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This paper studies a Glivenko sequent class, i.e. a class of sequents where classical
derivability entails intuitionistic derivability; more specifically, the paper is about
“geometric sequents”. The main old result in this topic is a direct consequence [10]
of Barr’s theorem1. As background, Mints sketches an old deductive proof (from
[6]) and an old model-theoretic proof, as in Exercise 2.6.14 of [8]; but, his interest
being in complexity of proof transformations, he gives a third proof, of a result both
more and less general.

A modern reconstruction [5] of Orevkov’s proof [6, Theorem 4.1, part (1)] relies
on what we would now call the “cut-free G3c calculus” [9], in which Cut and other
structural rules are admissible and all the logical rules are invertible (indeed, height-
preserving invertible). His result is that the list (or “σ-class”) [→+,¬+,∀+] is a
“completely Glivenko class”; in other words, he shows that if a sequent with a single
succedent has no positive occurrences of →, ¬ or ∀ then its classical derivability
implies its intuitionistic derivability. In modern terminology, this means just that
if a sequent Γ ⇒ A (where Γ consists of geometric implications and A is a positive
formula) is derivable in cut-free G3c, then it is already derivable in the intuitionistic
calculus m-G3i (also from [9]). The proof method actually shows the stronger result,
that the cut-free G3c derivation is already a m-G3i derivation. The weaker result
extends to the case where A is a geometric implication by using the invertibility in
cut-free G3c of the succedent rules for the three mentioned connectives. Other work,

1 “Let E be a Grothendieck topos. Then there is a complete Boolean algebra B and an exact
cotripleable functor E → FB”, FB being the topos of sheaves over B [1].
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such as [3], related to the deductive proof of this result, is cited in the bibliographies
of [4] and [5]. The usefulness of cut-free G3 calculi in the study of Glivenko classes
has been further demonstrated in [5], with direct proofs of generalisations of results
in [6].

Mints’ interest, however, in this paper is in derivations in G3c with Cut. One
can apply standard cut-elimination transformations, and then those corresponding
to the inversions; but this leads to a “super-exponential blow-up”, as can be seen in
a similar context in [9, Section 5.2]. How can this be avoided? One solution is just to
start with a cut-free derivation. One can go even further, using the cut-free calculi
introduced in [4], where the axioms Γ are replaced by inference rules: this avoids
proof transformations entirely (since, in such calculi, classical proofs of a geometric
implication A are already intuitionistic proofs). But, Mints would insist that G3c
with Cut is a traditional (i.e. respectable) starting point.

The question then arises: can the transformation be changed so that there is an
at most polynomial expansion of the derivation? Clearly it should not begin with
cut elimination, so a trick is needed to handle instances of the Cut rule rather than
eliminating them. The trick is attributed to Orevkov [6]; one might also attribute
it to Skolem, who pioneered in [7] the use of what [2] should have called “relational
Skolemisation”, i.e. the replacement, by introduction of new relation symbols, of
complex formulae by atomic formulae. When this is sufficiently thorough to ensure
that every formula is equivalent to an atomic formula, it is called “atomisation” or
“Morleyisation”; this paper doesn’t go so far.

The novel result of this paper is now the result (both weaker and stronger)
that, if d is a classical proof of a geometric sequent, then it can be polynomially
transformed into an intuitionistic proof of the sequent conservatively extended by
extra antecedent formulae that are geometric implications. These extra implications
are generated by relational Skolemisation of the subformulae of the cut formulae in
d. The result is weaker by virtue of having these extra implications; it is stronger
by virtue of the complexity reduction.

There are the following points at which the paper is incorrect:

1. Mints’ (9) should be ∀x(P∃yG(x) → ∃yPG(x, y)) rather than ∀x(P∃yPG
(x) →

∃yPG(x, y));

2. His (10) should be ∀x∀y(PG(x, y) → P∃yG(x)) rather than ∀x∀y(PG(x, y) →
P∃yPG

(x));

3. His (11) should be ∀x∀y(P∀yG(x) → PG(x, y)) rather than ∀x∀y(P∀yPG
(x) →

PG(x, y));
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4. His (12) should be ∀x(∀yPG(x, y) → P∀yG(x)) rather than ∀x(∀yPG(x, y) →
P∀yPG

(x));

5. His (19) (replacing (16)) is not a geometric implication;

6. His (17) (replacing (12)) is not a geometric implication.

The first four of these problems are minor: note that in Mints’ (9) the suffix
∃yPG is not a subformula of one of the cut-formulae, and similarly for (10), (11)
and (12). The penultimate problem can be fixed by distributing ∀x across the
conjunction, thus obtaining two geometric implications: ∀x(PH(z) → PG→H(x))
and ∀x(PG(y) ∨ PG→H(x)). [It has already been made clear that y and z are
subsets of the set x of variables.]

The final problem is not so easily fixed: the paper wrongly claims that the
formula ∀x∃y(PG(x, y) → P∀yPG

(x)) is a geometric implication. This is not fixed by
changing (12) (as proposed above) to ∀x(∀yPG(x, y) → P∀yG(x)) and then obtaining
∀x∃y(PG(x, y) → P∀yG(x)); this is still not geometric, because of the implication
within the scope of the existential quantifier.

A partial solution may be had by changing this formula to the geometric impli-
cation

∀x(∃yP¬G(x, y) ∨ P∀yG(x)) (17)
but this introduces a new relation symbol P¬G, where ¬G may not be a subformula
of one of the cut formulae. To fix this problem, the relational Skolemisation needs
to be applied not just to all such subformulae but also to all their negations.

With these changes, the application of the extra formulae (i.e. members of DEFd)
to deal with the special formulae of the derivation is unchanged for implication. We
show (for example) the effects of improving (9) on the treatment of an antecedent
∃-inference and of correcting the treatment of universal quantification.

The improved version of (9) is ∀x(P∃yG(x) → ∃yPG(x, y)). The step

G(b),Γ ⇒ ∆
∃yG(y),Γ ⇒ ∆

is transformed to
PG(y)(t, b),DEFd,Γ ⇒ ∆

∃yPG(y)(t, y)),DEFd,Γ ⇒ ∆ ∃⇒
.

DEFd, P∃yG(y)(t),Γ ⇒ ∆
Using the improved version of (17), the step

Γ ⇒ ∆, G(t, b)
Γ ⇒ ∆, ∀yG(t, y)
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is transformed (with some implicit weakenings to save space and aid readability) to

DEFd, Γ ⇒ ∆, PG(x,y)(t, b)

P¬G(x,y)(t, b), DEFd, Γ ⇒ ∆, PG(x,y)(t, b)
W kn

P¬G(x,y)(t, b), DEFd, Γ ⇒ ∆, P¬G(x,y)(t, b) ∧ PG(x,y)(t, b)
⇒ ∧, axiom

P¬G(x,y)(t, b), ¬(P¬G(x,y)(t, b) ∧ PG(x,y)(t, b)), DEFd, Γ ⇒ ∆
¬ ⇒

P¬G(x,y)(t, b), DEFd, Γ ⇒ ∆

∃yP¬G(x,y)(t, y), DEFd, Γ ⇒ ∆
∃ ⇒

P∀yG(x,y)(t), Γ ⇒ ∆, P∀yG(x,y)(t)
axiom

∃yP¬G(x,y)(t, y) ∨ P∀yG(x,y)(t), DEFd, Γ ⇒ ∆, P∀yG(x,y)(t)
∨ ⇒

DEFd, Γ ⇒ ∆, P∀yG(x,y)(t) .

Note the importance of having P∀yG(x,y)(t) (rather than, from the succedent of the
old (17), Mints’ P∀yPG

(t)) in the antecedent of the lowest axiom step. It is not the
case that ∀yPG(x,y) (i.e. Mints’ ∀yPG) is a subformula of one of the cut formulae;
the presence of the fresh predicate symbol PG(x,y) forbids this.

Note also the use of the Weakening rule Wkn; either this rule should be included
in the m-G3i calculus or the admissibility of the rule exploited once the derivation
has been fully transformed.
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