
biMM vignette

Matti Pirinen∗& Christian Benner
University of Helsinki

November 15, 2016

1 Introduction
biMM is a software package to efficiently estimate variance parameters of a
bivariate lineax mixed model (LMM) in the following context arising in genetics
research.

Consider the bivariate LMM for n individuals: Y = G + ε, where Y =(
Y T

1 ,Y
T
2

)T
is 2n-vector of mean-centered phenotype values, G ∼ N (0,ΣG) is

2n-vector of genetic random effects and ε ∼ N (0,Σε) is 2n-vector of environ-
mental random effects. The (2n)×(2n) covariance structures are parameterized
by six parameters: genetic variances VG1 and VG2, genetic covariance VG12,
environmental variances Vε1 and Vε2 and environmental covariance Vε12 as

ΣG =

 VG1R VG12R

VG12R VG2R

 and Σε =

 Vε1I Vε12I

Vε12I Vε2I


expressed as n × n block matrices. I is the identity matrix. Typically the
element i, j of the genetic realtionship matrix (GRM) R is

Rij =
1

K

K∑
k=1

(
gik − 2f̂k

)(
gjk − 2f̂k

)(
2f̂k

(
1− f̂k

))α
,

where gik is the genotype of individual i at variant k, coded as 0, 1 or 2 copies
of the minor allele and f̂k is the minor allele frequency (MAF) and α = −1.
However, any other form for R could also be used.

An estimate of VGt approximates additive genetic variance of each trait (t =
1, 2) explained by the variants included in the calculation of R. An estimate of
the genetic correlation ρG = VG12/

√
VG1VG2 measures (average) correlation of

the allelic effects of the variants on the two traits. Similarly, we can estimate
ρε = Vε12/

√
Vε1Vε2, the correlation in the environmental components between

the phenotypes.
∗correspondence to matti.pirinen@helsinki.fi

1



2 The implementation
biMM is implemented through a biMM.data reference class (type "?biMM.data"
in R for help). An object from that class holds the data and provides a set of
functions for the analysis. This way we avoid copying the large data matrices
as we operate on them using the given functions defined in the reference class.
Still, sometimes you might want to manually examine the biMM.data in more
detail, which you can do by accessing the fields

• ’traits’, data.frame, phenotype values,

• ’trait.cor’, matrix, Pearson correlations of traits,

• ’relatedness’, matrix, GRM,

• ’IndID’, vector, IDs of individuals,

• ’Included’, vector, which individuals are included in current ’U’ and ’d’,

• ’U’, matrix, eigenvectors of ’Included’ individuals,

• ’d’, vector, eigenvalues of ’Included’ individuals.

Each field can be accessed by ’x$field’ where x is a biMM.data object.
Install biMM package

install.packages("biMM_1.0.0.tar.gz", repos = NULL)

Load biMM package and create a new biMM.data object ’x’

library("biMM")

## Loading required package: methods

x = biMM.data()

2.1 Data handling
Load genetic relationship matrix (GRM) and phenotype data for individuals
from the extdata directory of the biMM package. Note that GRM comes with
an .id file that contains the two columns of IDs for the individuals. The name
of the .id file is always the name of GRM file extended by ’.id’, typically ending
in ’.grm.id’. Therefore we will remove the trailing ’.gz’ from the name of the
gzipped GRM file below.

tr.file = system.file("extdata", "biMM_example.tr", package = "biMM")
grm.file = system.file("extdata", "biMM_example.grm.gz", package = "biMM")
grm.file = gsub(".gz$", "", grm.file, perl=T) #remove trailing .gz
x$read.traits.grm(tr.file,grm.file)

2



## Reading traits from biMM/extdata/biMM_example.tr
## Using ID column 2.
## Read data for 868 individuals on 4 traits.
## Reading IDs from biMM/extdata/biMM_example.grm.id
## Can't find grm file: biMM/extdata/biMM_example.grm.
## ---> Trying .gz instead.
## Reading grm from biMM/extdata/biMM_example.grm.gz
## Read relatedness matrix for 868 individuals.

x$nInd #How many individuals do we have?

## [1] 868

x$printTraits() #What are the trait names in phenotype file?

## [1] "T1" "T2" "T3" "T4"

x$IndID[1:6] #Who are the first 6 individuals?

## [1] "IND1" "IND2" "IND3" "IND4" "IND5" "IND6"

Check if there are highly related pairs of individuals

x$relatedPairs(0.8)

## Finds related above threshold 0.8.
## Found 3 pairs of related individuals.
## ind1 ind2 r
## 1 IND188 IND187 0.9866931
## 2 IND533 IND386 0.9902936
## 3 IND553 IND403 1.0049880

These three pairs might be duplicates or identical twins and we want to do
some exclusions. Let’ s find a minimum set of individuals to remove and then
remove them:

exc.set = x$minimum.set.of.relateds.to.exclude(x$relatedPairs(0.8))

## Finds an approximate minimum vertex cover of relatedness graph.
## Finds related above threshold 0.8.
## Found 3 pairs of related individuals.
## Starts with 3 pairs involving 6 unique individuals.
## Suggests excluding 3 individuals.

x$excludeInd(exc.set)

## Excludes 3 individuals.
## Remaining 865 individuals.

3



For this case we ended up removing one individual from each highly related
pair. In more complex cases it may, however, be possible that we can get rid of
all related pairs by removing less than half of the individuals reported in those
pairs, since some individuals may be members of several pairs. Therefore it is a
good idea to use ’minimum.set.of.relateds.to.exclude()’ to define a more optimal
set of exclusions than what the naive approach might give.

Look basic stats of the traits:

summary(x$traits)

## T1 T2
## Min. :-3.262000 Min. :-3.283000
## 1st Qu.:-0.626700 1st Qu.:-0.602900
## Median :-0.009843 Median :-0.039130
## Mean :-0.000342 Mean : 0.001888
## 3rd Qu.: 0.679700 3rd Qu.: 0.653350
## Max. : 3.204000 Max. : 3.869000
## NA's :16 NA's :14
## T3 T4
## Min. :-3.263000 Min. :-2.897000
## 1st Qu.:-0.664350 1st Qu.:-0.706050
## Median : 0.008850 Median :-0.053720
## Mean : 0.002305 Mean :-0.000483
## 3rd Qu.: 0.687400 3rd Qu.: 0.691200
## Max. : 2.762000 Max. : 3.895000
## NA's :22 NA's :17

x$trait.cor #the same as cor(x$traits,method="pearson",use="pairwise")

## T1 T2 T3 T4
## T1 1.000000000 0.51823970 -0.1173029 0.008330821
## T2 0.518239702 1.00000000 -0.1056435 0.048712393
## T3 -0.117302885 -0.10564351 1.0000000 -0.348712146
## T4 0.008330821 0.04871239 -0.3487121 1.000000000

If we wanted to exclude some traits (say, T3 and T4) it could be done like
this:

#x$excludeTrait(c("T3","T4"))

But we have commented it out for now as in the following we consider all
the traits.

2.2 Univariate analysis
Let’s order the traits for univariate heritability analysis. The ordering is im-
portant to speed up the analysis if some traits are measured on completely

4



overlapping individuals. Additionally, assuming we tolerate some missing data,
a partial overlap also speeds up the computation. Let’s allow mean imputing
trait values for at most 20 individuals and dropping at most 30 individuals from
the analysis if by these criteria we can increase sample overlap between adjacent
traits. (For multivariate normal imputation of trait values see the end of this
document.)

tr.ord = x$order.for.heritability(trait.names=NULL,
start.trait=NULL, allow.impute=20, allow.set.missing=30)

## Found 4 traits from trait data.
## Searching for the best starting point:
##
25 % done.
50 % done.
75 % done.
100 % done.

## first_trait new_eigen median.imputed median.ignored
## 1 T1 2 15.5 16.0
## 2 T2 2 16.0 13.5
## 3 T3 1 14.0 21.0
## 4 T4 2 14.5 16.5
## Starts from T3

We see that by starting from T3 we need to do only one eigendecomposition
whereas by starting from any other trait we would need to do two eigendecom-
positions. If we would not tolerate any imputation or setting data to missing
(allow.impute=0 and allow.set.missing=0) then we would need to do all possible
4 eigendecompositions. For larger data sets this would make a big difference in
run time. Input parameter ’trait.names’ would hold the traits included in the
analysis (default NULL value considers all traits) and ’start.trait’ would define
the first trait in the ordering (default NULL makes biMM iterate through all
possible starting points to find one leading to the smallest number of eigende-
compositions). Note that if there were hundreds of traits, it may in some cases
be useful to fix a start.trait in order to speed up the ordering process. Let’s
see how this ordering would behave with respect to eigendecompositions and
missing / imputed data without doing any actual computations:

x$heritability(tr.ord, allow.impute=20, allow.set.missing=30,
computation=FALSE, normalize=TRUE)

## Trait N N_imputed N_ignored Herit SE new_eigen
## 1 T3 843 0 843 NA NA 1
## 2 T2 830 13 21 NA NA 0
## 3 T4 827 16 21 NA NA 0
## 4 T1 828 15 21 NA NA 0

5



Thus requires one eigen decomposition (for T3) and imputing at most 16
and ignoring at most 21 individuals. N is the effective number of individuals
and does not count the imputed or ignored trait values. N is used for computing
standard errors adjusted for the amount of observed data. Let’s do the analysis:

x$heritability(tr.ord, allow.impute=20, allow.set.missing=30,
computation=TRUE, normalize=TRUE)

## Estimates heritability of 4 traits.
## Trait: T3
## Would need to impute 0 and set missing 843 individuals...
## ...too much. --- Does an eigen decomposition for 843 individuals.
## Trait: T2
## Would need to impute 13 and set missing 21 individuals...
## ...OK. --- No eigen decomposition.
## Trait: T4
## Would need to impute 16 and set missing 21 individuals...
## ...OK. --- No eigen decomposition.
## Trait: T1
## Would need to impute 15 and set missing 21 individuals...
## ...OK. --- No eigen decomposition.
## Trait N N_imputed N_ignored Herit SE
## 1 T3 843 0 0 0.9104370 0.07084176
## 2 T2 830 13 21 0.6566776 0.07970500
## 3 T4 827 16 21 0.4262978 0.08569358
## 4 T1 828 15 21 0.7756641 0.07710069
## new_eigen
## 1 1
## 2 0
## 3 0
## 4 0

2.3 Bivariate analysis
Let’s again allow imputing trait values for at most 20 individuals and dropping
at most 30 individuals from the analysis if by these criteria we can increase
sample overlap between adjacent pairs of traits. To order the traits:

tr.ord = x$order.for.bivariate.heritability(trait.pairs=NULL,
start.pair=NULL, allow.impute=20, allow.set.missing=30)

## Found 6 trait pairs from trait data.
## Searching for the best starting point:
##

6



16.7 % done.
33.3 % done.
50 % done.
66.7 % done.
83.3 % done.
100 % done.

## first_pair_1 first_pair_2 new_eigen median.imputed
## 1 T2 T1 2 16.0
## 2 T3 T1 1 16.0
## 3 T3 T2 1 16.0
## 4 T4 T1 2 17.5
## 5 T4 T2 2 16.0
## 6 T4 T3 1 16.0
## median.ignored
## 1 16.0
## 2 6.5
## 3 6.5
## 4 16.0
## 5 15.5
## 6 6.5
## Starts from pair T3 -- T1

and to check how this would work (without doing computations) you could
run

x$bivariate.heritability(tr.ord, allow.impute=20,
allow.set.missing=30, computation=FALSE, normalize=TRUE)

Let’s do the computations

x$bivariate.heritability(tr.ord , allow.impute=20,
allow.set.missing=30, computation=TRUE, normalize=TRUE)

## Estimates bivariate model of 6 pairs.Traits: T3 T1
## Would need to impute for 15 individuals and set missing values
## for 0 individuals ...OK. --- No eigen decomposition.
## Traits: T3 T2
## Would need to impute for 13 individuals and set missing values
## for 0 individuals ... OK. --- No eigen decomposition.
## Traits: T4 T3
## Would need to impute for 16 individuals and set missing values
## for 0 individuals ... OK. --- No eigen decomposition.
## Traits: T4 T2
## Would need to impute for 28 individuals and set missing values
## for 20 individuals ... too much. --- Does an eigen decomposition

7



## for 835 individuals.
## Traits: T4 T1
## Would need to impute for 16 individuals and set missing values
## for 13 individuals ... OK. --- No eigen decomposition.
## Traits: T2 T1
## Would need to impute for 16 individuals and set missing values
## for 16 individuals ... OK. --- No eigen decomposition.
## Optimized with BFGS: 6 NM: 0
## Trait1 Trait2 N N_imputed N_ignored Vg1
## 1 T3 T1 828 15 0 0.8934000
## 2 T3 T2 830 13 0 0.8714523
## 3 T4 T3 827 16 0 0.4242683
## 4 T4 T2 835 0 0 0.4713549
## 5 T4 T1 819 16 13 0.4591180
## 6 T2 T1 819 16 16 0.6396743
## Vg1_SE Ve1 Ve1_SE Vg2 Vg2_SE
## 1 0.10462581 0.09972146 0.06900432 0.7684915 0.10104619
## 2 0.10393556 0.12443820 0.06963678 0.6472959 0.09620165
## 3 0.09119358 0.55802425 0.08092243 0.8813337 0.10345914
## 4 0.09495813 0.52964710 0.08237684 0.6650321 0.09630476
## 5 0.09451116 0.52297189 0.08214701 0.7968151 0.10132537
## 6 0.09480605 0.33956306 0.07306623 0.7959815 0.10123264
## Ve2 Ve2_SE cor_g cor_g_SE cor_e
## 1 0.2196151 0.07196900 -0.25286604 0.08501530 0.608416692
## 2 0.3382069 0.07398375 -0.15925638 0.09250376 0.065862495
## 3 0.1093856 0.06863228 -0.59193666 0.09117581 0.062998792
## 4 0.3330331 0.07369740 0.02828162 0.12034702 0.078552741
## 5 0.1869276 0.07088431 0.02345524 0.11385676 -0.006628343
## 6 0.1875906 0.07086677 0.64040829 0.06422118 0.212227982
## cor_e_SE cor cor_SE new_eigen
## 1 0.4394412 -0.11730288 0.03424470 0
## 2 0.2512733 -0.10564351 0.03428980 0
## 3 0.2311822 -0.34871215 0.03231827 0
## 4 0.1305989 0.04871239 0.03460681 1
## 5 0.1712676 0.01295082 0.03464504 0
## 6 0.1876874 0.51964323 0.02960263 0

Note that there is only one eigendecomposition done (for pair T4–T1). In
particular, the bivariate analysis made use of the eigendecomposition that was
currently stored in the biMM.data object by starting the bivariate analyses
from the pairs that were highly overlapping with the current set of ’Included’
individuals.

8



2.4 Misc.
If you want to save the current biMM.data object, for example, because it
holds an eigendecomposition for a large data set, you should use the standard
’saveRDS’ function of R and then later read it in using ’readRDS’. There are
no specific output-to-file functions written for biMM, because biMM outputs
the results as data.frames and you can write those to a file with the standard
’write.table’ command.

Trait value imputation is done as an expected value from the multivari-
ate normal distribution given the individual’s values on (at most) k observed
traits that are most highly correlated (in absolute value) with the target trait.
Parameter k is set by ’traits.for.imputation’ in functions ’heritability’ and ’bi-
variate.heritability’ and defaults to 0. If k = 0 then the mean imputation is
used, i.e., the imputed value is the mean of the observed trait values among the
other individuals. If you set k > 0 make sure that the other traits in the ’traits’
are such that you truly want to use them for imputing the traits of interest. If
they are not, then you should first make exclusions to ’traits’.

2.5 Input file formats
Traits. An ASCII file where the first two columns are individuals’ IDs (e.g.
FAM_ID and IND_ID in PLINK’s PED files1). The remaining columns are
read in as traits, but those not of interest can then be excluded. All non-
numeric trait columns are removed. There should be a header line naming all
the columns. Missing values should be ’NA’.
GRM. biMM reads GRM using the format of GCTA2. That is, there are two
files grmfile.grm (can also be in zipped form grmfile.grm.gz) for the actual re-
lationship matrix and grmfile.id for individuals’ indexes. grmfile.grm has four
columns for each pair of individuals (including the pairing of an individual with
itself)

ind1 ind2 m r

First two columns are numerical indexes of the individuals with ind2 ≤ ind1,
m is the number of variants used in computing the relatedness value r. biMM
ignores m. There is no required ordering of pairs. If some pairs are missing from
the file their relatedness value is set to 0 and a warning about this is printed
out.
IDs. IDs in grmfile.id and trait file must match exactly with each other. This
is to make sure that we are working with the correct data. When reading in the
data, the user can choose which one of the columns 1 or 2 will be used as IndID
in biMM.data object by setting the ’id.col’ parameter to 1 or 2. The column
chosen must have unique IDs for all individuals. If neither column has unique
IDs it is possible to merge the two columns to form IndIDs with ’_’ acting as
the separator by setting ’merge.ids=TRUE’.

1http://pngu.mgh.harvard.edu/∼purcell/plink/
2http://cnsgenomics.com/software/gcta/

9



It is possible to read in only one of the files at a time, for example, to study
either the traits or the relatedness structure alone.

10


