Results without the UK

In the paper I classified the UK electoral system as a strict list system. I think I made a correct choice but someone might disagree with me on this point. Here I repeat the same analysis as in the paper but the UK observations are exluded (i.e. n=59). The results show that the classification does indeed matter. If one looks at these results the conclusion would be that multiple constituencies is a more important variable than strict partly list. Go and figure it out! However, in model 1b and 3b the list variable has the expected sign and the coeffiecient is almost statistically significant. So maybe I am correct after all?

Summary:

Compulsory voting         ++++++
Simultanous elections     ++++++
Weekend voting            ++++++
Country net payer         ----- 
Country net receiver      
Share of seats            + 
Strict party lists         
Multiple constituencies   +++++
New member country        ++

Model 1A


--> REGRESS;Lhs=EPELEC;Rhs=ONE, compulso, arrival, concurr, seatshar, restday...
    ,constitu, netpayer, netrecei$

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = EPELEC   Mean=   62.69152542    , S.D.=   17.67353650     |
| Model size: Observations =      59, Parameters =  10, Deg.Fr.=     49 |
| Residuals:  Sum of squares= 3302.043595    , Std.Dev.=        8.20906 |
| Fit:        R-squared=  .817733, Adjusted R-squared =          .78426 |
| Model test: F[  9,     49] =   24.43,    Prob value =          .00000 |
| Diagnostic: Log-L =   -202.4478, Restricted(b=0) Log-L =    -252.6651 |
|             LogAmemiyaPrCrt.=    4.367, Akaike Info. Crt.=      7.202 |
| Autocorrel: Durbin-Watson Statistic =   1.25715,   Rho =       .37142 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant  46.39398369      2.9655269       15.644   .0000
 COMPULSO  24.90475894      3.2969194        7.554   .0000  .30508475
 ARRIVAL   5.359927127      4.1744657        1.284   .2052  .10169492
 CONCURR   10.58629589      2.8035311        3.776   .0004  .28813559
 SEATSHAR  .1898178410      .37033913         .513   .6106  7.5910619
 RESTDAY   3.217765529      3.9109664         .823   .4146  .74576271
 LIST      4.697905187      6.5323645         .719   .4754  .38983051
 CONSTITU  10.55133549      4.7439901        2.224   .0308  .25423729
 NETPAYER -4.571962576      3.0327179       -1.508   .1381  .20338983
 NETRECEI -7.606194198      5.0320783       -1.512   .1371  .30508475

Model 1B

--> REGRESS;Lhs=EPELEC;Rhs=ONE, compulso, arrival, concurr, seatshar, restday...
    ,constitu, netpayer, netrecei, y1999,italcomp, finland, sweden, france$

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = EPELEC   Mean=   62.69152542    , S.D.=   17.67353650     |
| Model size: Observations =      59, Parameters =  15, Deg.Fr.=     44 |
| Residuals:  Sum of squares= 1289.852577    , Std.Dev.=        5.41432 |
| Fit:        R-squared=  .928802, Adjusted R-squared =          .90615 |
| Model test: F[ 14,     44] =   41.00,    Prob value =          .00000 |
| Diagnostic: Log-L =   -174.7174, Restricted(b=0) Log-L =    -252.6651 |
|             LogAmemiyaPrCrt.=    3.605, Akaike Info. Crt.=      6.431 |
| Autocorrel: Durbin-Watson Statistic =   1.99423,   Rho =       .00288 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant  45.76760861      2.5145439       18.201   .0000
 COMPULSO  23.47711093      3.0735836        7.638   .0000  .30508475
 ARRIVAL   4.361426313      3.1069790        1.404   .1674  .10169492
 CONCURR   10.57509546      2.0339369        5.199   .0000  .28813559
 SEATSHAR  1.030569193      .38939155        2.647   .0112  7.5910619
 RESTDAY   11.94399836      3.0992107        3.854   .0004  .74576271
 LIST     -10.21411532      6.0363661       -1.692   .0977  .38983051
 CONSTITU  3.988590709      3.5161440        1.134   .2628  .25423729
 NETPAYER -8.595514518      2.6470120       -3.247   .0022  .20338983
 NETRECEI -3.406436166      4.4301980        -.769   .4461  .30508475
 Y1999    -6.550035928      1.8914082       -3.463   .0012  .23728814
 ITALCOMP -24.17208348      5.8242248       -4.150   .0001  .50847458E-01
 FINLAND  -19.48889256      4.7158958       -4.133   .0002  .33898305E-01
 SWEDEN   -11.69359632      5.4390232       -2.150   .0371  .33898305E-01
 FRANCE   -10.19644500      3.7651556       -2.708   .0096  .84745763E-01

Model 2a

--> REJECT; country=11$
--> REGRESS;Lhs=differen;Rhs=ONE, compulso, arrival, concurr, seatshar, restd...
    ,constitu, netpayer, netrecei$

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = DIFFEREN Mean=  -17.96237288    , S.D.=   14.30231044     |
| Model size: Observations =      59, Parameters =  10, Deg.Fr.=     49 |
| Residuals:  Sum of squares= 2081.088180    , Std.Dev.=        6.51699 |
| Fit:        R-squared=  .824592, Adjusted R-squared =          .79237 |
| Model test: F[  9,     49] =   25.59,    Prob value =          .00000 |
| Diagnostic: Log-L =   -188.8291, Restricted(b=0) Log-L =    -240.1779 |
|             LogAmemiyaPrCrt.=    3.905, Akaike Info. Crt.=      6.740 |
| Autocorrel: Durbin-Watson Statistic =   1.59164,   Rho =       .20418 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant -33.88490096      2.3542669      -14.393   .0000
 COMPULSO  12.40615592      2.6173522        4.740   .0000  .30508475
 ARRIVAL   2.797467322      3.3140170         .844   .4027  .10169492
 CONCURR   13.47510910      2.2256621        6.054   .0000  .28813559
 SEATSHAR -.1015868906      .29400414        -.346   .7312  7.5910619
 RESTDAY   6.584442066      3.1048307        2.121   .0390  .74576271
 LIST      8.330552217      5.1859014        1.606   .1146  .38983051
 CONSTITU  11.01604866      3.7661500        2.925   .0052  .25423729
 NETPAYER -7.586974605      2.4076084       -3.151   .0028  .20338983
 NETRECEI -2.208916937      3.9948569        -.553   .5828  .30508475


Model 2b

--> REJECT; country=11$
--> REGRESS;Lhs=differen;Rhs=ONE, compulso, arrival, concurr, seatshar, restd...
    ,constitu, netpayer, netrecei , y1999,italcomp, luxembou, sweden
    $

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = DIFFEREN Mean=  -17.96237288    , S.D.=   14.30231044     |
| Model size: Observations =      59, Parameters =  14, Deg.Fr.=     45 |
| Residuals:  Sum of squares= 1085.671849    , Std.Dev.=        4.91183 |
| Fit:        R-squared=  .908492, Adjusted R-squared =          .88206 |
| Model test: F[ 13,     45] =   34.37,    Prob value =          .00000 |
| Diagnostic: Log-L =   -169.6337, Restricted(b=0) Log-L =    -240.1779 |
|             LogAmemiyaPrCrt.=    3.396, Akaike Info. Crt.=      6.225 |
| Autocorrel: Durbin-Watson Statistic =   2.12660,   Rho =      -.06330 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant -36.41620420      2.1926655      -16.608   .0000
 COMPULSO  11.71614953      2.7142542        4.317   .0001  .30508475
 ARRIVAL   7.203020943      3.1085821        2.317   .0251  .10169492
 CONCURR   8.459388037      2.0740786        4.079   .0002  .28813559
 SEATSHAR  .4479033947      .35129690        1.275   .2089  7.5910619
 RESTDAY   7.671197007      2.9112560        2.635   .0115  .74576271
 LIST      2.202065287      5.7091204         .386   .7015  .38983051
 CONSTITU  11.78838749      3.6815768        3.202   .0025  .25423729
 NETPAYER -7.455142531      2.1426027       -3.479   .0011  .20338983
 NETRECEI  3.022871996      3.7185609         .813   .4205  .30508475
 Y1999    -3.084742974      1.7550333       -1.758   .0856  .23728814
 ITALCOMP -12.75006093      5.3506814       -2.383   .0215  .50847458E-01
 LUXEMBOU  12.98014996      4.4969730        2.886   .0060  .84745763E-01
 SWEDEN   -11.58309065      4.7175343       -2.455   .0180  .33898305E-01

Model 3a


--> REGRESS;Lhs=EPELEC;Rhs=ONE, compulso, arrival, concurr, seatshar, restday...
    ,constitu, netpayer, netrecei, npelec$

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = EPELEC   Mean=   62.69152542    , S.D.=   17.67353650     |
| Model size: Observations =      59, Parameters =  11, Deg.Fr.=     48 |
| Residuals:  Sum of squares= 2051.360969    , Std.Dev.=        6.53733 |
| Fit:        R-squared=  .886769, Adjusted R-squared =          .86318 |
| Model test: F[ 10,     48] =   37.59,    Prob value =          .00000 |
| Diagnostic: Log-L =   -188.4047, Restricted(b=0) Log-L =    -252.6651 |
|             LogAmemiyaPrCrt.=    3.926, Akaike Info. Crt.=      6.759 |
| Autocorrel: Durbin-Watson Statistic =   1.56638,   Rho =       .21681 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant -23.16144958      13.072627       -1.772   .0828
 COMPULSO  14.07568786      3.3015924        4.263   .0001  .30508475
 ARRIVAL   3.139754254      3.3495967         .937   .3533  .10169492
 CONCURR   13.08922870      2.2800452        5.741   .0000  .28813559
 SEATSHAR -.6266177991E-01  .29859174        -.210   .8347  7.5910619
 RESTDAY   6.134729887      3.1608517        1.941   .0582  .74576271
 LIST      7.845312369      5.2345194        1.499   .1405  .38983051
 CONSTITU  10.95397344      3.7786364        2.899   .0056  .25423729
 NETPAYER -7.184236886      2.4629240       -2.917   .0054  .20338983
 NETRECEI -2.929871650      4.0994987        -.715   .4783  .30508475
 NPELEC    .8664225166      .16016094        5.410   .0000  80.653898

Model 3b

--> REGRESS;Lhs=EPELEC;Rhs=ONE, compulso, arrival, concurr, seatshar, restday...
    ,constitu, netpayer, netrecei, npelec
    , y1999,italcomp, luxembou, sweden
    $

+-----------------------------------------------------------------------+
| Ordinary    least squares regression    Weighting variable = none     |
| Dep. var. = EPELEC   Mean=   62.69152542    , S.D.=   17.67353650     |
| Model size: Observations =      59, Parameters =  15, Deg.Fr.=     44 |
| Residuals:  Sum of squares= 1028.446251    , Std.Dev.=        4.83464 |
| Fit:        R-squared=  .943232, Adjusted R-squared =          .92517 |
| Model test: F[ 14,     44] =   52.22,    Prob value =          .00000 |
| Diagnostic: Log-L =   -168.0363, Restricted(b=0) Log-L =    -252.6651 |
|             LogAmemiyaPrCrt.=    3.378, Akaike Info. Crt.=      6.205 |
| Autocorrel: Durbin-Watson Statistic =   2.13632,   Rho =      -.06816 |
+-----------------------------------------------------------------------+
+---------+--------------+----------------+--------+---------+----------+
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X|
+---------+--------------+----------------+--------+---------+----------+
 Constant -20.74887399      10.242952       -2.026   .0489
 COMPULSO  14.82021308      3.3276061        4.454   .0001  .30508475
 ARRIVAL   7.016536551      3.0620550        2.291   .0268  .10169492
 CONCURR   8.278748372      2.0447487        4.049   .0002  .28813559
 SEATSHAR  .5989759096      .35900355        1.668   .1023  7.5910619
 RESTDAY   7.497292883      2.8676639        2.614   .0122  .74576271
 LIST     -.2643223813      5.8362987        -.045   .9641  .38983051
 CONSTITU  10.68081444      3.6922134        2.893   .0059  .25423729
 NETPAYER -6.972413586      2.1313809       -3.271   .0021  .20338983
 NETRECEI  2.744334773      3.6644548         .749   .4579  .30508475
 NPELEC    .8018445461      .12664129        6.332   .0000  80.653898
 Y1999    -3.634952348      1.7628816       -2.062   .0452  .23728814
 ITALCOMP -15.02830579      5.4641666       -2.750   .0086  .50847458E-01
 LUXEMBOU  11.56416772      4.5178705        2.560   .0140  .84745763E-01
 SWEDEN   -11.05695089      4.6555635       -2.375   .0220  .33898305E-01