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Abstract

Anti-realist epistemic conceptions of truth imply what is called the knowability princi-
ple: All truths are possibly known. The principle can be formalized in a bimodal proposi-
tional logic, with an alethic modality ♦ and an epistemic modality K, by the axiom scheme
A ⊃ ♦KA (KP). The use of classical logic and minimal assumptions about the two modalities
lead to the paradoxical conclusion that all truths are known, A ⊃ KA (OP). A Gentzen-
style reconstruction of the Church-Fitch paradox is presented following a labelled approach
to sequent calculi. First, a cut-free system for classical (resp. intuitionistic) bimodal logic is
introduced as the logical basis for the Church-Fitch paradox and the relationships between
K and ♦ are taken into account. Afterwards, by exploiting the structural properties of the
system, in particular cut elimination, the semantic frame conditions that correspond to KP
are determined and added in the form of a block of nonlogical inference rules. Within this
new system for classical and intuitionistic ‘knowability logic’, it is possibile to give a satisfac-
tory cut-free reconstruction of the Church-Fitch derivation and to confirm that OP is only
classically derivable, but neither intuitionistically derivable nor intuitionistically admissible.
Finally, it is shown that in classical knowability logic, the Church-Fitch derivation is nothing
else but a fallacy and does not represent a real threat for anti-realism.

1 Introduction

According to the Dummettian tradition in the philosophy of language, the realism/anti-realism
debate can be characterized in terms of the notion of truth involved. Realism takes the notion of
truth either as primitive or as defined over the notion of ‘fact’, whereas anti-realism embraces an
epistemic conception of truth. One possible version of this epistemic conception is the following:

(1E) A is true if and only if it is possible to exhibit a direct justification for A.

A justification is something connected to linguistic practice, and therefore it is supposed not to
transcend our epistemic capacities. This observation leads to:

(2E) If it is possible to exhibit a direct justification for A, then it is possible to know that A.

Putting (1E) and (2E) together we get what is known as the knowability principle:
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(3E) If A is true, then it is possible to know that A.

What is known as the Fitch or Church-Fitch paradox1 is an argument that threatens the anti-
realist position: In the argument, it is concluded from the knowability principle that all truths
are actually known, a paradoxical consequence, known as the principle of omniscience, that
undermines the epistemic conception of truth.

The force of the argument lies in the fact that it is a formal argument, completely developed in
a plainly faultless logical setting. More precisely, the knowability principle is formalized with a
scheme that uses two modal operators, K and ♦. The first is an epistemic operator to be read
as ‘it is known that . . . ’ or ‘someone knows that. . . ’. The second is an alethic operator to be
read as ‘it is possible that. . . ’.

In this formal language, the knowability principle takes the form of the scheme

A ⊃ ♦KA KP

In the same manner, omniscience is formalized by the scheme

A ⊃ KA OP

The Church-Fitch paradox consists in a formal derivation that starts from KP, passes through
its instance with the Moore sentence2 A &¬KA, and then leads to OP by using only logical
steps. We shall consider here only the definition in which K is a primitive modal operator, and
not the one, alternatively proposed by Fitch at the end of his paper (1963, p. 141), in which K
is defined on the basis of a causal relation that allows to define knowledge in terms of justified
true belief.

Many different ways to block the paradox have been proposed. They can be grouped into three
categories of intervention:

1. Restriction on the possible instances of KP (Dummett 2001, Tennant 1997, 2009, Restall
2009);

2. Reformulation of the formalization of the knowability principle (Edington 1985, Rabino-
wicz and Segerberg 1994, Martin-Löf 1998, van Benthem 2009, Burgess 2009, Proietti and
Sandu 2010, Artemov and Protopopescu 2011, Proietti 2011);

3. Revision of the logical framework in which the derivation is made (Williamson 1982, Beall
2000, 2009, Wansing 2002, Dummett 2009, Giaretta 2009, Priest 2009).

Even if some of the proposed solutions focus on the type of derivability relation that connects
OP to KP, none of them has taken derivations themselves as objects of study or analyzed
the structure of the derivation of OP from KP. Our precise aim, instead, is to focus on this
analysis.

Before proceeding, it is worth noting that the standard derivation of the Church-Fitch paradox
is given in an axiomatic calculus (Beall 2000, Brogaard and Salerno 2009, Wansing 2002). This
calculus hides structural operations such as cut, weakening and contraction. For the purposes

1The paradox was presented in Fitch (1963) but, as recently discovered by Joe Salerno and Julien Murzi,
it was actually suggested by Church in a series of referee’s reports dating back to 1945 and now reproduced in
Salerno (2009).

2We extend here to knowledge the usual notion of Moore sentence, originally conceived for belief.
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of an analysis that leaves no inferential passage implicit, it is therefore preferable to move to
systems of sequent calculus that make these operations explicit, and, by a suitable design as
achieved in the G3 systems, completely eliminable. We begin in Section 2 with a sequent calculus
derivation of the Church-Fitch paradox, built by translating a natural deduction derivation.
The calculus that is used is contraction free and cut free, thus a good basis for the structural
analysis of the paradox. However, the presence of an axiomatic assumption in the derivation
results in a non-eliminable cut. The method of conversion of axioms into rules of Negri and von
Plato (1998, 2001), briefly recalled in Section 3, is not applicable here because the knowability
principle cannot be reduced to its atomic instances. This fact is established syntactically by
means of a failed proof search in the given sequent system. We turn therefore to the method of
labelled calculi in the style of Negri (2005) and present in Section 3.2 a bimodal extension of a
G3-style labelled system for intuitionistic logic. We show in Section 3.2.1 that the system has all
the structural rules admissible. The system is equivalent to a standard axiomatic system used
in the analysis of the paradox, but the labelled approach allows a stronger completeness result;
In Section 3.2.2, we prove completeness in a direct way by showing that, for every sequent in
the language of the logic in question, either there is a proof in the calculus or a countermodel
in a precisely defined frame class is found.

The completeness result is used in Section 5 for showing that the classical standard form of
the Church-Fitch paradox is not derivable intuitionistically (Section 5.2): We consider the
classically derivable sequent with KP instantiated with the Moore sentence A &¬KA as an
antecedent and OP instantiated with A as a succedent; then, by the failed proof search, we
extract a countermodel for OP. This argument suffices for blocking, within an intuitionistic
bimodal system, the specific proof of the paradox, but it is not yet conclusive. To conclude that
an intuitionistic system that incorporates KP as a derivation principle does not derive OP,
it is not sufficient to show that OP does not follow from a particular instance of KP. At the
end of Section 5 we make clear, through an example from classical logic, that the notion to be
considered when comparing principles of proof should be admissibility rather than derivability.
To clarify the relation between the two principles, it is necessary to make explicit the conditions
that characterize their validity. The semantical assumption behind the axiom scheme KP is
determined in the form of a frame property that involves all the three - preorder, alethic,
epistemic - accessibility relations (Section 5.3). The frame condition KP-Fr is then made part
of the logical system in the form of a block of additional rules of inference, linked by a variable
condition. By this addition, a complete contraction- and cut-free proof system for intuitionistic
bimodal logic extended by the knowability principle is obtained. We show, using proof search
and construction of countermodels, that OP is not derivable in the system, therefore not valid.
We also discuss how an oversight on the variable condition could lead to an opposite conclusion.
We then show how, by just adding symmetry of the preorder, OP becomes derivable. The latter
is a cut-free derivation of the Church-Fitch paradox that uses KP as a derivation principle and
that guarantees that the source of the paradox is to be found only in the assumption on which
it depends. It is also shown that the same result can be obtained for belief-like notions of
knowledge that do not assume factivity among their defining principles.

2 Towards a structural analysis of the Church-Fitch argument

The Church-Fitch paradox was originally presented in Fitch (1963) without using an explicit
logical system, and it was later formalized using semantic arguments and various deductive
systems for modal logic: linear derivations, natural deduction, sequent calculus. All these
formalizations have contributed to single out a minimal logical ground that gives rise to the

3



paradox. It consists in a basic bimodal logic that extends classical propositional logic with
an alethic modality ♦ and an epistemic modality K. No requirement is made on the alethic
modality, whereas the epistemic modality is supposed to satisfy distributivity over conjunction,
K(A & B) ⊃ KA &KB, and factivity, KA ⊃ A. The former property is derivable for any
necessity-like modality in normal modal logic, so the only requirement added to a normal
bimodal logic is factivity of K.

A formalization of the Church-Fitch argument is the first step towards its analysis. We start
with a derivation in natural deduction:

2

A &¬KA
KP

A &¬KA ⊃ ♦K(A &¬KA)
♦K(A &¬KA)

1

K(A &¬KA)
KA

K&1

1

K(A &¬KA)
K¬KA

K&2

¬KA
KE

⊥
⊥

♦E,1

¬(A &¬KA)
⊃I,2

The conclusion is the weaker intuitionistic version of OP, and intuitionistically equivalent to
A ⊃ ¬¬KA. We call both of them WOP (for weak omniscience principle).

The conclusion A ⊃ KA is obtained by classical propositional steps and leads, in conjunction
with factivity, to the identification of truth and knowledge.

A closer inspection of the above derivation shows that we used the following rules:

K(A & B)
KA

K&1

K(A & B)
KB

K&2

These are derivable in any system of normal epistemic modal logic. Rule KE corresponds to
factivity of knowledge and rule ♦E is the dual of the familiar necessitation rule: observe that
the latter can be formulated in natural deduction as

♦A

[A]1....
⊥

⊥ ♦E 1

The minor premiss of the rule is ⊥ and may depend on A, discharged by the rule, similarly
to the rule of existence elimination, with falsity, rather than any formula not containing the
eigenvariable, as the minor premiss. With a sequent notation and an empty succedent in place
of ⊥, the rule becomes

A→
♦A→

This rule is the dual of the rule of necessitation:

→ A
→ �A

A further step in the analysis of derivations comes from sequent calculus that has several
advantages over natural deduction. First, structural steps are explicit and not hidden in vacuous
and multiple discharge and in non-normal instances of rules (cf. Negri and von Plato 2001,
Chapter 1). Secondly, sequent calculus, contrary to natural deduction, is well suited for classical
logic and its modal extensions.
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The sequent calculus that we shall use is obtained as an extension of the classical propositional
contraction-free sequent calculus G3c with the following rules for the alethic and epistemic
modalities, where KΓ denotes the multiset of all the KA for A in Γ:

Γ→ A
KΓ, Θ→ ∆,KA

LR-K
A,KA, Γ→ ∆
KA, Γ→ ∆

LK

A→ ∆
♦A, Γ→ Θ,♦∆

LR-♦

Modal rules of G3♦K

The resulting system, called G3♦K, is an extension of the calculus G3K presented in section
4 of Hakli and Negri (2011), and the proof of its structural properties follows the lines of the
proof for G3K.

Theorem 2.1. In G3♦K the following hold:

1. Sequents A, Γ→ ∆, A are derivable for arbitrary A.

2. Propositional rules are height-preserving invertible.

3. The rules of left and right weakening and contraction are height-preserving admissible.

4. Cut is admissible.

Proof. We show here only one extra case that arises in the proof of cut elimination because of
the addition of rule LK, with the cut formula principal in both premisses of cut, the right one
being LK:

Γ→ A
Θ,KΓ→ ∆,KA

LR-K
KA, A, Γ′ → ∆′

KA, Γ′ → ∆′
LK

Θ,KΓ, Γ′ → ∆, ∆′
Cut

The cut is transformed as follows in two consecutive cuts, the upper of decreased height, the
lower of decreased cut formula weight. Repeated applications of rule LK are denoted by LK∗:

Γ→ A

Θ,KΓ→ ∆,KA KA, A, Γ′ → ∆′

A, Θ,KΓ, Γ′ → ∆, ∆′
Cut

Θ, Γ,KΓ, Γ′ → ∆, ∆′
Cut

Θ,KΓ, Γ′ → ∆, ∆′
LK∗

The conversion for a cut formula of the form ♦A principal in both premisses of cut in LR-♦ is
symmetric to the conversion of a cut formula of the form KA principal in both premisses of cut
in LR-K treated in the above mentioned article. QED

The sequent-style reconstruction of the Church-Fitch paradox calls for the following

Lemma 2.2. The following rules are derivable in G3♦K + Cut:

→ A &¬KA ⊃ ♦K(A &¬KA)
A,¬KA→ ♦K(A &¬KA)

Inv
KA,K¬KA→
K(A &¬KA)→

Distr

Proof. See Appendix A. QED
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A proof of the Church-Fitch paradox can now be obtained as a derivation in system G3♦K of
the sequent → A ⊃ KA from a special instance of the knowability principle KP, the sequent
→ (A &¬KA) ⊃ ♦K(A &¬KA), as follows:

KP
→ A &¬KA ⊃ ♦K(A &¬KA)

A,¬KA→ ♦K(A &¬KA)
Inv

KA→ KA
KA,¬KA→L¬

KA,K¬KA,¬KA→L-Wk

KA,K¬KA→ LK

K(A &¬KA)→
Distr

♦K(A &¬KA)→
LR-♦

A,¬KA→ Cut

A→ ¬¬KA
R¬ ¬¬KA→ KA

A→ KA
Cut

→ A ⊃ KA
R⊃

Observe that the presence of the sequent → A &¬KA ⊃ ♦K(A &¬KA) from which the deriva-
tion starts makes the application of cut non-eliminable because, in general, cut elimination fails
when cuts depend on proper axioms.3 A possible way out was found in Negri and von Plato
(1998): If axioms are converted into suitable inference rules, the eliminability of cut is main-
tained. We shall recall the basic properties of the method in the next section, but anticipate
here a problem that is met when the method is applied to the knowability principle. First, KP
should be converted into a rule of the form

♦KA, Γ→ ∆
A, Γ→ ∆

Kn

This rule can be easily proved to be equivalent to the sequent → A ⊃ ♦KA. Then, it should be
reduced to a rule that has only formulas devoid of logical structure as principal, i.e., a reduction
of the general knowability principle to the knowability principle for only atomic formulas. If
such were the case, the rule in the above derivation could be turned into a left rule of sequent
calculus with atomic principal formulas, of the form

♦KP, Γ→ ∆
P, Γ→ ∆

Kn-At

However, it can be proved that the knowability principle cannot be reduced to its atomic
instances. By the following result, the knowability principle on a conjunction does not follow
from knowability on the conjuncts.

Lemma 2.3. The sequent P ⊃ ♦KP,Q ⊃ ♦KQ → P & Q ⊃ ♦K(P & Q) is not derivable in
G3♦K.

Proof. See Appendix B. QED

By Lemma 2.3 and the equivalence of systems with rules and systems with axioms as contexts
(cf. Theorem 6.3.2 in Negri and von Plato 2001), we conclude that the rule of knowability
on arbitrary formulas does not follow from its restriction to atomic formulas. The method of
conversion of axiom into rules, successfully employed elsewhere for extending structural proof

3For more details about the failure of cut elimination in the presence of proper axioms see Girard (1987), p.
125, Negri and von Plato (1998), p. 418, and Troelstra and Schwichtenberg (2000), p. 127.
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analysis from standard sequent calculi to systems with added axioms (cf. Negri and von Plato
2001, 2011) thus cannot be applied in this case. We shall therefore use the more refined labelled
deductive machinery of Negri (2005).

3 The proof-theoretical machinery

For a self-contained presentation of the G3-style calculus that we shall use for dealing with
a bimodal system, we need to recall briefly the method of conversion of axioms into sequent
rules presented in Negri and von Plato (1998, 2001) for mathematical theories and in Negri
(2005, 2008), Negri and von Plato (2011) for modal and non-classical logics. The reader already
acquainted with the method can skip this section.

The starting point is the classical propositional sequent calculus G3c in which all the rules
are invertible and all the structural rules are admissible (cf. Troelstra and Schwichtenberg
2000 or Negri and von Plato 2001 for the rules and the basic properties). In this calculus,
weakening and contraction have the stronger property of height-preserving- (hp-) admissibility,
that is, whenever their premisses are derivable, also their conclusion is, with at most the same
derivation height (the height of a derivation is its height as a tree, that is, the length of its
longest branch). Moreover, the calculus enjoys hp-admissibility of substitution of individual
variables. Invertibility of the rules of G3c is also height-preserving (hp-invertible). Negri and
von Plato (1998) showed that it is possible to extend G3c by suitably formulated rules that
correspond to axioms for specific theories while maintaining all the structural properties of the
basic G3c system. (Detailed proofs can be found in chapters 3, 4, and 6 of Negri and von Plato
2001). Universal axioms are first transformed, through the rules of G3c, into a normal form
that consists of conjunctions of formulas of the form

P1 & . . . & Pm ⊃ Q1 ∨ . . . ∨Qn

All the Pi, Qj are atomic; If m = 0, the implication reduces to the succedent, the latter with
the limiting case of ⊥ if n = 0. The universal closure of any such formula is called a regular
formula. We abbreviate the multiset P1, . . . , Pm as P . Each conjunct is then converted into a
schematic rule, called the regular rule scheme, of the form

Q1, P , Γ→ ∆ · · · Qn, P , Γ→ ∆
P , Γ→ ∆

Reg

To maintain admissibility of contraction in the extensions with regular rules, the formulas
P1, . . . , Pm in the antecedent of the conclusion of the scheme have to be repeated in the an-
tecedent of each of the premisses. Consider an instantiation of free parameters in atoms that
produces a duplication (two identical atoms) in the conclusion of a rule instance, as in

P1, . . . , P, P, . . . , Pm, Γ→ ∆

There is a corresponding duplication in each premiss. The closure condition imposes the require-
ment that the rule with the duplication P, P contracted into a single P , both in the premisses
and in the conclusion, be added to the system of rules. For each axiom system, there is only
a bounded number of possible cases of contracted rules to be added, very often none at all, so
that the condition is unproblematic.

By the same method, it is possible to convert into rules also existential axioms, or, more gener-
ally, axioms of the form of geometric implications. These are universal closures of implications,
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∀x1 . . . xn(A ⊃ B) in which A and B do not contain implications or universal quantifiers. Ge-
ometric implications can be turned into a useful normal form that consists in conjunctions of
formulas of the form

∀x(P1& . . . &Pm ⊃ ∃y1M1 ∨ . . . ∨ ∃ynMn)

Each Pi is an atomic formula, each Mj a conjunction of a list of atomic formulas Qj , and none
of the variables in the vectors yj are free in Pi. In turn, each of these formula can be turned
into an inference rule of the following form:

Q1(z1/y1), P , Γ→ ∆ . . . Qn(zn/yn), P , Γ→ ∆

P , Γ→ ∆
GRS

The variables yi are called the replaced variables of the scheme, and the variables zi the proper
variables, or eigenvariables. In what follows, we shall consider for ease of notation the case in
which the vectors of variables yi consist of a single variable. All the proofs can be adapted in a
straightforward way to the general case.

The geometric rule scheme is subject to the condition that the eigenvariables must not be free
in the conclusion of the rule, P , Γ, ∆. With this condition, the rule expresses in a logic-free way
the role of the existential quantifier in a geometric axiom.

All universal and geometric theories can be formulated by this method as contraction- and
cut-free systems of sequent calculi, as was shown by the following result (Negri and von Plato
1998, Negri 2003):

Theorem 3.1. The structural rules of Weakening, Contraction and Cut are admissible in
all extensions of G3c with the regular or geometric rule scheme and satisfying the closure
condition. Weakening and Contraction are hp-admissible.

3.1 Proof analysis for non-classical logics

The method of extension of sequent calculi can be applied not only outside logic, to specific
axiomatic theories such as lattice theory, arithmetic, and geometry (cf. Negri and von Plato
2011), but also inside logic, and in particular to modal logics, and, more generally, to those
non-classical logics that can be characterized in terms of relational semantics. The language
is enriched with terms for possible worlds and relations between them, and expressions for the
forcing relation between worlds and formulas. The basic modal logic K gets formulated as a
labelled sequent calculus by prefixing every formula A with a label x that ranges in a set W . A
full internalization of the semantics is obtained by allowing expressions for accessibility relations
xRy between labels. The rules for the modalities � and ♦ are obtained through a meaning
explanation in terms of Kripke semantics and an inversion principle. Logics stronger that K are
formulated by adding to the basic calculus rules for R: First-order conditions usually imposed
on R such as reflexivity, transitivity, symmetry, are considered as axioms and then converted
into regular rules.

We shall now recall the determination and the basic structural properties of a labelled G3-style
sequent calculus for intuitionistic logic (cf. Dyckhoff and Negri 2012, Negri and von Plato 2011).

It is well known that the semantics of S4 can be used to provide a direct interpretation of the
intuitionistic connectives, the intuitionistic implication being a �-type modality (see Kripke
1965). In fact, the inductive definition of validity of implicative formulas is:

x  A ⊃ B if and only if for all y, x 6 y and y  A implies y  B
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Here the intuitionistic accessibility relation is denoted, as usual, by 6 and it is assumed to be
reflexive and transitive, i.e., a preorder. Along with the clauses for the other connectives, the
definition can be converted into a pair of sequent rules; The arbitrariness of y is expressed by
the condition that it must not appear in the conclusion of the right rule for implication. In
addition, the forcing relation has to be proved monotone with respect to the relation 6. That
is, for any arbitrary formula A the following has to hold:

x 6 y and x  A implies y  A

It is enough to impose monotonicity of forcing, in the form of an initial sequent, only for atomic
formulas. This is not a restriction because full monotonicity is then derivable. Thus, one of
the design principles of G3-style calculi, namely the restriction of initial sequents to atomic
formulas needed to guarantee the full range of structural properties, is respected.

The following labelled sequent calculus G3I for intuitionistic logic is thus obtained (negation is
defined in terms of ⊥ and ⊃, the formulas P are atomic, and y /∈ Γ, ∆ in rule R⊃).

Initial sequents

x 6 y, x : P, Γ→ ∆, y : P

Logical Rules

x : A, x : B, Γ→ ∆
x : A & B, Γ→ ∆

L&
Γ→ ∆, x : A Γ→ ∆, x : B

Γ→ ∆, x : A & B
R&

x : A, Γ→ ∆ x : B, Γ→ ∆
x : A ∨B, Γ→ ∆

L∨
Γ→ ∆, x : A, x : B

Γ→ ∆, x : A ∨B
R∨

x 6 y, x : A ⊃ B, Γ→ ∆, y : A x 6 y, x : A ⊃ B, y : B, Γ→ ∆
x 6 y, x : A ⊃ B, Γ→ ∆

L⊃

x : ⊥, Γ→ ∆
L⊥

x 6 y, y : A, Γ→ ∆, y : B

Γ→ ∆, x : A ⊃ B
R⊃

Mathematical Rules

x 6 x, Γ→ ∆
Γ→ ∆

Ref6
x 6 z, x 6 y, y 6 z, Γ→ ∆

x 6 y, y 6 z, Γ→ ∆
Trans6

Full monotonicity of forcing is obtained by the following:

Lemma 3.2. All sequents of the form

1. x 6 y, x : A, Γ→ ∆, y : A

2. x : A, Γ→ ∆, x : A

are derivable in G3I.

Proof. See the proof of Lemma 12.25 of Negri and von Plato (2011). QED

9



System G3I enjoys all the structural properties usually required of sequent systems and the
same holds for each extension G3I* with rules that follow the regular or the geometric rule
scheme.

Theorem 3.3. In G3I* the following hold:

1. All logical rules are hp-invertible.

2. The rules of left and right weakening and contraction are hp-admissible.

3. Cut is admissible.

Proof. See the proofs of Theorems 12.27–12.29 of Negri and von Plato (2011). QED

For our purposes, the most remarkable extension of G3I is obtained by imposing symmetry of
the accessibility relation

y 6 x, x 6 y, Γ→ ∆
x 6 y, Γ→ ∆

Sym6

This extension gives a system equivalent to classical logic and we shall refer to it as G3C. Given
that G3C is an extension of G3I with a rule that follows the regular rule scheme, it admits
cut elimination by Theorem 3.3.

3.2 Intuitionistic bimodal logic

Another way to extend G3I is to augment the language. As we have said, the formulation of
the Church-Fitch paradox requires two modalities, K and ♦. The corresponding accessibility
relations in Kripke semantics are RK and R♦, and the behaviour of these two modal operators
is captured by the following valuation clauses:

x  KA if and only if for all y, xRKy implies y  A

x  ♦A if and only if for some y, xR♦y and y  A

Each definition can be unfolded in the necessary and sufficient conditions and converted into
the following sequent rules, with the condition y 6= x, y /∈ Γ, ∆ for RK and L♦:

y : A, xRKy, x : KA, Γ→ ∆
xRKy, x : KA, Γ→ ∆

LK
xRKy, Γ→ ∆, y : A

Γ→ ∆, x : KA
RK

xR♦y, y : A, Γ→ ∆
x : ♦A, Γ→ ∆

L♦
xR♦y, Γ→ ∆, x : ♦A, y : A

xR♦y, Γ→ ∆, x : ♦A
R♦

Unlike for the extension with Sym6, in the presence of the new rules it is not guaranteed that
Theorem 3.3 is still valid. Moreover, we need to prove that the full monotonicity property
(Lemma 3.2) extends also to modal formulas. Indeed, it is easy to see that if the standard rules
for K and ♦ are used, Lemma 3.2 does not hold. A possible way out has been found in Božić
and Došen (1984) by requiring that models satisfy the extra conditions
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MonK ∀x∀y∀z(x 6 y & yRKz ⊃ xRKz)

Mon♦ ∀x∀y∀z(x 6 y & xR♦z ⊃ yR♦z)

Observe that these conditions state that the following diagrams can be completed (the com-
pleting arrows are the dotted ones):

x

y z

6
RK

RK

x

y z

6
R♦

R♦

Conditions MonK and Mon♦ are universal axioms and by applying the method of conversion
of axioms into sequent rules they become:

xRKz, x 6 y, yRKz, Γ→ ∆
x 6 y, yRKz, Γ→ ∆

MonK
yR♦z, x 6 y, xR♦z, Γ→ ∆

x 6 y, xR♦z, Γ→ ∆
Mon♦

We shall call G3IK♦ the extension of G3I with rules LK, RK, L♦, R♦, MonK, Mon♦.

Monotonicity of forcing can now be extended to cover also modal formulas:

Lemma 3.4. All sequents of the forms

x 6 y, x : KB, Γ→ ∆, y : KB and x 6 y, x : ♦B, Γ→ ∆, y : ♦B

are derivable in G3IK♦.

Proof. See Appendix C. QED

The above, together with Lemma 3.2, gives monotonicity for arbitrary formulas:

Lemma 3.5. All sequents of the forms

1. x 6 y, x : A, Γ→ ∆, y : A

2. x : A, Γ→ ∆, x : A

are derivable in G3IK♦.
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3.2.1 Admissibility of the structural rules

In this section we shall prove admissibility of all the structural rules for system G3IK♦.

Because of the presence of labels in the language, we need an auxiliary result concerning their
substitution:

Lemma 3.6. The rule of substitution for labels

Γ→ ∆
Γ(y/x)→ ∆(y/x)

Subst

is hp-admissible in G3IK♦.

Proof. See Appendix C. QED

Proposition 3.7. The rules of weakening

Γ→ ∆
x : A, Γ→ ∆

L-Wk
Γ→ ∆

Γ→ ∆, x : A
R-Wk

Γ→ ∆
xRy, Γ→ ∆

L-WkR

are hp-admissible in G3IK♦.

Proof. See Appendix C. QED

Lemma 3.8. All the rules of G3IK♦ are hp-invertible.

Proof. See Appendix C. QED

Now we are in a position to prove the most important structural property of our calculi besides
cut-admissibility, namely hp-admissibility of the rules of contraction.

Theorem 3.9. The following rules of contraction

x : A, x : A, Γ→ ∆
x : A, Γ→ ∆

L-Ctr
Γ→ ∆, x : A, x : A

Γ→ ∆, x : A
R-Ctr

xRy, xRy, Γ→ ∆
xRy, Γ→ ∆

L-CtrR

are hp-admissible in G3IK♦.

Proof. See Appendix C. QED

Theorem 3.10. The rule of cut

Γ→ ∆, x : A x : A, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
Cut

is admissible in G3IK♦.

Proof. See Appendix C. QED

Observe that all the above structural results that have been established for G3IK♦ hold also
for any of its extensions with frame rules that follow the regular or geometric rule scheme.
The details can be easily spelled out following the general pattern of the parallel results for
extensions of basic modal logic in Negri (2005).
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3.2.2 Completeness

There are three main methods for proving Kripke completeness of a sequent system: One is the
indirect method that establishes an equivalence with an axiomatic system known to be complete
with respect to a certain class of frames. The second is through Henkin sets with the canonical
frame construction, and the third by a direct method that shows how root-first proof search
in the sequent system either gives a proof or leads to a countermodel. By the results of the
previous section, the sequent system we have presented for intuitionistic bimodal logic is closed
under the rules of modus ponens and necessitation and allows to derive the axioms of a standard
axiomatic presentation. Instead of going into the details of this completeness proof or of the
tour de force through Henkin set contructions, we shall sketch the direct completeness proof,
along the lines of Negri (2009). It is the method that will make possible proofs of underivability
and constructions of countermodels in what follows.

Definition 3.11. Let K be a frame with the accessibility relations 6, RK, and R♦ that satisfy the
properties Ref6, Trans6, MonK, Mon♦. Let W be the set of variables (labels) used in derivations
in G3IK♦. An interpretation of the labels W in a frame K is a function [[·]] : W → K. A
valuation of atomic formulas in frame K is a map V : AtFrm → P(K) that assigns to each
atom P the set of nodes of K in which P holds. The standard notation for k ∈ V(P ) is k  P .

Valuations are extended to arbitrary formulas by the following inductive clauses:

k  ⊥ for no k,

k  A&B if k  A and k  B,

k  A ∨B if k  A or k  B,

k  A ⊃ B if for all k′, from k 6 k′ and k′  A follows k′  B,

k  KA if for all k′, from kRKk′ follows k′  A,

k  ♦A if there exists k′ such that kR♦k
′ and k′  A.

Definition 3.12. A sequent Γ → ∆ is valid for an interpretation and a valuation in K if for
all labelled formulas x : A and relational atoms y 6 z, y′RKz′, y′′R♦z

′′ in Γ, whenever [[x]]  A
and [[y]] 6 [[z]], [[y′]]RK[[z′]], [[y′′]]R♦[[z′′]] in K, then for some w : B in ∆, [[w]]  B. A sequent is
valid if it is valid for every interpretation and every valuation in a frame.

Theorem 3.13 (Soundness). If the sequent Γ→ ∆ is derivable in G3IK♦, it is valid in every
frame with the properties Ref6, Trans6, MonK, Mon♦.

Proof. See Appendix D. QED

Next, we show that derivability of a formula in the calculus is equivalent to validity, that is,
validity at an arbitrary world for an arbitrary valuation. The latter is expressed by x  A
where x is arbitrary, and it is translated into a sequent → x : A in our calculus. The rules
of the calculus applied backwards give equivalent conditions until the atomic components of A
are reached. It can happen that we find a proof, or that we find that a proof does not exist
either because we reach a stage where no rule is applicable, or because we go on with the search
forever. In the two latter cases the attempted proof itself gives directly a countermodel.

Theorem 3.14. Let Γ → ∆ be a sequent in the language of G3IK♦. Then either the sequent
is derivable in G3IK♦ or it has a Kripke countermodel with properties Ref6, Trans6, MonK,
Mon♦.
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Proof. See Appendix D. QED

The above theorem immediately yields the following

Corollary 3.15 (Completeness). If a sequent Γ → ∆ is valid in every Kripke model with the
frame properties Ref6, Trans6, MonK, Mon♦, it is derivable in G3IK♦.

This result can be directly generalized, by an adaptation of the proof in Negri (2009), to every
system obtained by extending G3IK♦ with frame rules that follow the geometric rule scheme.
It is easy to check that the addition of frame rules does not change the structure of the proof
of Theorem 3.14.

4 Digression: A conceptual analysis of accessibility relations

Before proceeding to the structural analysis of the Church-Fitch paradox by our labelled calcu-
lus, we shall outline a conceptual analysis of the accessibility relations introduced in the previous
section. This will serve both as an explanation of the notions used, as well as a justification of
the formal choices made in defining system G3IK♦.

First, the relation 6 is the standard accessibility relation for the semantics of intuitionistic logic.
Its intuitive meaning is clarified in Kripke (1965, pp. 98–99). Because worlds in a model can be
identified with the propositions true in them, the relation gets the following intuitive meaning:
A world y is 6-accessible from a world x if y is a possible development of the information
contained in x. Under this interpretation, worlds are recognized as temporal states in a process
of acquisition of information. The properties of reflexivity and transitivity of the preorder thus
appear obvious, whereas monotonicity of forcing reflects the requirement that the acquisition
of information is a cumulative process.

When agents who can gain knowledge are added to the scenario, epistemic operators together
with their accessibility relations are needed. Here we have considered just one (impersonal
and generic) epistemic attitude, K, with the accessibility relation RK. The question naturally
arises of what the relation should be between RK and 6. A minimal requirement is that, in the
language extended with formulas as KA, monotonicity of forcing is preserved: The perfect recall
should apply to all formulas, not just to the purely propositional ones and this is achieved by
imposing the property MonK. On the other hand, factivity of knowledge, i.e., axiom KA ⊃ A,
which is explicitly assumed in Fitch’s derivation, is ensured by reflexivity of RK. This axiom
states that only true formulas can be known and separates knowledge from what is mere belief.
As observed by Pierluigi Minari (personal communication) in intuitionistic frames the weaker
property W-RefK ∀x∃y(xRKy & y 6 x) suffices to characterize factivity of K. A similar weaker
property W-Ref♦ ∀x∃y(xR♦y & x 6 y) characterizes A ⊃ ♦A. Our results continue to hold with
W-RefK and W-Ref♦ in place of RefK and Ref♦; the latter are however simpler to handle because
the corresponding sequent calculus rules do not involve eigenvariables.

Monotonicity and reflexivity of RK imply that what is temporally accessible is also epistemically
accessible, i.e., the condition ∀x∀y(x 6 y ⊃ xRKy) holds (see the first part of the proof of
Proposition 5.16 below). Notice that this implication does not exclude the possibility of the
existence of epistemically accessible states that are not future states. Our analysis will show that
if this existence is explicitly imposed, i.e., if ∃x∃y(xRKy & x 66 y) holds, then the identification
of truth and knowledge is avoided (cf. Proietti 2011).

Similar formal requirements apply to the accessibility relation R♦, a relation that expresses
logical possibility. A state y is R♦-accessible from x when y is logically compatible with x, in
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the sense that y is a state that can in principle be reached from x, even if we cannot specify the
nature of this access (temporal, causal, epistemic, etc.). Note that this relation is temporally
upward closed: If a state z is possibly reached from x, then z is possibly reached from all the
future states of x. We do not want to commit ourselves in any way to assuming more than the
necessary properties of R♦, in particular we do not identify it with any other of the accessibility
relations considered. A different choice is pursued in Proietti (2011) and in Artemov and
Protopopescu (2011), where the intuitionistic double negation gets interpreted as a possibility
operator, leading to a reformulation of the knowability principle that employs only the epistemic
modality.

The above interpretations also allow to capture the temporal flavor ascribed to the knowledge
operator in Fitch’s original article. Its core result, Theorem 5, is based on the existence of “some
true proposition which nobody knows (or has known or will know) to be true” (Fitch 1963, p.
139). The temporal interpretation of 6 suggests that the statement KA has to be evaluated
in all situations temporally accessible from x, where x can be considered as the actual world,
but also as a past world, or better, x can be considered as any world in which A is true. More
generally, the structural reconstruction of Fitch’s derivation will reveal that every occurrence
of KA is always in the scope of a negation or of an implication. Therefore, reasoning root
first, the application of a K-rule is always preceded by an application of a rule that imposes a
temporal-dependent evaluation of KA.

5 Proof-theoretical analysis of the Church-Fitch paradox

We have now all the logical instruments needed for a structural proof analysis of the paradox.
We start with the reconstruction of the standard derivation of the paradox that uses the labelled
sequent calculus introduced in Section 3.2.

5.1 The Church-Fitch paradox in labelled sequent calculus

The analysis of Section 2 made clear what the ingredients of the Church-Fitch paradox are:

(i) Distributivity of K over conjunction, K(A & B) ⊃ KA &KB,

(ii) Factivity of knowledge, KA ⊃ A.

Property (i) holds for operators that satisfy necessitation and the normality axiom in any system
for normal modal logic. Factivity of knowledge is guaranteed by reflexivity of the accessibility
relation, i.e., xRKx, for all possible worlds x. Through the method of conversion of axioms into
sequent rules we obtain the following:

xRKx, Γ→ ∆
Γ→ ∆

RefK

Axiom T is shown derivable by this rule.

Properties (i) and (ii) are provable in G3IK♦ and in G3IK♦+RefK, respectively. The following
two lemmas single out the special instances of (i) and (ii) that are needed in the proof of the
Church-Fitch paradox:

Lemma 5.1. The following sequents are derivable in G3IK♦:
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1. x : K(A &¬KA)→ x : KA

2. x : K(A &¬KA)→ x : K¬KA

Lemma 5.2. The sequent x : K¬KA→ x : ¬KA is derivable in G3IK♦ + RefK.

Proof. By the derivation

Lemma 3.5
x : ¬KA, xRKx, x : K¬KA→ x : ¬KA

xRKx, x : K¬KA→ x : ¬KA
LK

x : K¬KA→ x : ¬KA
RefK

QED

No further explicit conditions beyond R♦, L♦, and Mon♦ need be imposed on ♦ to reconstruct
the standard proof of the Church-Fitch paradox.

By a proof analogous to that of Lemma 2.2, we have:

Lemma 5.3. The following rule

→ x : A &¬KA ⊃ ♦K(A &¬KA)
x 6 y, y : A &¬KA→ y : ♦K(A &¬KA)

Inv

is derivable in G3IK♦ + Cut.

The use of classical logic is a further requirement for obtaining the standard proof of OP. In
particular, the following lemma has to be proved.

Lemma 5.4. The sequent x : ¬(A &¬KA)→ x : A ⊃ KA is derivable in G3CK♦.

Proof. By root-first proof search from the sequent to be derived. Note that the proof is classical
because it makes appeal to a non-eliminable application of rule Sym. QED

We have now all the information that is needed to reconstruct the standard derivation of the
Church-Fitch paradox.

Theorem 5.5. Fitch’s paradox. The sequent→ x : A ⊃ KA is derivable in G3CK♦+RefK+
Cut + KP.

Proof. By the following derivation:

KP
→ x : A &¬KA ⊃ ♦K(A &¬KA)

x 6 y, y : A &¬KA→ y : ♦K(A &¬KA)
Inv

Lemma 5.1

z : K(A &¬KA)→ z : KA

yR♦z, z : K(A &¬KA)→ z : KA, y : ⊥
R-Wk

Lemma 5.1

z : K(A &¬KA)→ z : K¬KA
Lemma 5.2

z : K¬KA→ z : ¬KA

z : K(A &¬KA)→ z : ¬KA
Cut

z 6 y, z : K(A &¬KA), y : KA→ y : ⊥
R⊃Inv

y : ⊥ →
L⊥

z 6 y, z : K(A &¬KA), y : KA→
Cut

z 6 z, z : K(A &¬KA), z : KA→
Subst z/y

z 6 z, yR♦z, z : K(A &¬KA)→ y : ⊥
Cut

yR♦z, z : K(A &¬KA)→ y : ⊥
Ref6

y : ♦K(A &¬KA)→ y : ⊥
L♦

x 6 y, y : A &¬KA→ y : ⊥
Cut

→ x : ¬(A &¬KA)
R⊃

Lemma 5.4

x : ¬(A &¬KA)→ x : A ⊃ KA

→ x : A ⊃ KA
Cut
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The applications of the rule of weakening are eliminable by pushing them up to the initial
sequents of the derivations used for the proof of Lemma 5.1.

QED

Theorem 5.5 states a derivability result: There is a derivation of OP from KP by means of the
rules of G3CK♦ + Ref K+Cut:

`G3CK♦+Ref K+Cut+KP → x : A ⊃ KA (1)

In this result, KP plays the role of a derivation principle, similar to a zero-premiss inference
rule; nonetheless, a crucial difference remains. On the one hand, the inference rules are valid
in the sense that they respect the deductive harmony imposed by the inversion principle, as it
is stated in Negri and von Plato (2001, p. 6). On the other hand, the validity of KP is fixed
by stipulation, because, at the syntactical level, there is nothing that differentiates KP from
another sentence of the bimodal language under analysis. A crucial step of our work will be to
understand which class of relational structures KP singles out, so to determine as well in which
class of models KP can be considered as formally true.

5.2 Structural analysis of the Church-Fitch paradox

There are two special aspects of the proof of Theorem 5.5:

1. The instance of KP appears in the derivation in the form of an axiomatic sequent → A.4

2. The proof uses cuts.

The presence of cuts makes it difficult to point out where the paradox arises from, in the
first place because the structure of such derivations is not transparent. Secondly, by a thesis
of Tennant’s, a paradox is a non-normal derivation the normalization of which enters into
a loop (Tennant 1982). In sequent calculus, the notion of normalization is replaced by cut
elimination that becomes the essential means for analyzing the precise nature of the paradox,
and for distinguishing the case of a derivation without eliminability of cut from that of a
fallacy, in which latter the assumption and the paradoxical conclusion are equivalent principles.
Applying the cut elimination procedure for G3CK♦+ Ref K to our derivation of OP, we obtain
the following derivation in which, to save space, we have abbreviated as KP (A) the formula
(A &¬KA) ⊃ ♦K(A &¬KA):

KP
→ x : KP (A)

....
S1

....
S2

x 6 y, yRKz, x : KP (A), y : A→ z : A
L⊃

x 6 y, x : KP (A), y : A→ y : KA
RK

x : KP (A)→ x : A ⊃ KA
R⊃

→ x : A ⊃ KA
Cut

The right premiss S2 of L⊃ is derivable as follows:
4Cf. Definition 6.3.1(a) in Negri and von Plato (2001, p. 134).
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Lemma 3.5
x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, t : A, t : ¬KA, w : K(A &¬KA), x : KP (A), y : A→ z : A, t : A

x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, t : A &¬KA, w : K(A &¬KA), x : KP (A), y : A→ z : A, t : A
L&

x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, w : K(A &¬KA), x : KP (A), y : A→ z : A, t : A
LK

x 6 y, yRKz, yR♦w, wRKw, w : A, w : K(A &¬KA), x : KP (A), y : A→ z : A, w : KA
RK

x 6 y, yRKz, yR♦w, wRKw, w : A, w : ¬KA, w : K(A &¬KA), x : KP (A), y : A→ z : A
L⊃

x 6 y, yRKz, yR♦w, wRKw, w : A &¬KA, w : K(A &¬KA), x : KP (A), y : A→ z : A
L&

x 6 y, yRKz, yR♦w, wRKw, w : K(A &¬KA), x : KP (A), y : A→ z : A
LK

x 6 y, yRKz, yR♦w, w : K(A &¬KA), x : KP (A), y : A→ z : A
RefK

x 6 y, yRKz, y : ♦K(A &¬KA), x : KP (A), y : A→ z : A
L♦

The right premiss of L⊃ in the derivation of S2 is derivable because it is an instance of L⊥, left
unwritten here. The left premiss S1 is derivable:

Lemma 3.5
x 6 y, yRKz, y : A→ z : A, y : A

Lemma 3.5
rRKz, x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA, z : A→ z : A, r :⊥

rRKz, x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA→ z : A, r :⊥ LK

x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA→ z : A, r :⊥
MonK

x 6 y, yRKz, y 6 r, y : A, r : KA→ z : A, r :⊥
Sym6

x 6 y, yRKz, y : A→ z : A, y : ¬KA
R⊃

x 6 y, yRKz, y : A→ z : A, y : A &¬KA
R&

There remains one application of Cut in the derivation. Unlike the other instances of Cut , the
last one is not eliminable because it depends on an instance of KP that behaves like a proper
axiom. We shall discuss this aspect later.

From the previous proof, just by ignoring the last step, we obtain the following result:

Proposition 5.6. The sequent

x : A &¬KA ⊃ ♦K(A &¬KA)→ x : A ⊃ KA

has a cut-free derivation in G3CK♦ + RefK.

The result can be stated briefly as follows:

OP is derivable from the special instance KP (A) of KP.

Moreover, we notice that classical logic is used only in the step of symmetry in the right branch of
the derivation S1. Therefore that branch, pruned just before the application of Sym6, suggests
a countermodel to the sequent of Proposition 5.6 in the intuitionistic system G3IK♦ + RefK:

Theorem 5.7. The sequent

x : A &¬KA ⊃ ♦K(A &¬KA)→ x : A ⊃ KA

is not derivable in G3IK♦ + RefK.
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Proof. Consider the model 〈W,6, RK, R♦,V〉 where W = {x, y, z, r}, x 6 y, y 6 r, x 6 r,
yRKz, xRKz, all the reflexivities for 6 and RK hold, and A is forced in y and in r but not in z.

A diagrammatic representation, with the omission of the reflexive arrows, takes the form

x

y y  A

z

z 1 A

r

r  A

66 RK

RK6

In this model, we have that x  A &¬KA ⊃ ♦K(A &¬KA) because y, r 6 A &¬KA. To see
why, just observe that r  KA and use the definitions to conclude that r, and therefore also y,
does not force ¬KA. On the other hand, x 6 A ⊃ KA because y  A but y 6 KA. QED

It is well known that one can obtain a derivation of the weak OP in the intuitionistic system.
More precisely, a cut-free derivation of WOP from the assumption KP (A) is obtained in our
system as follows:

Theorem 5.8. The sequent

x : A &¬KA ⊃ ♦K(A &¬KA)→ x : ¬(A &¬KA)

is derivable in G3IK♦ + RefK.

Proof. See Appendix E. QED

The countermodel of Theorem 5.7 shows, together with the completeness theorem, that the
classical version of the Church-Fitch paradox is not derivable in an intuitionistic setting, thus
seemingly confirming the thesis that intuitionistic logic saves anti-realism from the threat of the
paradox (Williamson 1982).

To say that KP implies OP does not require that there is a deduction from a special instance
of KP to the conclusion OP, as in Proposition 5.6. In fact, the admission of the knowability
principle corresponds to the assumption that KP is generally valid, instead of the assumption
of just a particular instance. Therefore, the following admissibility statement should be put
under analysis:

If KP is valid, then also OP is valid. (2)

Merely to show that OP does not follow intuitionistically from a particular instance of KP is not
sufficient for establishing that OP is not derivable in an intuitionistic system that incorporates
KP as a derivation principle. In other words, the countermodel given in the proof of Theorem
5.7 is not sufficient for showing that (2) does not hold in an intuitionistic setting. An analogy
from propositional logic may clarify this point: The law of double negation ¬¬A ⊃ A follows
from the principle of excluded middle, A ∨ ¬A, in the sense that there is an intuitionistic
derivation of (A ∨ ¬A) ⊃ (¬¬A ⊃ A). The converse (¬¬A ⊃ A) ⊃ (A ∨ ¬A) instead is not
intuitionistically derivable even if the two principles give equivalent extensions of intuitionistic
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logic. However, A∨¬A follows from a particular instance of the law of double negation, namely
¬¬(A ∨ ¬A) ⊃ (A ∨ ¬A).

In conclusion, the cut-free analysis we have made suffices to establish intuitionistic underivability
of OP from a particular instance of KP. The latter does not exclude, however, the derivability
of OP from other instances of KP, a question to which a definite answer is given in the next
section.

5.3 Proof analysis of KP

We proceed to find a frame property that is necessary and sufficient for the validity of KP.
First, we use our calculus to single out frame rules that suffice for a derivation of KP. Then we
extract from these rules a frame property and show that it is necessary and sufficient to validate
KP.

We start root first from the sequent to be derived. Observe that the only applicable rule is
R ⊃. Next, for the proof search to continue, to be able to apply R♦ it is necessary to have
an R♦-accessibility. The only rules that make available such a relational atom in the absence
of other R♦-atoms are Ser♦ and Ref♦. Ser♦ is derivable from Ref♦, and to make the set of
assumptions on the accessibility relations minimal, we choose the former. Notice that Ser♦ has
the variable restriction that y must not occur in the conclusion. After that, the only applicable
rule is RK. An initial sequent is then obtained if a rule is used that adds the atom y 6 w,
indicated by ♦K-Tr:

x 6 y, y 6 w, yR♦z, zRKw, y : A→ y : ♦KA, w : A

x 6 y, yR♦z, zRKw, y : A→ y : ♦KA, w : A
♦K-Tr

x 6 y, yR♦z, y : A→ y : ♦KA, z : KA
RK

x 6 y, yR♦z, y : A→ y : ♦KA
R♦

x 6 y, y : A→ y : ♦KA
Ser♦

→ x : A ⊃ ♦KA
R⊃

This derivation would seem to suggest that the frame properties needed are those that corre-
spond to the two extra-logical rules used, namely,

xR♦y, Γ→ ∆
Γ→ ∆

Ser♦
x 6 z, xR♦y, yRKz, Γ→ ∆

xR♦y, yRKz, Γ→ ∆
♦K-Tr

Rule Ser♦ has the variable condition that y /∈ Γ, ∆, which corresponds to an existential condi-
tion, whereas rule ♦K-Tr corresponds to a universal one:

∀x∃y . xR♦y Ser♦

∀y∀z∀w(yR♦z & zRKw ⊃ y 6 w) ♦K-Tr

The universal frame property ♦K-Tr is, however, too strong: The instance of rule ♦K-Tr used
in the derivation of KP is not applied, root first, to an arbitrary sequent, but to one in which
the middle term is the eigenvariable introduced by Ser♦. The requirement that ♦K-Tr has to
be applied above Ser♦ and that the middle term of ♦K-Tr is the eigenvariable of Ser♦, is the
side condition of the rule.

Thus the following frame property can be read off from the derivation of KP:
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∀x∃y(xR♦y &∀z(yRKz ⊃ x 6 z)) KP-Fr

It is easy to show that KP-Fr is derivable in a G3-sequent system for intuitionistic first-order
logic extended by the two rules Ser♦ and ♦K-Tr:

xR♦y → xR♦y

x 6 z, xR♦y, yRKz → x 6 z

xR♦y, yRKz → x 6 z
♦K-Tr

xR♦y → yRKz ⊃ x 6 z
R⊃

xR♦y → ∀z(yRKz ⊃ x 6 z)
R∀

xR♦y → xR♦y &∀z(yRKz ⊃ x 6 z)
R&

xR♦y → ∃y(xR♦y &∀z(yRKz ⊃ x 6 z))
R∃

→ ∃y(xR♦y &∀z(yRKz ⊃ x 6 z))
Ser♦

→ ∀x∃y(xR♦y &∀z(yRKz ⊃ x 6 z))
R∀

Observe that the side condition on the application of ♦K-Tr is respected. Conversely, any
derivation that uses the rules Ser♦ and ♦K-Tr in compliance with the side condition, can be
transformed into a derivation that uses cuts with KP-Fr. If rule ♦K-Tr is used, it is followed
by Ser♦ because of the side condition, and the derivation contains a subderivation of the form

x 6 z, xR♦y, yRKz, Γ′ → ∆′

xR♦y, yRKz, Γ′ → ∆′
♦K-Tr

....
D....

xR♦y, Γ→ ∆
Γ→ ∆

Ser♦

We transform it as follows:

→ ∀x∃y(xR♦y &∀z(yRKz ⊃ x 6 z))

yRKz, yRKz ⊃ x 6 z → x 6 z x 6 z, xR♦y, yRKz, Γ′ → ∆′

xR♦y, yRKz, yRKz, yRKz ⊃ x 6 z, Γ′,→, ∆′
Cut

xR♦y, yRKz, yRKz ⊃ x 6 z, Γ′,→, ∆′
Ctr

xR♦y, yRKz,∀z(yRKz ⊃ x 6 z), Γ′,→, ∆′
L∀

....
D′....

xR♦y,∀z(yRKz ⊃ x 6 z), Γ→ ∆
xR♦y &∀z(yRKz ⊃ x 6 z), Γ→ ∆

L&

∃y(xR♦y &∀z(yRKz ⊃ x 6 z), Γ→ ∆
L∃

∀x∃y(xR♦y &∀z(yRKz ⊃ x 6 z), Γ→ ∆
L∀

Γ→ ∆
Cut

Here D′ is obtained by adding ∀z(yRKz ⊃ x 6 z) to all the antecedents of the sequents in D.
If rule Ser♦ is used alone, namely without occurrences of ♦K-Tr above it, the conversion is
obtained through L∃ applied on the premiss of Ser♦ and a cut with → ∀x∃yxR♦y; the latter
follows from → ∀x∃y(xR♦y &∀z(yRKz ⊃ x 6 z)). We therefore conclude:

Proposition 5.9. The system with rules ♦K-Tr and Ser♦ that respect the side condition is a
cut-free equivalent of the system that uses KP-Fr as an axiomatic sequent in addition to the
structural rules.
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The rules that correspond to KP-Fr do not follow the geometric rule scheme. However, all the
structural rules are still admissible in the presence of such rules. In particular, cut elimination
holds and the proof follows the pattern of 3.10.

Theorem 5.10. The rule of cut

Γ→ ∆, x : A x : A, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
Cut

is admissible in G3IK♦ + RefK extended by Ser♦ and ♦K-Tr.

Proof. Suppose that one of the premisses of cut has been derived by ♦K-Tr followed by Ser♦
and that the middle term of the former disappeared by an application of the latter. We have

Γ→ ∆, x : A

y 6 z, xR♦y, yRKz, Γ′′ → ∆′′

xR♦y, yRKz, Γ′′ → ∆′′
♦K-Tr

........
x : A, xR♦y, Γ′ → ∆′

x : A, Γ′ → ∆′
Ser♦

Γ, Γ′ → ∆, ∆′
Cut

Observe that by hp-admissibility of substitution (Lemma 3.6) we can assume without loss of
generality that the variable y does not occur in the left premiss of cut. The derivation is
transformed into the following in which the application of cut is of lower height and therefore
eliminable by the inductive hypothesis:

Γ→ ∆, x : A

x 6 z, xR♦y, yRKz, Γ′′ → ∆′′

xR♦y, yRKz, Γ′′ → ∆′′
♦K-Tr

........
x : A, xR♦y, Γ′ → ∆′

xR♦y, Γ, Γ′ → ∆, ∆′
Cut

Γ, Γ′ → ∆, ∆′
Ser♦

QED

It is worth noting that the acceptance KP as valid implicitly forces us to accept some properties
of the operator ♦, in particular, the derivability of A ⊃ ♦A.

Proposition 5.11. The sequent → x : A ⊃ ♦A is derivable in G3IK♦+RefK+Ser♦+♦K-Tr.

Proof. We have the following derivation:

y 6 z, zRKz, yR♦z, x 6 y, y : A→ y : ♦A, z : A

zRKz, yR♦z, x 6 y, y : A→ y : ♦A, z : A
♦K-Tr

yR♦z, x 6 y, y : A→ y : ♦A, z : A
RefK

yR♦z, x 6 y, y : A→ y : ♦A
R♦

x 6 y, y : A→ y : ♦A
Ser♦

→ x : A ⊃ ♦A
R⊃

Observe that the side condition on ♦K-Tr is respected. QED
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In monomodal systems, the axiom scheme A ⊃ ♦A is characterized by reflexive frames, i.e.,
frames in which ∀x . xR♦x holds. This is not any longer the case in multimodal systems. The
above proposition shows, in fact, that the reflexivity of R♦ is a sufficient, but not a necessary,
condition for the validity of A ⊃ ♦A. We have a derivation of a purely alethic property that
uses properties of the global system, in particular, of the epistemic accessibility relation, thus
a non-conservativity of the whole system with respect to the system without K; To restore
conservativity, we add to our set of rules the rule of reflexivity of the alethic accessibility
relation:

xR♦x, Γ→ ∆
Γ→ ∆

Ref♦

With Ref♦ at our disposal, it becomes clear why the unrestricted ♦K-Tr is too strong: In fact,
together with reflexivity of R♦ it would collapse our intuitionistic system into a classical one
because it would permit to derive symmetry of 6, as in

y 6 x, yR♦x, xRKx, x 6 y, xR♦x→ y 6 x

yR♦x, xRKx, x 6 y, xR♦x→ y 6 x
♦K-Tr

yR♦x, x 6 y, xR♦x→ y 6 x
RefK

x 6 y, xR♦x→ y 6 x
Mon♦

x 6 y → y 6 x
Ref♦

The derivation of the knowability principle in G3IK♦ + RefK + Ser♦ +♦K-Tr guarantees that
the two rules are strong enough to capture the force of KP but does not yet permit to conclude
that KP-Fr is the characterizing frame property of KP. This latter is achieved by the following:

Proposition 5.12. The property KP-Fr is necessary and sufficient to validate KP in intu-
itionistic bimodal frames.

Proof. For sufficiency, it is enough to use the standard definition of forcing in Kripke models.
Let x be a world in a frame. To show x  A ⊃ ♦KA, let y be such that x 6 y, and suppose
y  A. By KP-Fr and monotonicity of forcing, y  ♦KA.

For necessity, we reason by contraposition. Consider an arbitrary frame and suppose that
KP-Fr does not hold in it, i.e., that the following holds:

∃x∀y(xR♦y ⊃ ∃z(yRKz & x 
 z))

Let P be an arbitrary atomic formula. We can define a valuation that respects monotonicity
by imposing the forcing of P in x, but not in z:

xx  P

y z z 6 P

R♦

RK




Here x  P but x 6 ♦KP , so this is a countermodel to KP. QED

We have achieved by our analysis a correspondence between the knowability principle in the
form of the bimodal axiom KP and the frame property KP-Fr. We have also shown that KP-
Fr is equivalent to the two rules ♦K-Tr and Ser♦ used in compliance with a side condition. By
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this equivalence, the system obtained by the addition of suitable combinations of these two rules
provides a complete contraction- and cut-free system for intuitionistic bimodal logic extended
by KP. We shall call it knowability logic, to be indicated by G3KP. Thus, G3KP is defined
as G3IK♦ + RefK + Ser♦ + ♦K-Tr with the side condition added.

By KP-Fr, we can establish the following result:

Proposition 5.13. There exists an intuitionistic frame that validates KP, but not OP.

Proof. Take the frame with three worlds, x, y, and z such that xR♦y, x 6 y, and xRKz. The
only RK and R♦-accessibilities from y and z are the reflexive ones:

x

x  P

y z

R♦ 6

RK

RK R♦ RK R♦

The frame respects condition KP-Fr and therefore validates KP (this can be checked also
directly). On the other hand, the valuation defined by x  P and z 6 P shows that x 6 P ⊃ KP .

QED

This result shows that the admissibility statement (2) of Section 5.2 does not hold for intu-
itionistic logic. Our proof system gives a confirmation for this semantic argument through a
syntactic criterion, a failed exhaustive proof search.

To show that OP is not derivable in G3KP, care is needed with the use of labels. Consider
the following attempt:

y 6 z, x 6 y, yR♦y, yRKz, y : A→ z : A

x 6 y, yR♦y, yRKz, y : A→ z : A
♦K-Tr

x 6 y, yR♦y, y : A→ y : KA
RK

x 6 y, y : A→ y : KA
Ref♦

→ x : A ⊃ KA
R⊃

This would seem to be a derivation of OP, in contrast to what one would expect from the
semantic argument above. Here, similarly to what happened in the derivation of symmetry,
the application of ♦K-Tr is not correct because the eigenvariable (here y) appears also where it
shouldn’t, namely as a first argument of R♦, in the preorder atom, and in two labelled formulas.
The variable condition expresses formally that rule ♦K-Tr should consider the most general R♦
accessibility; by admitting only the reflexive one, actuality and possibility are conflated with
the “the mystery of the disappearing diamond” (Jenkins 2009) as a consequence. Replacing
reflexivity with seriality, the search turns into

....
x 6 y, yR♦z, yRKw, y : A→ w : A

x 6 y, yR♦z, y : A→ y : KA
RK

x 6 y, y : A→ y : KA
Ser♦

→ x : A ⊃ KA
R⊃
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Rule ♦K-Tr is no longer applicable because the upper sequent in the attempted proof does
not match its conclusion. The only applicable rule is MonK that adds xRKw. The search is
exhaustive and we do not get what we would need to close it, namely the relational atom y 6 w.
The failed search can be used instead to extract a countermodel to OP. The accessibilities are
xRKw in addition to those in the antecedent of the upper sequent; A is forced at x and at y
but not at w. Clearly x 6 A ⊃ KA. By our analysis, the use of intuitionistic logic blocks the
paradox in general, not only the specific derivation that uses a special instance of the knowability
principle (see Theorem 5.7).

It is only in classical logic that the paradox may arise. The question remains as to whether the
Moore sentence A &¬KA is an essential ingredient of the paradox in its classical derivation. It is
a natural question, because of the attempts at circumventing the paradox through a limitation
of KP to certain classes of formulas that exclude seemingly pathological ones such as A &¬KA
(as in Dummett 2001).

Whether Moore sentences are indispensable in the derivation of OP can be determined by
a root-first proof search. The search in our calculus leads to a sufficient condition for the
derivation of OP, starting with the “compulsory” steps

....
yRKz, x 6 y, y : A→ z : A

x 6 y, y : A→ y : KA
RK

→ x : A ⊃ KA
R⊃

A correct derivation is obtained if the preorder atom y 6 z can be added, that is, ifK-accessibility
implies 6-accessibility, or, in other words, if we are allowed to use the following rule:

x 6 y, xRKy, Γ→ ∆
xRKy, Γ→ ∆

Know

The rule is the translation of the frame property

∀x∀y(xRKy ⊃ x 6 y) Know

As a diagram, it takes the form

x

y

RK 6

We then have

Proposition 5.14. Rule Know is admissible in G3CK♦ + RefK + Ser♦ + ♦K-Tr.
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Proof. Using admissibility of weakening, we have the derivation

x 6 y, xRKy, Γ→ ∆
x 6 y, z 6 x, x 6 z, xR♦z, zRKy, zRKz, xRKy, Γ→ ∆

L-WkR

z 6 x, x 6 z, xR♦z, zRKy, zRKz, xRKy, Γ→ ∆
♦K-Tr

z 6 x, x 6 z, xR♦z, zRKz, xRKy, Γ→ ∆
MonK

x 6 z, xR♦z, zRKz, xRKy, Γ→ ∆
Sym 6

xR♦z, zRKz, xRKy, Γ→ ∆
♦K-Tr

xR♦z, xRKy, Γ→ ∆
RefK

xRKy, Γ→ ∆
Ser♦

Observe that two applications of ♦K-Tr, with the same eigenvariable z, are used. This is a licit
use of the block of rules, because a double use of ♦K-Tr, followed by a step of seriality that
removes the eigenvariable, corresponds to a multiple discharge of the minor assumption in the
rule of elimination of the existential quantifier in natural deduction. QED

The derivation of OP can be given also directly in the system G3CK♦+ RefK+ Ser♦+♦K-Tr:

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, zRKw, y 6 w, y : A→ w : A

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, zRKw, y : A→ w : A
♦K-Tr

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, y : A→ w : A
MonK

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, y : A→ y : KA
RK

x 6 y, yR♦z, zRKz, y 6 z, y : A→ y : KA
Sym6

x 6 y, yR♦z, zRKz, y : A→ y : KA
♦K-Tr

x 6 y, yR♦z, y : A→ y : KA
RefK

x 6 y, y : A→ y : KA
Ser♦

→ x : A ⊃ KA
R⊃

There are no occurrences of Moore sentences in this derivation. Could we then conclude that
it is not necessary to appeal to them for the derivation of OP? Actually, the absence of Moore
sentences in this derivation is only fictitious, because KP-Fr has been identified by considering
all possible instances of KP and so, a fortiori, also the instances with Moore sentences. On
the contrary, allowing only a limited type of instances of KP, it could be the case that we are
restricting also the class of frames validating KP and that these particular frames would not
validate OP.

The cut-free derivation indicates that the source of the paradox has to be found in the joint use
of KP-Fr and classical logic. This means that KP is not per se paradoxical, but becomes so
when used in a classical frame. Moreover, it is possible to show in classical logic that if Ref♦
is included from the beginning in the derivation system (cf. the conservativity argument before
Proposition 5.12), then KP corresponds to the frame condition Know.

Proposition 5.15. The frame property Know is necessary and sufficient to validate KP in
classical bimodal frames that satisfy Ref♦.

Proof. Necessity can be proved by the following chain of implications: Validity of KP implies
validity of KP-Fr (Proposition 5.12); validity of KP-Fr implies admissibility of Ser♦ and
♦K-Tr with the side condition (Proposition 5.9); Ser♦ and ♦K-Tr with the side condition
imply admissibility of Know (Proposition 5.14).
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For sufficiency, consider the derivation

y 6 z, yRKz, yR♦y, x 6 y, y : A→ y : ♦KA, z : A

yRKz, yR♦y, x 6 y, y : A→ y : ♦KA, z : A
Know

yR♦y, x 6 y, y : A→ y : ♦KA, y : KA
RK

yR♦y, x 6 y, y : A→ y : ♦KA
R♦

x 6 y, y : A→ y : ♦KA
Ref♦

→ x : A ⊃ ♦KA
R⊃

QED

As we have seen, in classical logic Know is sufficient for deriving OP and even has the collapse
of truth and knowledge as a consequence:

Proposition 5.16. In G3CK♦ + RefK + Ref♦ + Know, the relations 6 and RK coincide.

Proof. To preserve the monotonicity of 6 in the presence of RK, we have assumed the validity
of MonK. By reflexivity of RK, MonK gives ∀x∀y(x 6 y ⊃ xRKy), i.e., 6 ⊆ RK. The other
direction of the inclusion, i.e., RK ⊆ 6, holds by Know. QED

We have thus shown that if R♦ is reflexive, truth and knowledge coincide in classical logic.
Therefore, in the standard classical presentation of Fitch’s paradox, the assumption KP is
semantically equivalent to OP.

Finally, let us consider the indispensability of the principle of factivity of knowledge in the
derivation of the Church-Fitch paradox. Mackie (1980) and Tennant (1997) have maintained
that the principle is not necessary, and that the paradox arises equally for belief-like notions.
That such is the case is confirmed by our analysis as follows: First it is seen that a knowability
principle for belief imposes the same frame condition as it did for knowledge: The characteriza-
tion result never employs the rule of reflexivity for epistemic accessibility. Then it can be shown
that a “belief omniscience” is derivable when reflexivity for knowledge accessibility is replaced
by seriality and transitivity for belief accessibility (the names of the rules are obtained from
those for K):

Proposition 5.17. The sequent → x : A ⊃ BA is derivable in G3CB♦ + SerB + TransB +
Ser♦ + ♦B-Tr .

Proof. By the derivation

y 6 t, w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, zRBt, yRBt, y : A→ t : A

w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, zRBt, yRBt, y : A→ t : A
♦B-Tr

w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, yRBt, y : A→ t : A
TransB

w 6 y, y 6 w, x 6 y, yR♦z, zRBw, yRBt, y : A→ t : A
MonB

y 6 w, x 6 y, yR♦z, zRBw, yRBt, y : A→ t : A
Sym6

y 6 w, x 6 y, yR♦z, zRBw, y : A→ y : BA
RB

x 6 y, yR♦z, zRBw, y : A→ y : BA
♦B-Tr

x 6 y, yR♦z, y : A→ y : BA
SerB

x 6 y, y : A→ y : BA
Ser♦

→ x : A ⊃ BA
R⊃

QED
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6 Final remarks

In Tennant (2009), the following is written about the prospects of a proof theory that covers the
Church-Fitch paradox: “We are still a long way, of course, from having a fully adequate proof-
theory governing the interaction among [the modalities involved] (let alone a formal semantics,
with respect to which one might be able to establish the soundness and completeness of whatever
proof system is devised)” (ibid., p. 237).

The proof systems G3IK♦ and G3CK♦ developed in this paper, with the analysis of the acces-
sibility relations 6, RK, and R♦ and the way they interact in formal proofs, offer an answer
to the first of Tennant’s issues. The completeness theorem with respect to Kripke semantics
for these calculi answers Tennant’s second issue. The results are here formulated for labelled
sequent calculi but can be adapted also to proof systems based on natural deduction.

Our work offers a new methodology for a general theory of knowability and, more broadly,
of logical epistemology. We have determined the first-order correspondents of modal axioms
on the basis of a root-first proof search in labelled sequent calculi for bimodal logic. The
correspondence results have a standing independent of the use of labelled calculi. Extending
a general Kripke completeness result, we have shown that the modal logic obtained by the
addition of the knowability principle is complete with respect to the class of frames that satisfy
the first-order frame condition which was determined by the procedure. The resulting calculi
are complete proof systems for knowability logic, both in a classical and in an intuitionistic
setting. The strong structural properties of these calculi make it possible to draw conclusions
not only about questions of derivability, but also about underivability of the paradox in precisely
defined formal systems of intuitionistic and classical bimodal logic. The crucial step here is the
conversion of a non-geometric axiom, the frame condition that corresponds to KP, into a system
of rules so as to achieve full control over derivations in intuitionistic bimodal logic extended by
the knowability principle.

Exploiting the frame property that corresponds to KP, our work goes a step further, namely
it shows that the use of intuitionistic logic for blocking the paradox succeeds: Not only is OP
intuitionistically underivable from KP instantiated with the Moore sentence, but OP is not
even intuitionistically admissible under KP. On the other hand, the paradox is indeed derivable
in classical logic: the standard proof is reconstructed in our analysis and converted into a cut-
free form. Nonetheless, we claim that this derivation is nothing else than a fallacious argument
in disguise: The reason is that KP and OP are semantically equivalent in a classical frame.

We thus have an argument in favor of the anti-realist position, provided that the formalization of
the knowability principle corresponds to KP. If anti-realism is conceived in a strict Dummettian
sense, then intuitionistic logic is already sufficient for blocking Fitch’s argument. Otherwise, if
a weaker anti-realism is embraced and accordingly classical logic is allowed, the paradox gets
reduced to a petitio principii.

The conversion of the frame property KP-Fr into a combination of rules governed by a side
condition follows the methodology of proof analysis in which universal and geometrical axioms
have been treated so far. It is a first successful attempt to extract a general method for
transforming a much wider type of mathematical axioms into a set of inference rules. From
this perspective, the proof-theoretical analysis of KP opens up promising possibilities also for
a more traditional type of foundational study.
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Appendices

A Proof of Lemma 2.2

By the two derivations

→ (A &¬KA) ⊃ ♦K(A &¬KA)

A→ A ¬KA→ ¬KA
A,¬KA→ A &¬KA

R&
♦K(A &¬KA)→ ♦K(A &¬KA)

A,¬KA, (A &¬KA) ⊃ ♦K(A &¬KA)→ ♦K(A &¬KA)
L⊃

A,¬KA→ ♦K(A &¬KA)
Cut

A,¬KA→ ¬KA

A &¬KA→ ¬KA
L&

K(A &¬KA)→ K¬KA
LR-K

A,¬KA→ A

A &¬KA→ A
L&

K(A &¬KA)→ KA
LR-K

KA,K¬KA→
K(A &¬KA),K¬KA→

Cut

K(A &¬KA)→
Cut

The topmost sequents, except the premisses of the rules in question, are derivable by Theorem
2.1.

B Proof of Lemma 2.3

The result is obtained through a failed proof-search procedure: Start a derivation tree with the
sequent P ⊃ ♦KP,Q ⊃ ♦KQ → P & Q ⊃ ♦K(P & Q) as a root and apply backwards all the
propositional rules:

Q ⊃ ♦KQ, P, Q→ ♦K(P & Q), P
♦KP, P, Q→ ♦K(P & Q), Q

....
♦KP,♦KQ, P, Q→ ♦K(P & Q)

♦KP,Q ⊃ ♦KQ, P, Q→ ♦K(P & Q)
L⊃

P ⊃ ♦KP,Q ⊃ ♦KQ, P, Q→ ♦K(P & Q)
L⊃

P ⊃ ♦KP,Q ⊃ ♦KQ, P & Q→ ♦K(P & Q)
L&

P ⊃ ♦KP,Q ⊃ ♦KQ→ P & Q ⊃ ♦K(P & Q)
R⊃
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Since the rules used are invertible, there is no need of backtracking. The left premisses of the
two steps of L⊃ are initial sequents, and therefore derivability of the sequent is equivalent to
derivability of the rightmost sequent, ♦KP,♦KQ, P, Q → ♦K(P & Q). Proof search for the
latter can be effected in two ways, depending on the choice of principal formula in LR-♦, each
followed by an application of LR-K. In one case it leads to the sequent Q → P & Q, in the
other to P → P & Q. Since both are underivable, the proof search fails.

C Structural properties of G3IK♦

C.1 Proof of Lemma 3.4

We have the following derivations for the former and the latter sequent, respectively:

Lemma 3.5
z 6 z, z : B, xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B

z : B, xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B
Ref6

xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B
LK

x 6 y, yRKz, x : KB, Γ→ ∆, z : B
MonK

x 6 y, x : KB, Γ→ ∆, y : KB
RK

Lemma 3.5
z 6 z, yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B, z : B

yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B, z : B
Ref6

yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B
R♦

x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B
Mon♦

x 6 y, x : ♦B, Γ→ ∆, y : ♦B
L♦

C.2 Proof of Lemma 3.6

By induction on the height h of the derivation of the premiss. If h = 0 and the substitution
is not vacuous, then Γ → ∆ is x 6 y, x : P, Γ′ → ∆′, y : P or x : ⊥, Γ′ → ∆. In each case, by
applying Subst we obtain an initial sequent or a conclusion of L⊥. If h = n + 1, suppose by
induction hypothesis that we have the conclusion for derivations of height n and consider the
last rule applied. If it is a rule without a variable condition, apply the induction hypothesis to
the premiss(es) and then the rule. If the premiss of Subst is concluded by either R ⊃, or RK,
or L♦ we have to consider whether y is the eigenvariable. Consider the case of L♦, the others
being analogous. If y is the eigenvariable, then the premiss of Subst is xR♦y, y : A, Γ′ → ∆. We
refresh by induction hypothesis y with a new z in order to avoid a variable clash and obtain
a derivation of xR♦z, z : A, Γ′ → ∆. Again by induction hypothesis, we replace x with y and
thus obtain yR♦z, z : A, Γ′ → ∆; Next, we are allowed to apply L♦ to conclude y : ♦A, Γ′ → ∆.
Note that if the eigenvariable is x, the substitution is vacuous.

C.3 Proof of Proposition 3.7

Consider the case of weakening with xRy. The proof is by induction on the height h of the
derivation of the premiss. The inductive step is straightfoward if the premiss is concluded by
a rule without a variable condition. If the last rule is a rule with a variable condition, say RK
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with x : KB as principal formula, Lemma 3.6 is applied to its premiss xRKy, Γ → ∆′, y : B to
replace the eigenvariable y with a new z; Then by the induction hypothesis and RK, we obtain
the conclusion xRy, Γ→ ∆′, x : KB.

C.4 Proof of Lemma 3.8

We prove the result for those rules that are not in common with G3I, the others having been
already proved admissible by Theorem 3.3. LK and R♦ are clearly invertible by hp-admissibility
of weakening (Proposition 3.7). We consider only the case of L♦ because RK is analogous and
proceed by induction on the height h of the derivation of x : ♦A, Γ → ∆. If h = 0 and
the sequent is initial or a conclusion of L⊥, then so is xR♦y, y : A, Γ → ∆. If h = n + 1,
x : ♦A, Γ → ∆ has been concluded by a certain rule R. If x : ♦A is principal, then R is L♦
and its premiss, that is xR♦y, y : A, Γ→ ∆, has a derivation with height n. If on the contrary
x : ♦A is not principal, consider what rule R is. If it is a rule without a variable condition, apply
the induction hypothesis to its premiss(es) and then R again. If R is, for instance, RK with
x : KB as principal formula, its premiss is xRKy, x : ♦A, Γ → ∆′, y : B. Apply first Lemma
3.6 with a new z instead of y and obtain xRKz, x : ♦A, Γ → ∆′, z : B. Then by induction
hypothesis conclude xRKz, xR♦y, y : A, Γ → ∆′, z : B and by one application of RK obtain
xR♦z, y : A, Γ→ ∆′, x : KB.

C.5 Proof of Theorem 3.9

By simultaneous induction on the height h of the derivation. If h = 0, the premiss is an initial
sequent or has been concluded by L⊥. In each case the conclusion of Ctr is initial or L⊥. If
h = n + 1, suppose the claim holds for derivations of height n and consider the rule R used to
derive the premiss of Ctr. If the contraction formula is not principal in R, both occurrences are
in the premiss(es) of R and by induction hypothesis we can contract the two occurrences and
obtain the conclusion with a smaller derivation height. If the contraction formula is principal
in R, we distinguish two cases: in the first, the premiss of Ctr is concluded by a rule with
the repetition of the principal formula, as in L⊃, LK, R♦, and the mathematical rules. The
induction hypothesis is applicable directly to the premiss of R. For instance, if R is R♦, the
premiss of Ctr has the following derivation, with Γ ≡ xR♦y, Γ′:

....
xR♦y, Γ′ → ∆, x : ♦A, x : ♦A, y : A

xR♦y, Γ′ → ∆, x : ♦A, x : ♦A
R♦

By induction hypothesis on the premiss, we obtain xR♦y, Γ′ → ∆, x : ♦A, y : A and next by
R♦ again xR♦y, Γ′ → ∆, x : ♦A. In the second case, when R is without repetition of principal
formulas, we need hp-inversion on the premisses (Lemma 3.8), as in the standard proof for G3c.
The crucial steps here are the cases in which R is either R⊃, or RK, or L♦, that is, rules with
a variable condition. Take for instance the case in which R is L♦, the others being analogous.
The premiss has the following derivation:

....
xR♦y, y : A, x : ♦A, Γ→ ∆

x : ♦A, x : ♦A, Γ→ ∆
L♦

By invertibility of L♦, we obtain xR♦y, y : A, xR♦y, y : A, Γ→ ∆. Then by induction hypoth-
esis, y : A, xR♦y, Γ→ ∆ and, by L♦ again, we conclude x : ♦A, Γ→ ∆.
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C.6 Proof of Theorem 3.10

By induction on the size of the cut formula with subinduction on the sum of the heights of the
derivations of the premisses of cut. The proof has the same structure as the proof of admissibility
of cut for sequent calculus extended by the left rule-scheme (Theorem 6.2.3 in Negri and von
Plato 2001, pp. 132–134). We consider in detail only the case of cut formula principal in modal
rules in both premisses of cut and in mathematical rules. As for the latter, consider the case of
left premiss concluded by MonK. We have the following derivation

xRKz, x 6 y, yRKz, Γ′′ → ∆, x : A

x 6 y, yRKz, Γ′′ → ∆, x : A
MonK

x : A, Γ′ → ∆′

x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
Cut

It converts to
xRKz, x 6 y, yRKz, Γ′′ → ∆, x : A x : A, Γ′ → ∆′

xRKz, x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
Cut

x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
MonK

Likewise for the other mathematical rules. If the cut formula is principal in a K-rule, it is of
the form x : KB and the derivation is

xRKz, Γ→ ∆, z : B

Γ→ ∆, x : KB
RK

y : B, x : KB, xRKy, Γ′′ → ∆′

x : KB, xRKy, Γ′′ → ∆′
LK

xRKy, Γ′′, Γ→ ∆, ∆′
Cut

It can be converted to

xRKz, Γ→ ∆, z : B

xRKy, Γ→ ∆, y : B
Subst

xRKz, Γ→ ∆, z : B

Γ→ ∆, x : KB
RK

y : B, x : KB, xRKy, Γ′′ → ∆′

y : B, xRKy, Γ′′, Γ→ ∆, ∆′
Cut

xRKy, xRKy, Γ′′, Γ, Γ→ ∆, ∆, ∆′
Cut

xRKy, Γ′′, Γ→ ∆, ∆′
Ctr∗

Note that the first cut is of reduced cut-height and the second is on a smaller formula. If the
cut formula is principal in a ♦-rule, it is of the form x : ♦B. The derivation is

xR♦y, Γ′′ → ∆, x : ♦B, y : B

xR♦y, Γ′′ → ∆, x : ♦B
R♦

xR♦z, z : B, Γ′ → ∆′

x : ♦B, Γ′ → ∆′
L♦

xR♦y, Γ′′, Γ′ → ∆′, ∆
Cut

It can be converted to
xR♦y, Γ′′ → ∆, x : ♦B, y : B x : ♦B, Γ′ → ∆′

xR♦y, Γ′′, Γ′ → ∆′, ∆, y : B
Cut

xR♦z, z : B, Γ′ → ∆′

xR♦y, y : B, Γ′ → ∆′
Subst

xR♦y, xR♦y, Γ′′, Γ′, Γ′ → ∆′, ∆′, ∆
Cut

xR♦y, Γ′′, Γ′ → ∆′, ∆
Ctr∗

D Completeness of G3IK♦

D.1 Proof of Theorem 3.13

By induction on the derivation of Γ→ ∆ in G3IK♦. If it is an initial sequent, there is a labelled
atom x : P both in Γ and in ∆ so the claim is obvious, and similarly if the sequent is a conclusion
of L⊥, since for no valuation can ⊥ be forced at any node.
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If Γ → ∆ is a conclusion of a propositional rule, suppose that the rule is L& with premiss
x : A, x : B, Γ′ → ∆. Assume that for an arbitrary assignment and interpretation, all the
formulas in Γ are valid. Since [[x]]  A&B is equivalent to [[x]]  A and [[x]]  B, the inductive
hypothesis, i.e., validity of x : A, x : B, Γ′ → ∆ for every interpretation, gives the desired
conclusion.

If Γ→ ∆ is a conclusion of a modal rule, say L♦, with the premiss xR♦y, y : A, Γ′ → ∆, assume
by the induction hypothesis that the premiss is valid. Let [[·]] be an arbitrary interpretation
that validates all the formulas in Γ. We claim that one of the formulas in ∆ is valid under this
intepretation. Let k be an arbitrary element of K such that [[x]]R♦k and k  A; Let [[·]]′ be the
interpretation identical to [[·]] except possibily on y, where we set [[y]]′ ≡ k. Clearly [[·]]′ validates
all the formulas in the antecedent of the premiss, so it validates a formula in ∆.

If the sequent is a conclusion of a rule for the accessibility relations, let the rule be for instance
Mon♦:

yR♦z, x 6 y, xR♦z, Γ→ ∆
x 6 y, xR♦z, Γ→ ∆

Mon♦

Let [[x]] 6 [[y]] and [[y]]R♦[[z]]. Since 6 and R♦ satisfyMon♦ by assumption, we have [[y]]R♦[[z]],
so validity of the premiss gives validity of the conclusion.

The preservation of soundness is proved in a similar way for all the other rules.

D.2 Proof of Theorem 3.14

We define for an arbitrary sequent Γ→ ∆ in the language of G3IK♦ a reduction tree by applying
the rules of G3IK♦ root first in all possible ways. If the construction terminates, we obtain a
proof, else the tree becomes infinite. By König’s lemma, an infinite tree has an infinite branch
that is used to define a countermodel to the endsequent.

1. Construction of the reduction tree: The reduction tree is defined inductively in stages as
follows:

Stage 0 has Γ→ ∆ at the root of the tree. Stage n > 0 has two cases:

Case I: If every topmost sequent is an initial sequent or a conclusion of L⊥, the construction of
the tree ends.

Case II: If not every topmost sequent is an initial sequent or a conclusion of L⊥, we continue the
construction of the tree by writing above those topsequents that are not initial, nor conclusions
of L⊥ or of a zero-premiss mathematical rule, other sequents that are obtained by applying
root first the rules of G3IK♦ whenever possible, in a given order.

There are 14 different stages, 10 for the rules of the basic modal systems, 4 for the frame rules.
At stage n = 14 + 1 we repeat stage 1, at stage n = 14 + 2 we repeat stage 2, and so on for each
n.

We start, for n = 1, with L&: For each topmost sequent of the form

x1 : B1&C1, . . . , xm : Bm&Cm, Γ′ → ∆

where B1&C1, . . . , Bm&Cm are all the formulas in Γ with a conjunction as the outermost logical
connective, we write

x1 : B1, x1 : C1, . . . , xm : Bm, xm : Cm, Γ′ → ∆

33



on top of it. This step corresponds to applying root first m times rule L&.

For n = 2, we perform a similar decomposition that corresponds to applying R& root first
successively to all formulas in the succedent that have conjunction as outermost connective.

For n = 3 and 4 we consider L∨ and R∨ and define the reductions symmetrically to the cases
n = 2 and n = 1, respectively. Stages n = 5 and n = 6 decompose analogously all implications,
in the antecedent and in the succedent respectively.

For n = 7, let x1 : ♦B1, . . . , xm : ♦Bm be all the formulas with ♦ as the outermost connective
in the antecedent of topsequents of the tree, and let Γ′ be the other formulas. Let y1, . . . , ym

be fresh variables, and write on top of each the sequent

x1R♦y1, . . . , xmR♦ym, y1 : B1, . . . , ym : Bm, Γ′ → ∆

that is, apply m times rule L♦.

For n = 8, consider all topsequents with modal formulas x1 : ♦B1, . . . , xm : ♦Bm in the
succedent and relational atoms x1R♦y1, . . . , xmR♦ym in the antecedent, and write on top of
these the sequents

x1R♦y1, . . . , xmR♦ym, Γ→ ∆′, x1 : ♦B1, . . . , xm : ♦Bm, y1 : B1, . . . , ym : Bm

that is, apply m times rule R♦.

For n = 9, we consider all topsequents with modal formulas x1 : KB1, . . . , xm : KBm and
relational atoms x1RKy1, . . . , xmRKym in the antecedent, and write on top of these the sequents

y1 : B1, . . . , ym : Bm, x1 : KB1, . . . , xm : KBm, x1RKy1, . . . , xmRKym, Γ′ → ∆

Here we apply m times rule LK.

For n = 10, let x1 : KB1, . . . , xm : KBm be all the formulas with K as the outermost connective
in the succedent of topsequents of the tree, and let ∆′ be the other formulas. Let y1, . . . , ym be
fresh variables, not yet used in the reduction tree, and write on top of each sequent the sequent

x1RKy1, . . . , xmRKym, Γ→ ∆′, y1 : B1, . . . , ym : Bm

Here we apply m times rule RK.

Finally, for n = 10 + j, we consider the generic case of a frame rule: Whenever a sequent in the
tree matches the conclusion of the rule, the corresponding instance of the premiss of the rule is
written above it. Rule Ref6 is instantiated only on labels that appear in the conclusion of the
rule.5

For any n, for each sequent that is neither initial, nor conclusion of L⊥, nor treatable by any
one of the above reductions, we write the sequent itself above it.6

5Completeness guarantees that it is not restrictive to instantiate Ref6 only on labels that already appear in
its conclusion. Alternatively, one can consider an unrestricted rule of reflexivity and prove, without making use
of completeness, that its applications can be limited to ones that do not introduce new labels. This result, and
the consequent subterm property, is proved for systems that extend basic modal logic in Section 6 of Negri (2005)
through permutation arguments, and for systems of intermediate logics in Section 8 of Dyckhoff and Negri (2012)
through a uniform substitution.

6This step is needed to treat uniformly the case of a proof search that would terminate without producing a
proof because no rule is applicable and neither an initial sequent nor a conclusion of L⊥ or of a zero-premiss rule
is reached, and the case that does not produce a proof because new applicable rules always become available and
the search goes on for ever.
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If the reduction tree is finite, all its leaves are initial or conclusions of L⊥, or of zero-premiss
mathematical rules, and the tree, read from the leaves to the root, yields a derivation.

2. Construction of the countermodel: If the reduction tree is infinite, it has an infinite branch.
Let Γ0 → ∆0 ≡ Γ → ∆, Γ1 → ∆1 . . . , Γi → ∆i, . . . be one such branch. Consider the sets of
labelled formulas and relational atoms

Γ ≡
⋃
i>0

Γi ∆ ≡
⋃
i>0

∆i

We define a Kripke model that forces all the formulas in Γ and no formula in ∆ and is therefore
a countermodel to the sequent Γ→ ∆.

Consider the frame K the nodes of which are all the labels that appear in the relational atoms
in Γ, with their mutual relationships expressed by the relational atoms in Γ. In general, the
construction of the reduction tree imposes the frame properties of the countermodel, which in
this case are Ref6, Trans6, MonK, Mon♦. The model is defined as follows: For all atomic
formulas x : P in Γ, we stipulate that x  P in the frame, and for all atomic formulas y : Q in
∆ we stipulate that y 1 Q. Since no sequent in the infinite branch is initial, this choice can be
coherently made.

It can then be shown inductively on the weight of formulas that A is forced in the model at
node x if x : A is in Γ and A is not forced at node x if x : A is in ∆. Therefore we have a
countermodel to the endsequent Γ→ ∆. The details are similar to those in Negri (2009).

E Proof of Theorem 5.8

The sequent is derived as follows:
....

R1

....
R2

x 6 y, x : KP (A), y : A &¬KA→ y : ⊥
L⊃

x : KP (A)→ x : ¬(A &¬KA)
R⊃

In the derivation R1 is

Lemma 3.5
y 6 y, x 6 y, x : KP (A), y : A &¬KA→ y : ⊥, y : A &¬KA

x 6 y, x : KP (A), y : A &¬KA→ y : ⊥, y : A &¬KA
Ref6

R2 instead is a derivation of the sequent y : ♦K(A &¬KA), x 6 y, x : KP (A), y : A &¬KA →
y : ⊥, with the same order of rules as in the derivation of x 6 y, yRKz, y : ♦K(A &¬KA), x :
KP (A), y : A→ z : A given in Section 5.2, and therefore omitted.
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