if ↓ Γi and/or ↓ ∆i satisfy the saturation condition

associated to R.

Proposition 6. Any branch Γ0 ⇒ ∆0, . . . , Γi ⇒ ∆i, Γi+1 ⇒ ∆i+1, . . . of a derivation built in accor-
dance with the strategy, with Γ0 ⇒ ∆0 ≡ ⇒ x0 : A, is finite.

Proof. Consider any branch of any derivation of⇒ x0 : A. If the branch contains an initial sequent,
this sequent is the last one and the branch is finite. If the branch does not contain an initial sequent,
we observe the following facts: any label (world or neighbourhood) appears in the R part of a sequent
of the derivation only if it appears also in the L part (with the possible exception of x0 if the branch
contains only the root sequent ⇒ x0 : A). Observe also that given any sequent Γi ⇒ ∆i occurring
in a derivation branch, if a ∈ I(x), y ∈ a, b ∈ I(y), u ∈ b all belong to ↓ Γi, then we can assume, in
virtue of the variable conditions in dynamic rules, that none of b ∈ I(x), u ∈ a, a ∈ I(y) is in ↓Γi and
moreover if g ∈ I(x), h ∈ I(x) are in ↓Γi, and neither g ⊆ h, nor h ⊆ g are in ↓Γi, then there is no
u such that u ∈ g and u ∈ h are both in ↓ Γi. These remarks are aimed at preparing the following:
given a branch Γ0 ⇒ ∆0, . . . , Γi ⇒ ∆i, Γi+1 ⇒ ∆i+1, . . ., let ↓Γ and ↓∆ be the unions of all the Γi and
∆i respectively; let us define the relation:

a ≺ x if a ∈ I(x) is in ↓Γ and y ≺ b if y ∈ b is in ↓Γ
Fact: Then the relation ≺ does not contain cycles, has a tree-like structure with root x0, and the length
of any ≺-chain is bounded by the 2d(A) where d(A) is degree of the formula A in the root sequent
⇒ x0 : A, that is the maximum level of nesting of > in A, defined as usual: d(P) = 0 if P ∈ Atm,
d(¬C) = d(C), d(C#D) = max{d(C), d(D)} with # ∈ {∧,∨,⊃} and d(C > D) = max{d(C), d(D)} + 1.

The last claim of Fact can be proved formally as follows: for any u occurring in ↓Γ we define
d(u) = max{d(C) | u : C ∈↓Γ∪ ↓∆}.

By induction on d(u) we show that the length of any chain beginning with u (downwards) has length
≤ 2d(u). If d(u) = 0, then the claim is obvious, since there are no chains beginning with u of length
> 0. If d(u) > 0 consider any chain beginning with u of length > 0, the chain will contain a neighbour

a ∈ I(u) as immediate successor of u; observe that for all formulas a
∀

 G or a

∃

 G in ↓ Γ∪ ↓ ∆ it

holds d(G) < d(u) as G = E or G = E ⊃ F, for some E > F such that u : E > F ∈↓ Γ∪ ↓ ∆ with
d(E > F) ≤ d(u). If the chain goes on further with a successor of a, it will be one y ∈ a, but all

formulas y : D ∈↓ Γ∪ ↓ ∆ may only be subformulas of a formula G, such that a
∀

 G or a

∃

 G are

in ↓Γ∪ ↓∆. Thus d(y) < d(u), and by inductive hypothesis all chains beginning with y have length
≤ 2d(y). Thus the chain beginning with u will have length ≤ 2d(y) + 2 ≤ 2(d(u) − 1) + 2 = 2d(u).



Our purpose is to show that ↓ Γ, ↓ ∆ are indeed finite. Since the labels can only be attached to
subformulas of the initial A in ⇒ x0 : A (that are finitely many), we are left to show that the ≺
relation forms a finite tree. But we have just proved that every ≺-chain is finite, thus it is sufficient
to show that every node in this tree has a finite number of immediate successors, and then we obtain
the desired conclusion. In other words we must show that:

1. for each a occurring ↓Γ, the set {u | u ∈ a ∈↓Γ} is finite.
2. for each x occurring in ↓Γ ∪ {x0}, the set {a | a ∈ I(x) ∈↓Γ} is finite.

Let us consider 1: take a label a occurring in some Γi; worlds u can be added to a (i.e. u ∈ a will

appear in some Γk with k > i) only because of the application of a the rule (L
∃

) to some a

∃

 C ∈ Γ j

or (R
∀

) to a

∀

 D ∈ ∆ j, j ≥ i. But there is only a finite number of such formulas, and they are treated

only once, so the result follows.
Let us consider 2: take a label x occurring in some Γi. A neighbour a can be added to I(x) (meaning
that a ∈ I(x) will appear in some Γk with k > i) only because of rule R> applied to some x : C >
D ∈ ∆i or because of rule LC applied to some x 
b E|F with b ∈ I(x) also in Γi. In the former case
we note that the the number of formulas x : C > D ∈ ∆i if finite and each is treated only once, by the
saturation restriction. Thus only finitely many neighbours b will be added to I(x).

The latter case is slightly more complicated: each x 
b E|F is generated by a formula x : E > F,
with b ∈ I(x) also in Γi by an application of rule L′ >, taking the right premisse of this rule. The
formulas x : E > F are finitely many, say x : E1 > F1, . . . , x : Ek > Fk. Thus in the worst case,
for a given b ∈ I(x) ∈ Γi, all k formulas x 
b E1|F1, . . . , x 
b Ek |Fk will appear in some Γ j for
some j > i. Suppose next that LC is applied first for some l to x 
b El|Fl, to keep the indexing

easy we let l = 1, this will generate a new neighbour d, introducing d ∈ I(x), d ⊆ b, d
∃

 E1

and d
∀

 E1 ⊃ F1. The static rule L′ > can be applied again to d, generating in the worst case

(it corresponds to taking always the right premiss) x 
d E1|F1, . . . , x 
d Ek |Fk. Let us denote by
Γp ⇒ ∆p the sequent further up in the branch containing x 
d E1|F1, . . . , x 
d Ek |Fk; by saturation

we have that d ∈ I(x), d ⊆ d, d
∃

 E1, d

∀

 E1 ⊃ F1 ∈↓Γp, thus LC cannot be applied to x 
d E1|F1

and only k − 1 applications of LC are possible, namely to x 
d E2|F2, . . . , x 
d Ek |Fk.
Suppose next, to keep the indexing simple, that LC is applied then to x 
d E2|F2, then it will

add a new e with e ∈ I(x), e ⊆ d, e
∃

 E2 and e

∀

 E2 ⊃ F2. Again, the rule L’> can be applied,

and in the worst case it will add x 
e E1|F1, . . . , x 
e Ek |Fk. But here the new version L’>, becomes

significant: also e
∃

 E1, . . . , e

∃

 Ek will be added to the (antecedent) of the sequent containing x 
e

E1|F1, . . . , x 
e Ek |Fk. Moreover by saturation with respect to Mon∀, the antecedent e
∀

 E1 ⊃ F1

will be added, as well as e ⊆ e. Thus at this point, by saturation restriction, LC cannot be applied
neither to x 
e E2|F2, nor to x 
e E1|F1, and only (k-2) applications are possible.

A simple generalisation of the previous argument shows that after any application of LC which
generates new subneighbours d of a given neighbour b, the number of applications of LC to each d
strictly decreases, whence the number of further neighbours which can be subsequently generated:
if there are x 
b E1|F1, . . . , x 
b Ek |Fk they will produce at most k d1, . . . , dk ⊆ b, but each dl can
produce at most k − 1 e1, . . . , ek−1 ⊆ dl, and each em can produce at most k − 2 g1, . . . , gk−2 ⊆ em,
and so on. Thus the process must terminate and there will be a sequent Γq ⇒ ∆q such that ↓ Γq

is saturated with respect to all x 
a E j|F j, for all a such that a ∈ I(x) ∈↓ Γq, and this shows that
{a | a ∈ I(x) ∈↓Γ} is finite.

The following is an easy consequence.

Theorem 6. Any proof search for⇒ x : A is finite. Moreover every branch either contains an initial
sequent or is saturated.

Proof. By the previous proposition every branch is finite; let us consider any branch Γ0 ⇒ ∆0, . . . ,
Γm ⇒ ∆m. The branch ends with Γm ⇒ ∆m, no rule is applicable to it, thus, trivially, either Γm ⇒ ∆m

is an initial sequent or the branch is saturated, otherwise some rule would be applicable to Γm ⇒ ∆m.



Observe that the number of labelled formulas in a saturated branch may be exponential in the
size of the root sequent. For this reason, our calculus is not optimal, since the complexity of PCL is
PSPACE [8].

As mentioned in the introduction, [21] give a (very complicated) optimal calculus. Beyond the
technicality of the calculus, the essential ingredient, which goes back to Lehmann, is to restrict
the semantics to linearly ordered preferential models. This restriction preserves soundness for flat
sequent with at most one positive conditional on the right (after propositional unravelling), whereas
for (flat) sequents with several positive conditionals on the right one has to consider “multi-linear”
models as defined in [7]. Then one can study a calculus matching this strengthened semantics. This
idea is developed also in [7] where an optimal calculus for KLM logic P, the flat version of PCL
is given. We conjecture that a similar idea can be adopted for PCL based on WNM semantics: we
should first restrict the semantics to a special type of neighbourhood models, show that the restriction
preserves soundness and then develop a calculus with respect the sharpened semantics, with the hope
of obtaining an optimal one. All of this will be object of future research.

The following lemma shows how to define finite countermodels from saturated branches:

Lemma 2. For any saturated branch leading to a sequent Γ ⇒ ∆ there exists a (finite) countermodel
M to Γ ⇒ ∆, which makes all the formulas in ↓Γ true and all the formulas in ↓∆ false.

Proof. Define the countermodelM ≡ (W,N, I,
) as follows:

1. The set W of worlds consists of all the world labels in Γ;
2. The set N of neighbourhood consists of all the neighbourhood labels in Γ;
3. For each x in W, the set of neighbourood I(x) consists of all the a in N such that a ∈ I(x) is Γ;
4. For each a in N, a consists of all the y in W such that y ∈ a in is Γ;
5. The valuation is defined on atomic formulas by x 
 P if x : P in Γ and is extended to arbitrary

labelled formulas following the clauses of neighbourhood semantics for conditional logic (cf.
beginning of Section 3).

Next we can prove the following (cf. Definition 3: here ρ and σ are the identity maps, and we
leave them unwritten):

1. If A is in ↓Γ, thenM |= A.
2. If A is in ↓∆, thenM |=/ A.

The two claims are proved simultaneously by cases/induction on the weight of A (cf. Def. 4):
(a) If A is a formula of the form a ∈ I(x), x ∈ a, a ⊆ b, claim 1. holds by definition ofM and

claim 2. is empty.
(b) If A is a labelled atomic formula x : P, the claims hold by definition of 
 and by the saturation

clause Init no inconsistency arises. If A is ⊥, it holds by definition of the forcing relation that it is
never forced, and therefore 2. holds, whereas 1. holds by the saturation clause for L⊥. If A is a
conjunction, or a disjunction, or an implication, the claim holds by the corresponding saturation
clauses and inductive hypothesis on smaller formulas.

(c) If a
∃

 A is in ↓Γ, by the saturation clause (L

∃

), for some x there is x ∈ a in Γ and x : A is

in ↓ Γ. Then M |= x ∈ a by (a) and by IH M |= x : A, therefore M |= a
∃

 A. If a

∃

 A is in ↓ ∆,

then it is in ∆ because such formulas are always copied to the premisses in the right-hand side of
sequents. Consider an arbitrary world x in a. Then by definition ofM we have x ∈ a in Γ and thus

by the saturation clause (R
∃

) we also have x : A is in ↓∆. By IH we haveM |=/ x : A and therefore

M |=/ a
∃

 A. The proof for formulas of the form a

∀

 A is similar.

(d) If x 
a A|B is in ↓ Γ, then by saturation for some c in I(x), we have c ⊆ a in Γ and c
∃

 A,

c
∀

 A ⊃ B in ↓ Γ. By IH this gives M |= c

∃

 A, c

∀

 A ⊃ B and by definition of M we obtain

M |= x 
a A|B.
If x 
a A|B is in ↓ ∆, consider an arbitrary c in I(x) with c ⊆ a in the model. By definition of

M we have that c ∈ I(x) and c ⊆ a are in Γ, and therefore by saturation clause (RC) we obtain then



either c
∃

 A or c

∀

 A ⊃ B is in ↓∆. By IH we have that eitherM |=/ c

∃

 A orM |=/ c

∀

 A ⊃ B. Overall,

this means thatM |=/ x 
a A|B.
(e) If x : A > B is in ↓ Γ, then because of the form of the rules of the calculus it actually is in

Γ; let a be a in I(x) in the model. Then a ∈ I(x) and x : A > B are in Γ and the saturation clause

(L>) applies, giving that either a
∃

 A is in ↓∆ or x 
a A|B is in ↓Γ. By IH we that have that either

M |=/ a
∃

 A orM |= x 
a A|B. It follows thatM |= x : A > B.

If x : A > B is in ↓∆, then by (R>) there is a such that a ∈ I(x) is in Γ, a
∃

 is in ↓Γ, and x 
a A|B

is in ↓∆. By IH we obtainM |= a
∃

 andM |=/ x 
a A|B, and thereforeM |=/ x : A > B.

We are ready to prove the completeness of the calculus.

Theorem 7. If A is valid then there is a derivation of⇒ x : A, for any label x.

Proof. By Theorem 6 for every A there is (a finite procedure that leads to) either a derivation for
⇒ x : A or to a saturated branch. By the above lemma a saturated branch gives a countermodel of A.
It follows that if A is valid it has to be derivable.

The proof of the above theorem shows not only the completeness of the calculus, but more
specifically that for any unprovable formula the calculus provides a finite countermodel. Given the
soundness of the calculus, as a by product we obtain a constructive proof of the finite model property
for this logic.

5 Conclusions

In this paper we have given a labelled sequent calculus for the basic preferential conditional logic
PCL. The calculus stems from a new semantics for this logic in terms of Weak Neighborhood Sys-
tems, a semantics of independent interest. The calculus has good proof-theoretical properties, such as
the admissibility of cut and contraction. Completeness follows from the cut-elimination theorem and
derivations of the axioms and rules of PCL and is also shown by a direct proof search/countermodel
construction. The calculus can be made terminating by adopting a suitable search strategy and by
slightly changing the rules. In comparison with other proposals such as [6] and [16], no complex
blocking conditions are necessary to ensure termination. The calculus however is not optimal as the
size of a derivation branch may grow exponentially. We shall study how to refine it in order to obtain
an optimal calculus; as briefly discussed in the previous section, a sharper semantical analysis of
PCL might be needed to this purpose.

In future research, we also intend to extend the Weak Neighbourhood Semantics and find corre-
sponding calculi for the main extensions of PCL.
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