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Categorization with basic color terms is an intuitive and universal aspect of color perception. Yet research
on visual working memory capacity has largely assumed that only continuous estimates within color
space are relevant to memory. As a result, the influence of color categories on working memory remains
unknown. We propose a dual content model of color representation in which color matches to objects that
are either present (perception) or absent (memory) integrate category representations along with esti-
mates of specific values on a continuous scale (“particulars”). We develop and test the model through 4
experiments. In a first experiment pair, participants reproduce a color target, both with and without a
delay, using a recently influential estimation paradigm. In a second experiment pair, we use standard
methods in color perception to identify boundary and focal colors in the stimulus set. The main results
are that responses drawn from working memory are significantly biased away from category boundaries
and toward category centers. Importantly, the same pattern of results is present without a memory delay.
The proposed dual content model parsimoniously explains these results, and it should replace prevailing
single content models in studies of visual working memory. More broadly, the model and the results
demonstrate how the main consequence of visual working memory maintenance is the amplification of
category related biases and stimulus-specific variability that originate in perception.
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Visually guided behavior requires both perception and working
memory. For example, choosing the ripest avocado at the store
requires a comparison between avocados experienced in the past
and those observable now. Distinguishing between objects that
differ on color—or any other basic visual feature—may seem
effortless. But like many other tasks in perception and cognition, it
is enormously challenging in practice. Because of inherent uncer-
tainty in perception, inescapably noisy neural processing, and the

complexity of viewing conditions, even comparing two side-by-
side avocados is computationally difficult. Adding memory de-
mands compounds the difficulty.

Despite considerable interest in the role of visual working
memory in behaviors such as detecting changes and reproducing
remembered features, little contact has been made between re-
search on the perception of basic visual features and research that
uses those features to investigate the nature of visual working
memory. Here, we focus on color, which has received the majority
of attention in studies targeting visual working memory. We test
three hypotheses: (a) that working memory maintenance exhibits
color-specific biases, (b) that biases originate in perception, and (c)
that observers functionally use two kinds of color information
when matching colors between objects. These are an estimate of
hue on a continuous scale —what has been called a “particular” in
other contexts (e.g., Huttenlocher, Hedges, & Vevea, 2000)—and
a probabilistic category assignment. The results are central for
theories of visual working memory, in which inferences about
memory processing rest on assumptions that are contravened by
our hypotheses. More generally, our results demonstrate that visual
perception and working memory share a common vocabulary for
describing the material properties of surfaces in the world.

Delayed Estimation

Recent and influential work in the domain of visual working
memory has examined the mechanisms that support detection of
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object change, detection of object similarity (match), and, more
generally, the mechanisms involved in the reproduction of features
seen in the recent past. Research on visual working memory has
typically framed such tasks in the language of estimation: A
participant must estimate the feature of an object seen in the past,
given noisy inputs, and then compare it with an estimate of what
is seen currently. Appropriately, a paradigm called “delayed esti-
mation” has been devised and proven productive for investigating
working memory mechanisms associated with matching (Figure
1a; Wilken & Ma, 2004; Zhang & Luck, 2008).

The majority of studies using this task focus on color working
memory—as we will here—and so we describe the basic method-
ology in that context. In a typical experiment, participants remem-
ber the individual hues in a set of circles or squares. After a short
delay period, participants report the hue value of one of the study
objects on a continuous response scale—a hue circle (usually with
180 exemplars) comprising all the hues utilized in the study.
Response variability—measured as angular deviation between se-
lected and true hues—differs between trials and by condition,
motivating inferences concerning the structure of visual working
memory (Anderson & Awh, 2012; Bays, Catalao, & Husain, 2009;
Bays, Wu, & Husain, 2011; Emrich & Ferber, 2012; Fougnie &
Alvarez, 2011; Fougnie, Asplund, & Marois, 2010; Fougnie,
Suchow, & Alvarez, 2012; Gold et al., 2010; van den Berg, Shin,
Chou, George, & Ma, 2012; Wilken & Ma, 2004; Zhang & Luck,
2011, 2009, 2008).

Ultimately, interpreting the results of this and any related par-
adigm depends on one’s expectations about performance without
memory maintenance (without an enforced memory delay), situa-
tions that are constrained more by perception than by the attendant
challenges arising from an absent stimulus and working memory
maintenance. Fortunately, the same paradigm can be manipulated
minimally to investigate this performance. Simply removing the
delay period allows one to measure variability of responses when
there are no externally enforced memory demands, what we will
call “undelayed estimation” (Figure 1b; see also Bae, Olkkonen,
Allred, Wilson, & Flombaum, 2014). Practically, undelayed esti-
mation supplies an opportunity to build empirical expectations
about performance for use when interpreting effects of memory.
And theoretically, it supplies a good methodological opportunity to
directly relate perception and working memory in the same task

(Bae et al., 2014; Brady, Konkle, Gill, Oliva, & Alvarez, 2013;
Gold et al., 2010; Souza, Rerko, Lin, & Oberauer, 2014).

However, we have recently demonstrated that several unwar-
ranted assumptions are built into expectations about undelayed and
delayed responses in the literature on visual working memory (Bae
et al., 2014). In our previous study, we investigated responses on
a color-specific basis, while also employing what appears to be
standard color rendering practice in published reports using de-
layed estimation. We discovered considerable stimulus-dependent
differences in response variability. This is a problem because
standard practice with delayed estimation has been to collapse
responses across colors, characterizing response variability under
the implicit assumption that all colors would elicit more or less
similar response distributions.

Further scrutiny of these color-specific response properties led
to several additional discoveries. First, color-specific differences
correlated across independent observers, demonstrating that they
were not random. Second, color-specific differences appeared in
undelayed experiments and were correlated with delayed color-
specific differences, demonstrating that they originate in percep-
tion. Third, color-specific differences were large: In some in-
stances, differences between colors were larger than differences
caused by memory load—the primary phenomenon that theories of
visual working memory seek to explain. Fourth, color-specific
response properties were reliably related to category structure
within the set of color samples, suggesting that color categories
likely play a role in visual working memory. Finally, we discov-
ered that omitting the calibration and rendering techniques pre-
scribed in research on color perception has likely caused many
studies to include rendered colors that differ in meaningful ways
from intended ones. Notably, in our study, which specified equi-
luminant intended colors, rendered colors differed considerably in
luminance.

These results motivate the present study. They suggest that color
working memory may not behave uniformly, even with equilumi-
nant stimuli, and that it may rely on encoding of stimulus catego-
ries—along with continuous values—to support comparative stim-
ulus judgments.

Indeed, there are good reasons to expect such effects (Allred &
Flombaum, 2014). With respect to stimulus-specific response
properties, it is known that even equiluminant, but different, hues
will elicit meaningfully different response distributions in a match-
ing context (Witzel & Gegenfurtner, 2013). These effects can
originate in perception, as opposed to arising only through an
interaction with working memory maintenance (Nemes, Parry, &
McKeefry, 2010; Olkkonen & Allred, 2014; Olkkonen, McCarthy,
& Allred, 2014). More generally, careful work on color discrimi-
nation in psychology and color science has shown that no color
space is ever likely to be perceptually uniform (for discussion, see
Brainard, 2003; Wyszecki & Stiles, 1982).

In addition, color perception has a salient categorical aspect, at
least intuitively. English speakers generally feel comfortable using
only 11 terms, often even fewer, to describe a space including a
million discriminable shades (Linhares, Pinto, & Nascimento,
2008; Pointer & Attridge, 1997). The development of color terms
seems to follow a seemingly universal hierarchical structure sug-
gesting that people using different languages share broadly similar
intuitions about color categories (Berlin & Kay, 1969). Addition-
ally, both continuous and categorical representations of colors are

Figure 1. Procedure for color estimation (a) with a delay and (b) without
a delay. See the online article for the color version of this figure.
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present in mammalian brains, although the latter representation
(Bird, Berens, Horner, & Franklin, 2014; Brouwer & Heeger,
2013; Koida & Komatsu, 2007) is perhaps less established than the
former (e.g., Conway & Tsao, 2006; Horwitz & Hass, 2012;
Johnson, Hawken, & Shapley, 2001, 2004).

We therefore sought to use the estimation paradigm to test three
related proposals about the contents of color working memory and
their relationship to perceptual inputs. We propose that reproducing a
perceived hue relies on both continuous and categorical representa-
tions of hue, that reproducing a remembered hue relies on these same
two representations, and that the joint reliance on these contents
produces stimulus-specific biases. This challenges prevailing assump-
tions in color working memory research, which include only a con-
tinuous hue estimate and no stimulus-specific biases.

Dual Contents: Continuous Estimates (“Particulars”)
and Probabilistic Categories

To explain how joint continuous and categorical representations
can produce reproduction biases, the well-known relationship be-
tween spatial working memory and local landmarks serves as an
elegant example. Consider an empty piece of paper with a dot on it.
If asked to reproduce the dot on another, entirely empty piece of
paper, your responses will likely form a cloud—probably a two-
dimensional Gaussian—characterized by the uncertainty in your po-
sition estimates and noise in your motor machinery. Now consider a
case in which the dot is placed in the same place on the paper, but
within a larger circle and near its perimeter. Assuming the circle is
also on the reproduction paper, your responses over many trials will
form a different cloud. None of your responses will cross the perim-
eter of the circle. The presence of a salient landmark will bias
responses. These and related experiments conducted by Huttenlocher
and colleagues (2000; Crawford, Huttenlocher, & Hedges, 2006;
Duffy, Huttenlocher, Hedges, & Crawford, 2010) demonstrate that
spatial working memory relies on both continuous position esti-
mates—in their terms, “particulars”—and categorical descriptions
relative to either inductively developed categories, such as distribu-
tions of stimuli used during an experiment, or landmarks, such as

“within the circle and near the perimeter.” Combining these contents
produces biased reproductions.

We propose that color working memory—and perception—work
in much the same way. In the case of the delayed estimation task, each
stimulus in a memory sample is represented both by a noisy estimate
of a particular hue value on a continuous scale and also by a category
label from the set comprising the basic color terms (e.g., blue, green,
orange). In our model, the category label is itself assigned probabi-
listically, so that hues near a category boundary will be assigned to
different categories on different occasions. The combination of these
two contents will result in biases that differ by stimulus. Colors near
the center of categories are unlikely to produce biased estimates,
because continuous and categorical estimates align. But colors near
boundaries will exhibit large biases in the focal direction of their
categories. In the same way that an observer will not place a dot
outside a circle when she remembers it as being inside the circle, she
should not respond with hues she would label as green to reproduce
one she remembers as blue.

To test our proposal, we employ two approaches. In behavioral
experiments, we first characterize stimulus-specific response dis-
tributions elicited by each of the colors (i.e., 180 colors) in a
complete hue circle using delayed and undelayed estimation. In
order to establish the relationship between continuous and cate-
gorical contents of colors, we independently identify probabilistic
category boundaries and focal exemplars using category assign-
ment and focal identification procedures typical in research on
color appearance (Figure 2; see also Bae et al., 2014; Witzel &
Gegenfurtner, 2013). The results of these experiments are reported
first. We then describe a computational model designed to predict
empirically obtained response distributions by combining contin-
uous estimates and probabilistic category assignments.

Experiments: Categories and Stimulus-Specific
Response Properties

The experiments included in this study encompass several goals.
The first goal is to characterize any systematic stimulus-specific
properties of matching responses to colors on a hue circle (with

Figure 2. Procedure for (a) category naming and (b) category identification. See the online article for the color
version of this figure.
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constant luminance), using both delayed and undelayed estimation.
By “systematic,” we mean stimulus-specific properties that do not
arise randomly, which we diagnose through correlations across
independent observers. Toward this end, we identified a circle of
180 equally spaced colors (CIELAB) with a constant luminance
that we employ in delayed and undelayed estimation experiments.
Both experiments include only a single sample item in each trial,
either presented simultaneously with a response wheel (undelayed
estimation) or followed by a delay and then a response wheel
(delayed estimation; Figure 1).

Our second goal is to identify category boundaries and focal
colors within the hue circle. We do this using a pair of experiments
similar to those common in research on color perception (cf.
Witzel & Gegenfurtner, 2013). One group of participants com-
pleted a category naming experiment, in which they indicate which
color term best describes each of the 180 hues. Another group of
participants completed a category identification experiment, in
which they select the best example of each of the basic color terms
from the complete hue circle. The third goal is to characterize any
reliable relationships between stimulus-specific response proper-
ties in the estimation experiments and the category landmarks
derived from the category experiments.

Method

Participants. All participants were Johns Hopkins University
undergraduates who received course-related credit in exchange for
participation: delayed estimation, n � 3; undelayed estimation,
n � 8; category naming, n � 10; category identification, n � 5. All
participants had normal or corrected-to-normal visual acuity and
reported normal color vision. Each completed only one of the four
experiments. Protocol was approved by the Johns Hopkins Uni-
versity Homewood Institutional Review Board.

Apparatus. The experiment took place in a dark, sound-
attenuated room. There was no light source except for a CRT
monitor at a viewing distance of 60 cm, such that the display
subtended approximately 39.56° � 25.35° of visual angle.

Stimuli. We chose 180 equally spaced stimuli that only varied
in hue in CIELAB space (L� � 70, a� � 0, b� � 0, radius of 38;
Figure 3). This ring is similar, but not identical, to prevalently used
rings in the literature on delayed estimation. We found that more
commonly used settings were outside the monitor gamut. RGB
values corresponding to the CIELAB coordinates were generated
by performing a standard monitor calibration (Brainard, Pelli, &

Robson, 2002). In color conversions from device-independent to
device-dependent spaces, we used the measured monitor white
point of CIE xyY [0.3184, 0.3119, 48.64]. Conversions between
color spaces were performed with colorimetric routines imple-
mented in the Psychophysics Toolbox (Brainard, 1997) and radi-
ometer measurements (PR655; PhotoResearch Inc., Chattsworth,
CA). Stimuli were always presented on a uniform background that
was the center point of the chosen CIELAB hue ring (L�a�b� �
[70,0,0]), in order to ensure equal saturation and chromatic con-
trast with respect to background across hues.

Procedures and analyses. In the undelayed estimation exper-
iment, participants made color matches to study stimuli as follows.
Each trial began with a white fixation cross (0.5° � 0.5°) displayed
in the center of the monitor. After 500 ms, the study stimulus (a
2° � 2° colored square) appeared at one of eight possible positions
(4.5° from fixation) together with the matching wheel (8.2° radius
and 2° thick) that surrounded the space in which study stimuli
could appear (Figure 1). The matching wheel consisted of all 180
stimuli, organized as a hue circle. On each trial, the matching
wheel was randomly rotated to prevent position-color associations.
The task was to click the color on the matching wheel that was
perceived as most similar to the study color. Both the study
stimulus and the matching wheel remained on the screen until
response, at which time a black line superimposed on the matching
color indicated the clicked position.

The undelayed experiment included eight participants. This is
because we sought approximately 60 measurements across the
experiment in response to each individual hue, a typical number of
measurements obtained in delayed estimation experiments within a
condition (see, e.g., Bays et al., 2009). Because obtaining 60
measurements per color, per participant in this case would have
produced an excessively long experiment, we divided the 180
study colors into two sets of 90 colors. Arbitrarily setting one of
the colors as Number 1 and then moving around the circle until
color 180, the two sets were made by grouping odd and even colors
together, so that colors within each set formed a color wheel of 90
exemplars with an equal spacing of 4° (instead of 2°) between
hues. Half of the participants were presented only odd exemplars
as study stimuli, and the other half were presented only even ones.
All participants, however, encountered the entire color wheel
including all 180 hues for response selection. Each participant
completed four blocks of 360 trials, totaling 1,440 trials. Within a
block, each color appeared four times in a random order, produc-

Figure 3. Hue circle used in experiments. (a) Hue circle a� and b� coordinates in CIELAB space, (b) L� values
of all hues, and (c) x and y values of hue circle, shown within monitor gamut (triangle; CIE xyY space). See the
online article for the color version of this figure.
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ing 16 measurements per color per participant and 64 observations
per color overall.

The delayed estimation task was identical to undelayed estima-
tion, with the following exceptions. Most importantly, the study
color remained on the screen for 100 ms, and then disappeared
from view for 900 ms. Only after the delay did the matching wheel
appear (see Figure 1). Participants were asked to remember the
presented color as precisely as possible.

This experiment included three participants, again, in order to
obtain approximately 60 measurements per color across the exper-
iment. In this case, each participant completed 10 blocks of 360
trials, totaling 3,600 trials. In each block, each of the 180 colors
was presented twice, in a random order, resulting in 20 observa-
tions per color and participant and 60 observations per color
overall. The 10 blocks were distributed over 3 consecutive days
(with four blocks on the last day). This experiment was actually
run before the undelayed experiment. We found it difficult to find
participants that would reliably return to the lab over 3 consecutive
days, which led us to the design of the undelayed experiment with
more participants in shorter sessions, but producing approximately
the same number of observations per color.

We used a mixture model comprised of a von Mises and a
uniform distribution to analyze the results of each estimation
experiment (Zhang & Luck, 2008). The model includes three free
parameters: the proportion of target-based responses (�, 0 � � �
1), bias (�, –� � � � ��), and the concentration parameter of the
von Mises distribution (�, 0 � � � 700), which is the inverse
variance and is often called “precision.” Larger � values reflect
less dispersed distributions. In the remainder of the article, we
refer to precision of color matches. The complete model is as
follows:

p(X̃ | Si) � ���Si � �i, �i� � �1 	 ��
1

2

(1)

X̃ denotes the angular position of an estimated hue to a particular

target stimulus, Si, so that p�X̃�Si� is the probability of a response
sampled by an observer given the target color. Note that we use the
subscript i to denote individual stimulus values, emphasizing the
fact that we fit the model to each individual color stimulus with its
own parameters. The first term in the model denotes the von Mises
density (	, circular normal distribution) described by the two free
parameters—� and �—multiplied by a mixture coefficient, �. By
fitting � along with �, we are able to determine whether individual
colors elicit differentially biased distributions, that is, whether they
elicit response distributions not centered on the correct sample
color.

The second term of the mixture model denotes the uniform
density attributed to guessing; thus, 1 – � is typically interpreted as
the guessing rate, reflecting trials with encoding or maintenance
failures.

All model fitting was performed by maximum likelihood infer-
ence. Parameters were initialized to multiple starting values in an
attempt to avoid local maxima. Importantly, we fit the model to
each study color individually.

The category naming experiment (Figure 2a) was designed to
identify boundaries on the hue circle. On each trial, a square (2° �
2°) filled with one of the 180 study colors was presented at the
center of the screen. On the right side of the square, the chromatic

color terms comprising Berlin and Kay’s (1969) eight basic color
categories were presented vertically (“Red,” “Brown,” “Orange,”
“Yellow,” “Green,” “Blue,” “Purple,” and “Pink”). Participants
selected the color term that most closely described the study color.
The study square and color terms remained on the screen until a
response. Each participant completed six trials for each of the 180
study colors, presented in random order, for a total of 1,080 trials
per participant. We included 10 participants. Our previous study
using this method included eight observers (Bae et al., 2014). We
included 10 here using a slightly shorter design per participant,
intending to obtain the same number of observations nonetheless.

The category identification experiment (Figure 2b) was de-
signed to identify focal exemplars for each of the basic color terms.
Participants selected the study color that best exemplified each
color category as follows. On each trial, the matching wheel
appeared in the center of the screen together with the basic color
terms to the right of the wheel. Participants clicked on the match-
ing wheel to indicate the best example of each color term. A black
line appeared after the mouse click at each location to prevent
multiple responses for the same color term. The matching wheel
randomly rotated on each trial to prevent any association between
color and position.

The terms “Red” and “Brown” were excluded because very few
study colors were identified with these terms in the color naming
experiment (see Figure 4a). This is likely because of the saturation
level and luminance selected for the hue circle. Thus, participants
made six responses—one for each color term—per trial, and they
each completed 30 trials, resulting in 30 responses for each color
term per participant.

The purpose of the category experiments pair was to derive
distributions describing category membership for the six basic
color terms. By collapsing responses across participants (within
each experiment), we obtained two empirical frequencies for each
color describing the probability that it was assigned a particular
name, as the best name for that color in the category naming
experiment, or as the best example of a given name in the category
identification experiment.

Through the category naming experiment, we operationalized
color boundaries as colors that were equally likely to be named
with adjacent category terms. To interpret the results of the iden-
tification experiment, we fit six von Mises distributions, one to the
responses elicited by each of the six color terms. The means of
these distributions were considered estimates of focal exemplars.

Results

Categorization experiments. Figure 4a plots the results of
the category naming experiment. Most colors were assigned a
single term repeatedly. But some were likely to elicit more than a
single response, and a handful received two adjacent terms with
equal probability. These can be thought of as category boundaries.
(Note that “Red” and “Brown” were rarely attributed to any of the
samples). This pattern of response is similar to that in previous
category experiments (e.g., Boynton & Olson, 1990; Sturges &
Whitfield, 1997). Figure 4b plots the frequency with which each
color was selected as the best example of any of the six colors
terms, along with best-fit von Mises densities. If all samples within
a category were perceived as equally good exemplars of the
categories, these frequencies would have been relatively uniform,
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much like the distributions in the naming experiment. But distri-
butions in the identification experiment were clearly peaked, re-
flecting agreement among observers about best exemplars. We
treat the peaks of these distributions, operationalized as the mean
of a von Mises distribution, as focal colors in the analyses re-
ported.

The qualitative take-away from this pair of experiments is that
many colors were best described by a single color term, but not all
of those colors were equally good examples of their respective
terms. And some colors were neither good examples nor well
characterized by a single term.

Precision and bias in the estimation experiments. As ex-
pected, both estimation experiments produced uniformly low
guessing rates (1 – �; no-delay average, 0.8%; delay average,
2.1%). We could therefore use model-free measures of dispersion
and bias to characterize stimulus-specific response characteristics.
Indeed, all the results reported are similar when viewed in this
way. But we employ the model-based parameters to accommodate
the broader project of supplying a model of working memory
contents that can be used to analyze responses in situations with
higher expected guessing rates.

Figure 5 shows response distributions with and without delay
for two target examples. It is meant to illustrate three broadly
applicable points. First, distributions to different hues were not
equally dispersed. In these cases, responses to the blue example
were more dispersed than to the yellow one (high kappa values
correspond to low dispersion). Second, responses were biased;
the average of a response distribution (represented by the dotted
lines in the figure) was usually not the veridical study hue
(triangles in the figure). The degree of bias, which was com-
puted as the distance between the mean response and the study
color, was also stimulus-specific, with some study hues show-

ing more bias than other study hues, and as in the two examples
shown, biases were not in the same angular direction for all
hues.

These patterns were evident in the data set as a whole. Figure 6
makes the point theory-free: We plot the frequency with which
each color was selected as a response across the whole of each
experiment. If hues generally elicited similar and unbiased re-
sponse distributions, these overall distributions should be close to
uniform (each color was the target equally often). The distributions
clearly are not uniform. Figure 7 and Figure 8 plot precision and
bias estimates for each color with and without delay. Again, there
was considerable color-by-color variability. Crucially, color-by-
color � estimates were significantly correlated in two out of three
pairwise observer-relationships, and the third correlation was mar-
ginally significant, t(178) � 4.51, r � .32, p 
 .01; t(178) � 2.81,
r � .21, p 
 .01; t(178) � 1.81, r � .13, p � .07). Estimates of
� were also significantly correlated across all pairwise compari-
sons, t(178) � 12.88, r � .70, p 
 .001; t(178) � 6.80, r � .45,
p 
 .001; t(178) � 11.18, r � .64, p 
 .01).

More importantly—for the purpose of characterizing the con-
tents and mechanisms of color working memory—delayed � es-
timates were significantly smaller (more variable) than undelayed
estimates (delayed � � 20.56; undelayed � � 38.39), t(179) �
12.26, p 
 .001, and estimates of � were larger (more biased;
mean � � 5.61 vs. 2.84), t(179) � 11.204, p 
 .001. Additionally,
patterns of stimulus-specific response correlated significantly be-
tween delayed and undelayed estimation experiments for both �,
t(178) � 5.50, r � .38, p 
 .001, and �, t(178) � 10.82, r � .63,
p 
 .001, as shown in Figure 9. Recall that these experiments
included distinct groups of participants.

Having established reliable patterns of color-specific responses
(with and without a delay), we considered whether these prop-

Figure 4. Results of the (a) category naming and (b) category identification experiments. (a) The response
frequency with which each color term was used is shown for each of the 180 hues. (b) The response frequency
with which each hue was labeled as the best exemplar for each color term. von Mises distributions fit to the
response frequencies are shown in (b) as well. See the online article for the color version of this figure.
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erties contained interpretable variability. A number of system-
atic effects become qualitatively apparent in the patterns of
hue-specific performance. First, some regions of the hue circle
acted as attractors. Hues on either side of these regions showed

oppositely directed biases toward the attractor region. Second,
some regions of the color space seemed to repel responses.
Responses to their surrounding colors were biased away from
these regions.

Figure 5. Response distributions for two study hues, in undelayed (top) and delayed (bottom) estimation.
Triangles on the graphs designate the true hue values, and dotted lines identify the distribution means. See the
online article for the color version of this figure.

Figure 6. Normalized response frequencies for each individual hue across all observers in the (a) undelayed and (b)
delayed estimation experiments. Each hue appeared as a target with equal frequency (60 or 64 times depending on the
experiment). A response proportion of one (the dashed horizontal lines) thus indicates that a matching hue was
selected with the same frequency it appeared as a study hue. Vertical dotted lines indicate focal colors, and vertical
solid lines indicate border colors (see Method). See the online article for the color version of this figure.
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We sought to determine whether these patterns relate to cate-
gory structure within the set of colors. First, we computed the
angular distance between each study color and the nearest focal
color on the wheel. There were 23 unique distances, which we
used as bins (each with a 2° width). We then correlated distance
with the average � and absolute bias of each bin. If the properties
of response distributions are independent from the category struc-
ture of the color space, then there should be no effects on bias and
precision of distance from the focal colors on the wheel. However,
all four correlations were significant (Figure 10; undelayed: �
t[21] � �2.79, p 
 .05, r � �0.52; bias, t[21] � 2.97, p 
 .01,
r � .54; delayed: � t[21] � �7.04, p 
 .001, r � �0.84; bias,
t[21] � 6.85, p 
 .001, r � .83).

Discussion

With a hue circle comprising stimuli of equal luminance, equal
saturation, and equal chromatic contrast with the background, we
discovered systematic stimulus-specific response variability in es-
timation tasks. Surprisingly, these patterns were evident in estima-
tion without a delay. The precision and degree of bias for a given
hue were predicted by its relative position within a color category,
that is, its distance from focal colors and category boundaries. The
results are consistent with our hypothesis that estimation responses
rely on dual contents, including a noisy, continuous estimate of a
particular hue value, and a category assignment. The model pre-
sented in the next section is meant to further support this point; we
reserve most discussion of dual contents for the time being.

Even without a model, however, it is readily apparent that
patterns of stimulus-specific responses that depend on imposed

working memory maintenance have the same basic properties as
those less reliant on maintenance (in the experiment without a
delay). Stimuli that exhibit biases without a delay exhibit even
greater biases with a delay. This is consistent with part of our
hypothesis, that working memory maintenance amplifies biases in
estimation responses that originate prior to maintenance.

This is relevant for considering the role of verbal rehearsal,
which is sometimes thought to be involved in memory experiments
for colored stimuli. The correlation between biases in the delayed
and undelayed conditions indicates that if category rehearsal plays
a role in the delayed condition, it also plays a role in the undelayed
condition. Yet it is odd to think of explicit rehearsal playing a role
without a delay. Thus, stimulus-specific bias and precision cannot
be attributed to a verbal rehearsal process that is solely present
when a maintenance period is imposed.

Because including a delay appears to amplify biases present
without a delay, an important question centers on the origin of the
biases without a delay. Two classes of cause suggest themselves.
First, it is possible that the categorical bias observed in undelayed
estimation is caused by working memory. Estimation without a
delay may involve memory to some extent. For example, if an
observer saccades between targets and match positions, working
memory is presumably involved in stimulus maintenance during
the saccade (Hollingworth, Matsukura, & Luck, 2013; Schnee-
gans, Spencer, Schöner, Hwang, & Hollingworth, 2014).

On such a view, the difference between the two conditions
would presumably be explained by greater maintenance demands
with a delay (compared with without). Note that with such a

Figure 8. Hue-specific bias estimates, the difference in degrees between
each hue value and the estimated mean (�) of the response distribution in
trials in which the hue was the target, for (a) undelayed and (b) delayed
estimation. Positive values indicate leftward bias and negative values
indicate rightward. Vertical dotted lines indicate focal colors, and vertical
solid lines indicate border colors (see Method). The black smoothing
curves are superimposed to emphasize the pattern of bias estimates. See the
online article for the color version of this figure.

Figure 7. Hue-specific precision estimates (�) in (a) undelayed and (b)
delayed estimation. Vertical dotted lines indicate focal colors, and vertical
solid lines indicate border colors (see Method). The solid horizontal line in
each figure is the � value obtained when the mixture model was fit to
responses collapsed across hues. See the online article for the color version
of this figure.
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theory, biases caused by memory would still need to be related to
color categories in order to produce the specific patterns of effects
we have observed.

The second possibility is that stimulus-specific biases are
caused by processing that originates in perception. What we
mean by this is that the visual system may spontaneously assign
category labels to signals, and as we have proposed, that these
labels interact with encoded hue content to produce bias during

response. In this view, bias with a delay is greater than without
because increased uncertainty in metric signals lead to a greater
impact of category encoding. If memory for hue value is noisier
than perception of hue value—as it is in all theories that we are
aware of—then category encoding should produce greater bias
when it interacts with noisier metric signals. Our formal model
makes this clear, and we discuss it further in the General
Discussion.

These two possibilities are not mutually exclusive. What is
crucial from our perspective is that both require that color
categories be assigned to signals at some stage in order to
impact responses. We will advance a formal version of the
second possibility—where category encoding (and thus bias)
emerges in a categorical perceptual channel. But a theory in
which category encoding occurs in working memory would also
be importantly different from prevailing theories, which assume
that a hue is described only as a point in a continuous space.

Two conclusions are therefore warranted based on the em-
pirical findings reported. First, working memory contents in-
clude category labels, though it remains unclear if they are
assigned during perception or later. Second, the effects of a
minimal increase in working memory demands—those differ-
entiating a stimulus that can be reinspected, even kept in view
during response, and a stimulus that is absent when a response
needs to be made—is an amplification of category-related
stimulus-specific biases.

Categories and Particulars: A Dual Content Model of
Color Working Memory

The objective of the dual content model that we propose is
twofold. Theoretically, the model is an implementation to test the
hypothesis that color estimation combines a continuous value with
a probabilistic category assignment. Toward this end, we propose
a probabilistic model that combines these two sources of informa-
tion, and we compare it with a model that only utilizes a contin-
uous value (the prevailing approach in the working memory liter-
ature) and a model that only utilizes a probabilistic category
assignment.

Practically, the objective of our modeling effort is to supply a
revised model for use in studies of working memory, one that

Figure 9. Correlations of (a) hue-specific precision and (b) bias estimates between undelayed and delayed
estimation. See the online article for the color version of this figure.

Figure 10. Relationship between kappa (top) and bias (bottom) and
distances to focal colors in delayed (empty symbols) and undelayed (filled)
estimation. Error bars are standard error of the mean of parameters in each
distance bin.
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efficiently predicts stimulus-specific response variability and pro-
vides transparent parameters for building theories of working
memory limits. To demonstrate the presence of stimulus-specific
bias and precision in the experimental section, we fit a three-
parameter mixture model to each of the 180 individual hues on our
color circle. But this is an inefficient approach. It ultimately
includes many free parameters, requires long experiments, and it is
not obvious how it can be used to build theories of working
memory limits or to engage in rigorous comparisons of those
theories. Fortunately, the significant relationships we observed
between stimulus-specific responses and category landmarks sug-
gest a systematic cause—or at least, a reliable predictor—of
interstimulus response differences. We thus sought to leverage the
results of the category experiments to build a more compact model,
one that could replace the prevailing mixture model and eventually
accommodate further alterations in the service of better under-
standing visual working memory under a variety of experimental
conditions.

CATMET: A Dual Content Model

In broad strokes, the model receives a study hue permuted by
noise, termed a noisy sample, and then it estimates the study hue
most likely to have caused the noisy sample. Crucially, noisy
samples are encoded in two ways: The model infers a distribution
of stimulus hues likely to have caused the noisy sample, what we
will term a metric distribution, corresponding to an encoding of
“particulars” in the terms of Huttenlocher and colleagues (2000).
And the model assigns a category descriptor to the noisy sample,
on the basis of which it produces a distribution of hues likely to
generate that category descriptor, what we will term a category

distribution. The initial assignment of category is also noisy, with
probabilities derived empirically from the category experiment
pair. Thus, identical study stimuli can be assigned to different
color categories on different encounters. Both metric and category
distributions are in continuous color space. The main difference
between this model and prevailing models is in the implementation
of a categorical encoding. In prevailing models, the stimulus hue is
permuted by noise, and the noisy sample that results is encoded as
a metric value (a particular); CATMET also encodes it as a
member of a coarse category. This is the dual content component
of the model.

The model then produces an estimate of the stimulus hue by
sampling from a joint distribution, achieved by multiplying the
metric and category distributions. These steps are laid out sche-
matically in Figure 11. To summarize, the model involves three
stages. In the first, it encodes a sample through a high-resolution
metric channel, and also through a coarse, category channel. In
the second step, it generates distributions of continuous values
likely to have produced the content encoded through each
channel. And it finally combines those distributions to arrive at
a single distribution of probable study stimuli. The model
details are as follows.

Step 1: The noisy sample. As in most perceptual models, we
assume that the incoming sensory signal is noisy. Thus, on each
run (simulation) of the CATMET model, the study hue will be
encoded based on a noisy sample. Here we describe how we
generate a noisy sample on each run given a study hue.

The probability of the model receiving a particular noisy sam-
ple, denoted Ŝ, given a study hue, Si, is determined by a von Mises
distribution with two parameters, �i and �i:

Figure 11. Schematic depiction of the dual content (CATMET) model. The study stimulus leads to a noisy
sample received by the observer and encoded through two channels. In the top panel, the particular hue of the
sample is encoded, leading to a distribution of study hues likely to have produced that sample—the “metric
distribution.” In the bottom panels, the sample is encoded through a coarse categorical channel: A category is
assigned to the sample, and then a distribution of hues likely to produce that category is generated—a category
distribution. Finally, the distributions are combined to produce a joint distribution of likely study hues (shown
in black). See the online article for the color version of this figure.
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p(Ŝ | Si) � �(Ŝ | Si � �i, �i) (2)

We use the subscript i to denote stimulus specific � and �
values, the values that apply to the ith exemplar on the color wheel.
But our goal with this model is to characterize stimulus-specific
differences without stimulus-specific parameters. Indeed, we as-
sume that the metric distribution is unbiased, and instead that
observed biases result from the interaction with a category distri-
bution. Accordingly, we assume unbiased sensory signals, endow-
ing each study hue with � equal to zero, and we use a single �
value for all stimuli. With stimulus-independent von Mises param-
eters, Equation 2 can be rewritten as follows:

p(Ŝ | Si) � �(Ŝ | Si, �) (3)

Rather than fit � within the model, we choose an easily obtain-
able estimate. In modeling the results of the experiment without a
delay, we obtain � by fitting the prevailing mixture model (Zhang
& Luck, 2008; Equation 1) to the responses from that experiment
across all colors simultaneously, a value of 29.10 (which is the
value of the horizontal line in Figure 7). Our goal here is to quickly
obtain a reasonable, color-neutral estimate in order to see the
behavior that arises from the model generally. We discuss this
further after presenting the model results. The same is done when
we model the experiment with a delay; we fit the mixture model in
Equation 1 across all responses and colors in that experiment,
obtaining a single � value of 14.89 to utilize in testing the model.

Step 2: Assigning noisy samples to categories. Unlike extant
models, the CATMET model assigns a category label to any noisy
sample received. Simply put, it labels the sample with one of a set
of basic color terms. For most samples, this should be a straight-
forward and uncontroversial process; as shown in Figure 4a, most
individual hues were reliably named with only one basic color
term in the category naming experiment. But some colors received
two adjacent labels, such as “Green” and “Blue” with high prob-
abilities. On each simulation, we therefore assign labels to samples
probabilistically, as follows.

First, we derive distributions of boundary colors by identifying
the colors in the category naming experiment that were closest to
receiving two adjacent color names with equal frequency. We then
set these values as border colors. To implement the assumption
of noisy borders, we use von Mises distributions, centered on
each border color, and with the color-independent � values from
Step 1.

We now have six border colors, which we denote as Bj. On each
model simulation, a discrete border between each category j and
j � 1 is selected randomly by drawing a color from the probabi-
listic distributions defined by the parameters �j and �B. (The “B”
subscript here is just meant to denote the fact that we use the same
precision value for all boarders).

Bj � ���j, �B� (4)

With the sampled border colors, Bj, the category of a target color
is determined by the relative position of a target color and each
border color (Ashby & Maddox, 1993). Suppose a target color is
Si, and there are six alternative categories:

if the angular position of Si � B1 and � B2; then Si � category 1

�B2 and � B3; then Si � category 2

�B3 and � B4; then Si � category 3

� B4 and � B5; then Si � category 4

�B5 and � B6; then Si � category 5

�B6 and � B1; then Si � category 6

(5)

Straightforwardly, if Si is between Bj and Bj�1, the model
determines that the target color is a member of category j. By using
noisy samples and noisy borders, a single stimulus (especially one
near a border) will be assigned to different categories on different
simulations. Thus, on each model simulation the noisy sample Ŝ
that is used (in Step 4) to generate the metric distribution of likely
stimulus hues, is also assigned a category which we denote Ĉ.

Step 3: Probability of study hues given a category. With a
category label assigned, the model now engages in a process to
ensure that a response generated will be a good example of the
category assigned. The coarse encoding of category leads the
model to prefer responses that are better examples of a particular
category. To do this, the model calculates the probability that each
study hue would have produced the category description encoded
in Step 2. Formally, the probability of drawing a hue from a
distribution of hues that are likely to belong to category Ĉ:

p�X̃C | C) � �(X̃C | �c, �c) (6)

We denote this distribution X̃C, in order to distinguish it from
the distribution reflecting the probability of study hues obtained on
the basis of a sample’s encoded metric value in extant models (and
also in Step 4 upcoming, and denoted X̃S). �c and �c are param-
eters describing a distribution of hue values in category C. We
estimate their values using the data from the category experiment
pair.

To do so, we combine the data from both category experiments
into a frequency distribution, as follows. The raw data on each trial
of those experiments—a total of 10,800 color naming and 150
category identification trials—are a color value and color term that
were associated by a participant. On the basis of each experiment,
we thus compute the probability of each of 180 colors being
associated with a given color term. Because for each color we now
have two association probabilities (one from each of the category
experiments), we average the probabilities, producing a unified
probability of association between each of the six basic color terms
and each of the 180 color values. In other words, for each indi-
vidual color term—the six possible color categories—we now
have a distribution of normalized association strengths with each
of the 180 hues. To each of these six distributions we fit a von
Mises, thus obtaining estimates for �c and �c for each category
distribution. With these parameters, we can now use Equation 6 to

compute p�X̃C � Ĉ� for each color category and each of the 180
hues.

Step 4: Probability of study hues given a noisy sample. In
addition to encoding the noisy sample (Equation 3) through a
coarse categorical channel, the model encodes it through a higher
resolution channel. That is, it records the exact sample hue from
among the set of 180 possible hues. And it then generates a
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distribution of study hues likely to have generated the encoded
sample hue. This is accomplished using Bayes’ theorem:

p(X̃S | Ŝ) p(Ŝ | X̃S)p(X̃S) (7)

Here, p(X̃S) is a uniform density—all colors are equally likely to

occur—such that p�X̃S � Ŝ� is simply identical to p�Ŝ � X̃S� , a value
obtainable by using Equation 3 (with X̃S replacing Si). Step 4 thus
implements what is the typical metric model applied widely in
previous work (e.g., Zhang & Luck, 2008).

Step 5: Estimating the study hue. To arrive at a final esti-
mate of the study hue, we combine the metric information about
the noisy sample in Step 4 with the category information about the
noisy sample in Step 3. This joint probability distribution is created
by combining the two distributions in Step 3 and Step 4 (Equations
6 and 7). We denote the final joint distribution X̃JD.

p(X̃JD | Ŝ, Ĉ) �
p(X̃S | Ŝ)p(X̃C | Ĉ)

� p(X̃C|Ŝ)p(X̃S | Ĉ)
(8)

A single hue estimate for the response in a given simulation is

obtained by sampling from the distribution p�X̃JD � Ŝ,Ĉ�

Analysis

We used the CATMET model to generate simulated responses
to the delayed and undelayed estimation experiments that partici-
pants completed. As noted already, in places where the model
employed a color-neutral � value, it was derived from the data in
the appropriate experiment (i.e., delay or undelayed estimation).
This was the only parameter derived from the estimation experi-

ments themselves. The parameters employed in the assignment and
use of category information were fit to responses in the categori-
zation experiments, which involved unique groups of participants,
and which did not involve estimation responses.

The model generated 100 simulated responses to each of the 180
hues, in a simulated version of the undelayed as well as the delayed
estimation experiments. Once simulated responses had been gen-
erated, we repeated the analyses that had been applied to the
empirical results of the estimation experiments; we fit a mixture
model to each individual color, thus allowing us to characterize the
stimulus-specific response properties (dispersion and bias) that
arose in practice (from a model with no initial representational
biases). We then compared these parameters with those that we
had obtained from the responses of human participants.

Results

The CATMET model produced biased responses that are similar
to the biases measured in the responses of human observers (Fig-
ure 12). The mean-response (�) fits we obtained from the model
were highly correlated with those of human observers (no-delay,
r � .55, p 
 .001; delay, r � .65, p 
 .001). Estimates of response
precision, on a color-by-color basis (Figure 13) fit to model re-
sponses also correlated significantly with the estimates fit to re-
sponses from experimental participants (no-delay, r � .16, p 

.05; delay, r � .39, p 
 .001). Although significant, these corre-
lations were weaker than those for bias. In participants, between-
observer correlations were also weaker for matching precision than
for bias. Thus, the precision of color matches appears less system-
atic than the bias of color matches.

Figure 12. CATMET model-derived (black open circles) and observer-derived (filled circles) bias estimates
for undelayed and delayed estimation; four-category model shown. See the online article for the color version
of this figure.
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These correlations were obtained from a version of the CATMET
model utilizing only four (instead of six) categories, “Orange,”
“Green,” “Blue,” and “Pink.” The four-category model performed
better than the six-category model, and inspection of observer
responses suggests that these categories are more obviously pres-
ent in the set of colors, with yellow and purple less well repre-
sented. But the six-category model faired worse only by a small
margin, as shown in Figure 14, which plots summed squared error
for each model’s hue-specific predictions compared with estimates
obtained from observer responses.

Comparison With Other Models

We also compared the CATMET model with two additional
models—one that uses only category encoding (CATONLY), and
one that is more similar to the prevailing approach, using only
continuous values, without categories (the METRIC model). Im-
plementation of these models is straightforward. The METRIC
model omits all steps apart from Steps 1 and 4 in the CATMET
model. It receives a noisy sample, encodes the hue of that sample,
which then becomes the basis for an inferred distribution of likely
stimulus values (from which responses are sampled). The CA-
TONLY model, in contrast, omits Steps 4 and 5. It encodes a noisy
sample only in terms of its category. It then generates a distribution
of stimulus hues likely to belong to the encoded category, and it
samples responses from only that distribution.

We simulated each of these Models 100 times for each of the
180 hues, then fitting hue-specific � and � estimates to the
generated responses (Equation 1), as we initially did for the re-

sponses of human participants. These estimates were then corre-
lated with those obtained from the human participants, with r
values for each correlation shown in Figure 15. The CATMET
model produced stronger correlations than the CATONLY model,
whereas the correlations with the METRIC model were uniformly
close to zero.

Discussion

To summarize, the CATMET model produced stimulus esti-
mates and responses that correlated relatively strongly and signif-
icantly with biases observed in human responses. Crucially, it
achieved this outcome with underlying representations that were
unbiased. Bias emerged by combining category-dependent and
value-dependent estimates obtained through simultaneous encod-
ing channels. Devising the model in this way, we sought to capture
what seems to us a commonsense way of characterizing individual
colors, as particular cases within categories, as opposed to partic-
ular cases within a general and entirely continuous color space.

General Discussion

We sought to test a three-part hypothesis: (a) that working
memory maintenance exhibits color-specific biases, (b) that these
biases originate in perception, and (c) that observers functionally
use two kinds of color information when matching colors between
objects, an estimate of hue on a continuous scale—what has been
called a “particular” in other contexts (e.g., Huttenlocher et al.,
2000)—and a probabilistic category assignment.

Figure 13. CATMET model-derived (black open circles) and observer-derived (filled circles) precision
estimates for undelayed and delayed estimation; four-category model shown. See the online article for the color
version of this figure.
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First, to test for color-specific estimation biases subsequent to
working memory maintenance, we conducted a standard delayed
estimation experiment, collecting 60 responses to each of 180
study hues. We found color-specific biases: Average estimates
frequently deviated from the study hue. Importantly, these biases
correlated significantly across independent observers. Second,
these color-specific delayed biases were significantly correlated
with color-specific biases measured in an undelayed version of the
task. This suggests perceptual origins for these effects, or mini-
mally, origins that are not dependent on imposed memory main-
tenance and an absent target stimulus. Additionally, we found
reliable patterns of differences in response precision across hues,
suggesting differences in the fidelity with which observers esti-
mate hue values among exemplars with equal contrast and lumi-
nance. To our knowledge, this is the only study to investigate
delayed estimation with confirmed equal luminance and back-
ground contrast among rendered stimuli.

To investigate the role of color categories in these effects, we
utilized a pair of experiments in which (different) groups of
observers either selected a best name for each of 180 hues, or
selected a best example for each of six color names from the basic
color terms (Berlin & Kay, 1969). Consistent with previous results
using similar tasks (e.g., Boynton & Olson, 1990; Sturges &
Whitfield, 1997; Witzel & Gegenfurtner, 2013) we observed sys-
tematic responses, with most hues receiving a single color term
reliably, some—which we interpreted as category boundaries—
receiving two names with nearly equal proportion, and with a few
hues repeatedly tagged as best examples—which we interpreted as
focal colors. The degree of bias and response precision were both
significantly predicted by a hue’s distance from the nearest cate-
gory focal color.

Finally, we presented a dual content model that can account for
the observed hue-specific estimation properties and interactions
with category landmarks. The model is critically different from
prevailing models in that it encodes noisy chromatic signals
through two channels, a high-resolution channel that records the
signal hue in continuous terms, and a coarse channel that records
only a signal’s category. It then uses each of these contents to
assess the probability that any given stimulus would have induced
the encoded contents, and it combines these assigned probabilities
to produce a jointly determined estimate of the stimulus. In this
model, the first channel is bias-free. Bias emerges through the
interaction with the category assignment: Hues that are already
good category exemplars will show less bias than hues near
boundaries, because the category distribution generated in re-
sponse to an encoded category describes the strength of each hue’s
association with a given category. These results have important
practical and theoretical implications for the study of color work-
ing memory and perception, in particular, and visual working
memory, in general.

Previous Evidence for Hue-Specific Bias and Precision

Previous work has yielded contradictory results about the rela-
tionship between color categories and color memory. For example,
Uchikawa and Shinoda (1996) reported that colors near category
borders are remembered more precisely than focal colors are (see
also Bornstein & Korda, 1984; Boynton, Fargo, Olson, & Small-
man, 1989; Pilling, Wiggett, Özgen, & Davies, 2003; Roberson &
Davidoff, 2000). In contrast, Bartleson (1960) reported that focal
colors are remembered better than boundary colors, and others
reported that they are remembered more precisely (Heider, 1972).

Figure 14. Comparison of precision (top panels) and bias (bottom panels)
estimates in undelayed (left) and delayed (right) estimation via sum of
absolute error (absolute value) for the four-category (4-CATMET) and the
six-category (6-CATMET) CATMET models. See the online article for the
color version of this figure.

Figure 15. Comparison of correlation values obtained for four-category
CATMET model, the four-category CATONLY model, and the METRIC
model, with responses of human observers. Correlations are based on
hue-specific model- and observer-derived parameter estimates. Top panel
shows precision correlations, and bottom panel shows bias correlations.
See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

14 BAE, OLKKONEN, ALLRED, AND FLOMBAUM



Still other studies have failed to find systematic relationships
between categories and fidelity of color memory; Witzel and
Gergenfurtner (2013) found that category boundaries are not
broadly predictive of stimulus-specific differences in discrimina-
tion thresholds and others have reported a lack of systematic bias
as a function of hue (Allred & Olkkonen, 2015; Jin & Shevell,
1996; Siple & Springer, 1983).

One potential explanation for these mixed results involves dif-
ferences in methodology. Alternative forced choice (AFC) meth-
ods for example may lead observers to rely on category and
particular encodings differently than they do in estimation tasks.
However, several observations suggest that our findings may gen-
eralize to other tasks. First, we previously reported hue-specific
response precision using an estimation task with a different re-
sponse method (Bae et al., 2014): an aperture through which
participants rotated a color wheel to reveal one hue at a time (see
also van den Berg et al., 2012). Hue-specific responses in this
experiment correlated significantly with responses in the standard
estimation experiment. The effects in a standard estimation task
therefore generalize to an adjustment procedure. And second, the
relative sizes of the biases we have reported here are consistent
with those reported elsewhere in tasks using AFC methods (Nemes
et al., 2010; Olkkonen & Allred, 2014). We found values up to 10°,
but with significant and systematic effects as small as 2° near focal
colors, which is the smallest measurable effect in these experi-
ments.

Two other methodological issues, both involving sampling, may
produce differences between studies. First, if study stimuli sample
only a small region of color space, or coarsely sample large regions
of color space, they are ill-quipped to uncover patterns of re-
sponses across a hue circle (Allred & Olkkonen, 2015; Hedrich,
Bloj, & Ruppertsberg, 2009; Ling & Hurlbert, 2008). Second, if
study stimuli are sampled too coarsely, this could also produce the
impression of relatively discrete and precise—as opposed to prob-
abilistic—category boundaries. To see why, consider the pattern
of results in Figures 6 and 10. We have demonstrated that bias near
boundaries is toward focal colors. Imagine that colors on either
side of the blue–green border are sampled—a between-border
discrimination. If the border colors sampled are very far from the
border, the focal bias will pull the just-green toward green and the
just-blue toward blue, and the between-category discrimination
will appear very good. If, on the other hand, the colors sampled are
very close to the border region, study colors will be easily con-
fused. Thus, many small-spaced samples across a relatively large
space may be necessary to identify the kinds of effects found in our
study.

Finally, it is important to note that, in their original report,
Zhang and Luck (2008) did investigate the possibility of category
effects—and found none. Specifically, Zhang and Luck were con-
cerned that participants may encode stimuli only in terms of color
categories, then selecting a nearby focal color value, but respecting
category boundaries when making responses. To investigate this
possibility, they conducted an appropriate analysis, generating a
heat map for responses given each target value with a memory load
of one. A category-only representation, they predicted, would
produce a staircase pattern in such a heat map; but they found a
continuous distribution, with average responses near target values.
The problem is that this analysis assumes clear, “noiseless” bound-
aries and focal colors. The noisy nature of category boundaries, in

practice, means that responses near boundaries will appear
“fuzzy,” not staircase-like, even if observers respect boundaries.
(Indeed, we were able to replicate their analysis with our data).
Likewise, the noisy focal colors will lead to continuous distribu-
tions of category responses rather than discrete ones.

With the data from our delayed estimation experiment—which
clearly include category effects—we were able to produce a heat
map of responses very similar to the one produced by Zhang and
Luck (2008), and meant to suggest an absence of category effects
(see Figure 16). In contrast, Figure 6 presents an alternative route
to detecting nonuniformity in responses—one that many groups
can easily apply to their data sets (assuming each hue has been
presented as target a sufficient number of times). There, we plotted
normalized response frequency for each hue. There are clear peaks
and valleys; retrospectively, it is clear that the biggest effects are
at the category prototypes, not the boundaries. If hues generally
elicited similar and unbiased response distributions, these overall
distributions should be close to uniform (each color was the target
equally often). The distributions clearly are not uniform. Figures 7
and 8 plot precision and bias estimates for each color with and
without delay.

Overall, a contribution of this work to ongoing research on
precision and bias as a function of category structure is in dem-
onstrating that the estimation paradigm—devised for, and until
now used only to study, working memory—can serve as an
efficient paradigm for studying color perception. Forced choice
and related psychophysical approaches require too many trials to
design experiments with 180 hues and sufficient numbers of com-
parative observations. Future work should continue to investigate
border and focal color performance, perhaps using estimation as a
means to select smaller subsets of important comparisons for use
with forced choice and related methods.

Figure 16. Heat map showing color reports as a function of a target’s true
color in delayed estimation, replicating an analysis conducted by Zhang
and Luck (2008; see their supplementary material). See the online article
for the color version of this figure.
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Color Terms and Categories: Verbal Versus
Visual Memory

Throughout this report, we have used “color categories” and
“color terms” interchangeably. But some have drawn a distinction
between linguistic labels that do not necessarily map onto under-
lying representations, and category markers in visual processing of
color. This distinction may also relate to a common distinction
between verbal and visual working memory (Baddeley & Hitch,
1974), with some arguing that color terms can be stored in verbal
working memory, whereas visual working memory traffics only in
continuous coordinates (Luck & Vogel, 2013).

Importantly, the practical implications of our work are indepen-
dent of whether the categorical channel is verbal or nonverbal. We
have demonstrated empirically that participant responses vary by
hue in ways that relate to color terms, and that these responses can
be modeled by combining probabilistic categorization with con-
tinuous hue estimates. Regardless of the underlying cause, this fact
is important for understanding behaviors guided by visual working
memory.

Theoretically, though, we would suggest that our results are
consistent with the hypothesis that categorization occurs as part of
visual processing, before any additional verbal labeling takes
place. Category effects emerged in undelayed estimation, when
resorting to verbal encoding is unnecessary, because the study hue
remained perpetually in view during response selection. Similarly,
in our previous study (Bae et al., 2014), category effects were
present with very short exposure and delay periods (100 ms each)
and with large memory loads, where verbal encoding and rehearsal
would be difficult and unlikely.

Note that categorical processing need not involve verbal re-
hearsal in principle. In the case of object orientation, for example,
degrees of tilt are coded within the context of associated category
labels related to object-internal axes and external frames of refer-
ences. Roughly, this can be thought of as coding an object as “the
top of the object is tilted to the left, by 30 degrees’” in contrast
with “tilted 330 degrees.” Categorical, nonverbal encoding of
orientation appears critical for explaining neuropsychological dys-
function as well as performance asymmetries with healthy partic-
ipants (adults and children; Gregory, Landau, & McCloskey, 2011;
Gregory & McCloskey, 2010; McCloskey, 2009; McCloskey, Val-
tonen, & Sherman, 2006; Valtonen, Dilks, & McCloskey, 2008).
Similar conclusions have been reached in the context of orientation
and visual search, in which it has been suggested that objects are
preattentively categorized as “steep,” “shallow,” “tilted-left,” and
“tilted-right,” with attentive processing then augmenting these
representations with continuous angular values (Wolfe, Friedman-
Hill, Stewart, & O’Connell, 1992; see also Foster & Ward, 1991;
Treisman & Gormican, 1988).

In the case of color, whether nonverbal categorization takes
place has long been an important question (along with broader
questions about the impacts on perception of verbal categoriza-
tion). Evidence that is consistent with nonverbal categorization
taking place within perception includes neural evidence of early
categorical encoding in the brain (Bird et al., 2014; Stoughton &
Conway, 2008), categorical color constancy in perception of real-
world scenes (Olkkonen et al., 2010), and categorical effects on
visual search for colored targets (Daoutis et al., 2006). The re-
ported results contribute to this body of evidence by demonstrating

that categorization influences matching performance even with an
in-view stimulus. Strengthening this evidence, as well, is the
reported reliability of interobserver category judgments and the
ability to predict categorical influences on matching performance
in one group of participants based on category landmarks identi-
fied by other individuals.

Nonuniform Visual Memory

The empirical results presented here falsify key assumptions
built into current models of working memory. Specifically, we
have demonstrated that the fidelity of working memory—both in
terms of bias and precision—is not uniform across hues with equal
luminance and equal chromatic contrast with the background.
These results suggest that conclusions previously drawn about
working memory utilizing delayed estimation should be reexam-
ined, having incorporated inaccurate assumptions into data analy-
sis and interpretation.

As one example, consider the debate about whether or not
observers ever “drop” items from memory—perhaps because of a
fixed capacity limit (see, e.g., Luck & Vogel, 2013; Ma, Husain, &
Bays, 2014). Because the question is about whether some re-
sponses amount to random guesses, average angular error cannot
be used to compare theories; it would conflate target-directed and
“guess” responses. This calculus led Zhang and Luck (2008) to
their influential mixture model (Equation 1), designed to estimate
average guessing rate and average response precision by best
accounting for the individual angular errors that participants pro-
duce on each trial. The fitting seeks parameters that manage the
trade-off between lowering precision and, effectively, counting
fewer responses as guesses (see also Suchow, Fougnie, Brady, &
Alvarez, 2014). But in the way the fitting has been done, it
incorporates the assumption that all target-directed responses
should look more or less the same, or equivalently, that no target-
directed responses should look more guess-like than ones directed
to any other target. Our results invalidate this assumption: Some
color targets do tend to elicit responses that are more distributed
than others and with means distant from the target, responses that
would look like guesses under a high-precision, unbiased assump-
tion applied to all colors equally.

The same concerns apply to many modifications, extensions,
and proposed alternatives to the Zhang and Luck (2008) model.
For example, Bays and colleagues (2009) proposed that in addition
to target-directed and guess responses, observers sometimes make
non-target-directed responses, arising from feature and object mis-
bindings (Treisman & Gelade, 1980). To estimate the frequency of
these occurrences, they added a misbinding term to the Zhang and
Luck model. In this case, the misbinding term included the same
precision parameter as the target-directed term in the model. In
other words, it implemented a uniformity assumption in two
places. On this basis, Bays and colleagues argued that previous
models produced the appearance of high guessing rates—inter-
preted to demonstrate fixed capacity limits—because they misat-
tributed misbinding as guessing.

It may turn out that deriving an estimated misbinding rate with
a base that is more similar to our model (or some other set of
nonuniform expectations) will produce very similar estimates as
those obtained previously. But at this stage, the question remains
open, empirical, and nontrivial. Assigning a probability to a given
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response under the assumption that it reflects a misbinding de-
pends on the probability one would assign were it actually a
response to the same hue in the case that the hue were the actual
target. Just like estimating guessing rates, accurately estimating
misbinding rates depends on one’s expectations about what target-
directed responses will look like for each hue, and we have
demonstrated that those expectations should not be uniform.

A final example concerns recent models that propose stochastic
causes of intertrial and interitem precision (e.g., van den Berg et
al., 2012; see also Fougnie et al., 2012). Essentially, these models
propose that representational precision does not have the same
value at all moments in time, and should itself be thought of as
drawn from a (gamma) distribution. To account for seemingly
unlikely responses as nonetheless target-directed, the models ulti-
mately suggest that with some frequency, precision is very low,
making large angular-error responses more likely than they might
otherwise appear (i.e., given a single precision value applied to all
trials). The radical significance of this hypothesis is in the sugges-
tion that there may be no fixed capacity limits in working memory
whatsoever, evident in the complete absence of guessing responses
in model fits.

But the methodological and analytical problem here should be
clear: If each trial has a different target color, and different colors
tend to produce different response distributions—some that are
relatively biased and imprecise—then color-driven trial-by-trial
variability needs to be accounted for before further stochastic
variability can be evaluated. The relevant models were fit under an
assumption of color uniformity.

None of the studies just mentioned are unique with respect to a
uniformity assumption. In fact, all delayed estimation experiments
we are aware of, including those investigating other visual fea-
tures, appear to assume uniformity. And there are reasons to expect
that nonuniformity extends to other stimulus domains. Orientation
is probably the second most common feature in studies of visual
working memory with delayed estimation. All the relevant studies
in this domain also seem to assume representational uniformity.
But there are extant results that should give pause. There are
known orientation-dependent asymmetries in visual search (Foster
& Ward, 1991; Treisman & Gormican, 1988; Wolfe et al., 1992),
there are theories of orientation representation that rely on cate-
gorical variables (McCloskey, 2009), and the accuracy of orienta-
tion estimation is known to depend on orientation, apparently
driven by prior expectations over orientation frequencies (Gir-
shick, Landy, & Simoncelli, 2011).

Thus, we suspect that uniformity assumptions are violated in
practice in all, or nearly all, estimation experiments in which they
have been applied—certainly in all cases pertaining to color.
Recognizing this may turn out to be a positive development.
Debates concerning the underlying structure of visual working
memory appear intransigent. Perhaps the impasse is to some de-
gree caused by unexpected perceptual nonuniformity interacting
with individual stimulus and data sets.

Finally, we note that there are many ways to formally charac-
terize nonuniformities in a relevant feature space. The CATMET
model does so on the basis of category identification experiments
of a manageable size, and it is a natural extension of the original
Zhang and Luck (2008) mixture model. In particular, CATMET
uses a single precision value, but produces nonuniform estimates
through a combination of hue information with category informa-

tion. In this way, it may supply a quick, initial method for estab-
lishing parameter estimates for guessing rates, precision, and mis-
binding rates as a function of memory load. We hope that further
research will identify alterations that can more completely model
stimulus-specific response properties and also illuminate the na-
ture of visual working memory limits.

Categories as Priors

The main theoretical contribution of this work is to support the
hypothesis that estimation abilities for color rely on both contin-
uous and categorical representations, even when a stimulus is in
view. What appears, in aggregated responses, as differences in the
memorability of different colors is the consequence of a tendency
to categorize colors such that some are better examples of a given
category than others, and with some as reasonable examples of
more than one category. Colors are more accurately and precisely
remembered when they are good examples of their respective
categories.

The CATMET model was inspired by related models described
by Huttenlocher and colleagues (2000) in the case of spatial
memory, and thus it relied on a category-encoding channel. This
seems intuitive to us in the case of color, in which typical discourse
will refer to particulars within a category as opposed to just
particulars. To pump intuition: It seems that a paint buyer is more
likely to hold up a sample and say, “We want this blue,” than to
say, “We want this color.”

But there are other ways one might arrive to similar outcomes.
One important possibility is that perceptual context effects elicit
the bias: Embedding a hue in the color wheel may alter its
perception compared with the study hue. Perhaps the color wheel
itself draws responses to particular points: category centers. Could
the results be a response bias caused by perception of the color
wheel, rather than any actual encoding of the study hue’s category?
Although this kind of perceptual context effect may play a role in
estimation without delay, we note that the effects were even larger
in the memory experiment. Thus, the bias is not purely a percep-
tual context effect.

A more thorny issue concerns whether the samples were actu-
ally encoded as categories, as our model and theorizing suggest.
Perhaps a purely metric encoding interacts with a perceptual
context effect at the wheel to produce response bias. In this case,
the noisier metric encoding during estimation with delay would
increase the relative weight of the perceptual context effect. For
example, an observer may encode the sample as #136, but upon
inspecting the wheel, note that #139 is a better example of the kind
of category that #136 belongs to. There are a number of reasons to
think this is not the best explanation for the effects. Specifically, in
our previous work (Bae et al., 2014), we found the same pattern of
stimulus specific effects using a different response method—an
aperture for viewing a single color at a time with the wheel rotating
below. Similar biases have also been found in research with AFC
methods (Nemes et al., 2010; Olkkonen & Allred, 2014). Thus, it
seems inaccurate to describe the effects as merely response bias,
driven by the response method.

But there is one other alternative that may suggest a useful
distinction between working memory and long-term memory in the
mechanisms that support color matching. This alternative relies on
long-term memory to encode a prior over hues that can reflect
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category structure. That is, from a more typical Bayesian perspec-
tive, a nonuniform prior over hues—with higher probabilities at
focal colors—might produce the effects without an explicitly cat-
egorical encoding of each instance. We cannot exclude this pos-
sibility based on our current analyses, and we welcome future
investigation of related models that are more traditionally Bayes-
ian. Indeed, the consequences of a categorical encoding channel in
the CATMET model are not very different from those that would
be expected from a general prior over colors. The latter would bias
participants away from any unlikely hues. In the case of CATMET, the
impact of category encoding is ultimately to bias participants away
from unlikely hues within a known category.

Operationalizing the impact of categories through a Bayesian
prior has the advantage of connecting delayed and undelayed hue
estimation to the much larger program of research involved in
resolving memory as well as perceptual uncertainty. Bayesian
priors are expected to apply to the perceptual appearance of
stimuli, even in view. In perceptual contexts, Bayesian models
have successfully explained stimulus-specific patterns of bias in
many domains, including size (Ashourian & Loewenstein, 2011),
time (Jazayeri & Shadlen, 2010), motion speed (Stocker & Simo-
ncelli, 2006), and orientation (Girshick et al., 2011). Given noisy
signals that depend on interactions with viewing conditions, priors
facilitate perception by directing observers away from generally
unlikely conclusions, and toward generally likely ones. Such pri-
ors—whether implemented as priors or as category encoding—
should have stronger effects when signals are noisier. Under the
presumption that signals associated with absent objects are noisier
than signals associated with viewable ones, it makes sense that an
imposed memory delay appears to have the impact of increasing
category-related biases compared with undelayed conditions. From
this perspective, perception and working memory are perhaps less
distinct than typically portrayed. Both face the challenge of esti-
mating properties of the physical world from noisy sensory signals.

Conclusion

Interest in working memory has largely focused on the nature of
underlying limits that restrict the amount and quality of content
that the system can store. Relatively neglected, however, has been
the nature of the content itself—the variables whose values the
system stores in order to describe a stimulus. We have shown that
in the case of color working memory, assumed contents inaccu-
rately omit categorical variables, and as a result, produce unwar-
ranted assumptions about content uniformity in the system’s out-
puts. This demonstrates how limits on content cannot be studied
effectively without also characterizing content empirically. More-
over, a research program that considers the contents of working
memory systems inherently situates the system within a broader
suite of behavior-guiding mechanisms. The contents of working
memory are usually acquired from perceptual inputs, and the
nature of working memory outputs depends not only how much it
stores but also on what it stores.
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