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During the previous lectures, we became familiar with some basic statistics related to the binomial distri-
bution that models the number of “successes” in a sample of n trials from a population where the success
probability is p. It is a discrete distribution where the outcome variable can only take values from a discrete
set 0, 1, 2, . . . , n.

Now we move to outcome variables, such as BMI or LDL cholesterol levels, that can take any value in a
continuous interval, such as, for example, in the interval (10.0, 150.0) for BMI measured in kg/m2.

Normal Distribution

The most prevalent continuous distribution is the Normal distribution (also called the Gaussian distribu-
tion after German mathematician Carl F. Gauss, 1777-1855). A reason for its wide applicability is that, in
numerous settings, the distribution of sum of independent random variables tends towards a Normal dis-
tribution. (This deep mathematical fact called the Central Limit Theorem will be demonstrated a bit at
the end of this lecture.) A consequence is that complex properties, such as variation between individuals
in IQ or height, or susceptibility to coronary artery disease, that all result from an interplay between a
huge number of individual factors, both from the genome and from the environment, follow approximately
a Normal distribution in the population. Read more: from BMJ.

An instance of Normal distribution is defined by two parameters: mean (mu, µ) and standard deviation
(sigma, σ). Often (outside R) variance (sigmaˆ2, σ2) is used instead of the standard deviation to define
the second parameter. Always pay attention to which one of the parameters is in question since mixing up
numerical values of these two parameters badly mixes up all the statistics! For now, remember that the basic
R functions take in the standard deviation sigma.

The standard normal distribution, N(0,1), has mean = 0 and sd = 1. Let’s plot the density function
dnorm(,0, 1) and the cumulative distribution function pnorm(, 0, 1) of N(0,1) next to each other. We
use par(mfrow = c(1,2)) to set the plotting parameter mfrow to split the plotting region into 1 row and 2
columns, and then the two plots will be shown next to each other in a single plotting area.

x = seq(-3, 3, 0.001) #range of x-values where we evaluate dnorm() and pnorm()
d = dnorm(x, 0, 1) #values of density function of N(0,1)
p = pnorm(x, 0, 1) #values of cumulative distribution function of N(0,1)
par(mfrow = c(1,2)) #plotting region split to 1 x 2 area to show two plots next to each other
plot(x, d, xlab = "", ylab = "Density function of N(0,1)",

main = "Standard Normal Distribution",
t = "l", lwd = 1.5, col = "limegreen")

plot(x, p, xlab = "", ylab = "Cumulative distribution function of N(0,1)",
main = "mean = 0 and sd = 1",
t = "l", lwd = 1.5, col = "darkgreen")
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The density plot shows that the peak is at the mean of the distribution, and the density drops from there
symmetrically making a bell-shaped curve characteristic to the Normal distribution.

The cumulative distribution plot shows how the probability mass accumulates as we move from small values
(here shown starting from -3) to larger values (here shown up to 3). We know that 95% of the probability
mass of the N(0,1) distribution is between values -1.96 and 1.96:

qnorm(c(0.025, 0.975), 0, 1) #95% of mass of N(0,1) is between these two points

## [1] -1.959964 1.959964

(This fact was actually the motivation to use 1.96 as the multiplier of the SE in Lecture 3, when we derived
approximate 95% confidence intervals for the proportion parameter.)

Let’s generate samples from a Normal distribution, say with mean = 4 and sd = 2, using rnorm() and plot
the data using a histogram. The standard hist() shows on the y-axis the counts of the observations falling
in each bin, but by setting prob = TRUE we can make the y-axis to scale with the values of the corresponding
density function by making the total area of the histogram to equal to 1. We can also show the theoretical
density function dnorm(,4,2) in the same plot and compare the two.

n.samples = 5000 #samples from distribution
mu = 4 #mean
sigma = 2 #standard deviation

x = rnorm(n.samples, mu, sigma) #random sample from normal distribution
c(mean = mean(x), sd = sd(x)) #show empirical mean and sd of data

## mean sd
## 3.985483 1.994015

hist(x, breaks = 40, col = "gray", prob = TRUE, main = "N(4,2)")
x.grid = seq(min(x), max(x), length.out = 1000) #grid of x-values to evaluate dnorm(, mu, sigma)
lines(x.grid, dnorm(x.grid, mu, sigma), col = "red", lwd = 1.5, lty = 2) #add dashed line to the current plot
#Let's make a legend text to appear in the top right corner
#pch is plotting symbol (15 square; -1 no symbol); lty is line type (0 no line; 2 dashed line)
legend("topright", col = c("gray","red"),

legend = c("empirical","theoretical"),
lwd = 1.5, pch = c(15,-1), lty = c(0,2))
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We see that the histogram of 5000 random samples from N(4,2) matches quite well with the theoretical
density function of N(4,2), as it should. If we took more random samples, the match would get even better.

Examples 4.1

(1) Distribution of height in Finnish men is approximately Normal with mean = 176 and sd = 7 (in cm).
Generate an example data set of heights of n = 10, 000 Finnish men and plot a histogram of the data.

x = rnorm(10000, 176, 7)
hist(x, main = "Simulated sample of heights of FIN men", xlab = "height", col = "black", breaks = 50)
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(2) What should be the theoretical variance of these data? Compare to the empirical variance of the
simulated data in R.

Theoretical variance is square of SD, that is, 72 = 49. Let’s compare to the empirical value:

c(theoretical = 7ˆ2, empirical = var(x))

## theoretical empirical
## 49.00000 48.88782

(3) Use pnorm() to estimate the expected proportion of Finnish men that are ≤ 165 cm. Compare to the
empirical estimate of the same proportion in the simulated data set.

pnorm(165, 176, 7) #theoretical proportion of values of N(176, var = 7ˆ2) that are <= 165

## [1] 0.05804157

mean(x <= 165) #empirical proportion of values in x that are <= 165

## [1] 0.0571

(4) How tall is the tallest 1% of Finnish men? Use qnorm() for the theoretical estimate and quantile()
for an empirical estimate from the simulated sample.
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qnorm(0.99, 176, 7) #theoretical cut-point with 99% in the left tail so 1% in the right tail

## [1] 192.2844

quantile(x, 0.99) #empirical cut-point that leaves 99% of the values on the left side

## 99%
## 192.2204

Assessing normality of data

Does my data set follow a Normal distribution?

Let’s generate two data sets of size n = 1000 each. The first data set from the uniform distribution in (0,1)
and the second from N(0,1). Uniform distribution has “equal probability to pick any value in the interval”,
and therefore its density function is a flat line. Let’s plot the two distributions using histograms.

n.samples = 1000
x.uni = runif(n.samples, 0, 1) #runif takes in left (0) and right (1) endpoints of interval
x.norm = rnorm(n.samples, 0, 1) #standard normal N(0,1)
par(mfrow = c(1,2))
#we can scale histogram to probability density by prob = TRUE
hist(x.uni, prob = TRUE, main = "Uniform(0,1)", col = "orange")
hist(x.norm, prob = TRUE, main = "N(0,1)", col = "limegreen")
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We can see that the left-hand plot does not look like a “bell-shaped” Normal distribution, while the right-
hand plot does look roughly as Normal.

Let’s run Shapiro-Wilk test for normality for both samples. It returns a P-value under the null hypothesis
that the data are Normally distributed.

shapiro.test(x.uni)

##
## Shapiro-Wilk normality test
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##
## data: x.uni
## W = 0.94784, p-value < 2.2e-16

shapiro.test(x.norm)

##
## Shapiro-Wilk normality test
##
## data: x.norm
## W = 0.99806, p-value = 0.3073

A low P-value for x.uni means that it is unlikely to come from a Normal distribution, while a high P-value
for x.norm does not indicate any deviation from the Normal distribution.

The quantitative tests (like Shapiro-Wilk above) typically have little discriminatory power for small samples,
that is, they do not detect deviation from Normality with statistical significance even when there is suc
deviation, and too much for large samples, that is, they detect tiny deviations with statistical significance.
Therefore, it is always good to also visually inspect Normality of data since visual check that can inform
what kind of deviations from Normality we may have and whether these deviations might be important in
practice. QQ-plot is a tool for such a visual analysis.

QQ-plot A visual checking for Normality of a data set is often done with a quantile-quantile plot (QQ-plot)
by first applying qqnorm( ) and then qqline( ) to add a reference line to the plot:

par(pty = "s") #make plots exact squares
par(mfrow = c(1,2)) #split plotting area into 1 x 2 panels
qqnorm(x.uni, main = "QQ-plot for Uniform(0,1)", cex = 0.5, col = "orange")
qqline(x.uni) #adds line to the existing QQ-plot
qqnorm(x.norm, main = "QQ-plot for N(0,1)", cex = 0.5, col = "limegreen")
qqline(x.norm) #adds line to the existing QQ-plot
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In QQ-plots, each data point from the observed data (“Sample Quantiles”) is plotted against the correspond-
ing Theoretical Quantile from the Normal distribution. That is, there is one point whose x-coordinate is the
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minimum from the Normal distribution and y-coordinate is the minimum of the observed values. Similarly,
for every i, there is one point whose x-coordinate is the ith largest value from the theoretical Normal distri-
bution (of a sample of this size), and y-coordinate is the ith largest value of the observed data. If the shapes
of the two distributions (observed data and theoretical distribution) match each other, then these points
appear approximately on a line. The reference line is put there by qqline() command. We see that on the
right-hand side the observed data seem to follow a Normal distribution because points are approximately
on the line, whereas on the left-hand side the points are not on the line and hence the data are unlikely to
come from a Normal distribution.

Example 4.2

(1) Generate n = 1000 values from N(mean = -1, var = 4). Compute Shapiro-Wilk test P-value to assess
Normality of data. Make a QQ-plot to assess normality of data. Plot an empirical histogram of the
data and add on top of it a density function of the Normal distribution with the same mean and
standard deviation as in the observed data.

x = rnorm(1000, -1, 2) #NOTE: var = 4 --> sd = sqrt(4) = 2
shapiro.test(x) #Look at the P-value

##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.99833, p-value = 0.4502

par(mfrow = c(1,2))
qqnorm(x, cex = 0.5)
qqline(x)
hist(x, col = "khaki", xlab = "x", breaks = 25, prob = TRUE)
x.seq = seq(min(x), max(x), length = 1000) #evaluate density function at these points
lines(x.seq, dnorm(x.seq, mean(x), sd(x)), col = "red", lwd = 1.5, lty = 2) #use empirical mean and sd
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We see that x looks like Normally distributed (P-value is not small, QQ-plot is on the line, histogram looks
Normal).

(2) Set y = x2 where x is the data from part 1. Repeat the same analyses for these transformed data y.
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y = xˆ2
shapiro.test(y)

##
## Shapiro-Wilk normality test
##
## data: y
## W = 0.71674, p-value < 2.2e-16

par(mfrow = c(1,2))
qqnorm(y, cex = 0.5)
qqline(y)
hist(y, col = "khaki", xlab = "y", breaks = 25, prob = TRUE)
x.seq = seq(min(y), max(y), length = 1000) #evaluate density function at these points
lines(x.seq, dnorm(x.seq, mean(y), sd(y)), col = "red", lwd = 1.5, lty = 2) #use empirical mean and sd
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We see that y=xˆ2 is not at all Normally distributed (P-value is small, QQ-plot is not on the line, histogram
does not look Normal).

t-tests

When data are Normally distributed, a set of tests called t-tests are available. These are used to compare

• the mean of a sample to a specific value (one-sample t-test), or
• the means of two independent samples against each other (two-sample t-test), or
• the difference between paired samples under two conditions (paired t-test).

In the last two situations, it is important to make a difference between independent data sets and correlated
data sets when choosing a t-test. Two samples are independent when each sampled individual from each
population can be assumed to have been sampled at random without any dependence on which other values
have been sampled from the population. Contrast this to, say, a situation where the same set of individuals
have each been measured two times, say, the first time before a treatment and the second time after the
treatment. When we are interested in the treatment effect from such a design, we should treat the data as
paired, each individual’s two measurements forming a pair. In particular, the sets of measurements under
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the two conditions are not independent because there is likely to be factors that an individual possess under
both conditions (such as their body-mass, pain tolerance, genetics etc.) that can affect the measurement
(e.g. how much drug is needed to suppress pain). Thus, in such cases, we would need to use the paired t-test.

The t-tests analyze means of continuous measurements and can be seen as continuous version of prop.test(
) that we used previously to analyze proportions that are means of binary outcomes.

By using the function t.test() we not only do the test, but also, and often more importantly, get estimates
for the means / differences between the means and the corresponding confidence intervals. Comparing the
means using the t-tests is quite robust to the distributional assumption and in large samples works well also
for non-normal data.

One-sample t-test: (Try ?t.test.)

n.samples = 100
x = rnorm(n.samples, 3, 1)

#test whether mean is 2.5
t.test(x, mu = 2.5)

##
## One Sample t-test
##
## data: x
## t = 6.1481, df = 99, p-value = 1.658e-08
## alternative hypothesis: true mean is not equal to 2.5
## 95 percent confidence interval:
## 2.913969 3.308503
## sample estimates:
## mean of x
## 3.111236

We can read from the output the (two-sided) P-value under the null hypothesis that the mean is 2.5, which
here is very small (2e-8), indicating that the population mean is unlikely to be 2.5. We also have the empirical
mean from the data and a 95%CI for the population mean. We see that 2.5 is quite far from this 95%CI,
which also tells that the population mean is unlikely to be 2.5.

The t-test is based on the fact that if xi for each i = 1, ..., n comes from N(µ, σ2), then the empirical mean
x = 1

n

∑
i xi is distributed as N(µ, σ2

n ), and thus the test statistic

z = x − µ

(σ/
√

n) follows N(0, 1),

and this can be used to derive P-values. Idea is that if the observed mean x is far from the hypothesized
mean µ, then the z-score has so large a magnitude (either positive or negative) that it is a very unlikely
observation under the standard Normal distribution, leading to a small P-value under the hypothesis that
the mean is µ.

However, usually we do not know the exact value of σ but we first have to estimate it from the data using
the sample standard deviation

σ̂ =
√∑

i(xi − x)2

n − 1 ,

then the test statistic
t = x − µ

(σ̂/
√

n)
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follows t-distribution with n − 1 degrees of freedom. When n > 30 or so, this distribution is very close to the
Standard Normal distribution but for smaller sample sizes there are some differences between the two. The
t-test has got its name from this test statistic and its distribution.

Let’s test empirically that this is indeed the t-statistic reported by R above.

mu = 2.5
(mean(x) - mu)/(sd(x) / sqrt(n.samples)) #should be t-statistic given by t.test above

## [1] 6.148132

Two-sample t-test for independent data sets:

Let’s then compare two independent Normal samples for their similarity in means. Let’s generate two data
sets x and y and display them with a boxplot.

n.samples = 100
x = rnorm(n.samples, 3, 1)
y = rnorm(n.samples, 4, 2)
boxplot(x, y, names = c("x","y"), col = c("steelblue","lightblue") )
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What do you see in the boxplot? For each data set, the box shows the interquartile range, i.e., the middle
50% of the values, starting from the first quartile (25%) and extending to the 3rd quartile (75%). In the
middle of the box, the median is marked with a black stripe. The lines outside box extend up to 1.5 times
the interquartile range and the remaining outlier observations would be shown as individual points. (There
are no outlier points in the boxplot above.) Boxplot starts to be useful when there are more than about 20
observations. If there are less, stripchart(), that shows every observation, may be more informative than
the boxplot.

#Do Welch t-test to test whether mean of x and y are equal:
t.test(x, y)

##
## Welch Two Sample t-test
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##
## data: x and y
## t = -4.2017, df = 154.55, p-value = 4.465e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.3905990 -0.5011722
## sample estimates:
## mean of x mean of y
## 3.087692 4.033578

A smallish P-value says that the means are unlikely to be the same. Welch t-test can be used in cases where
the variances of the two distributions need not be the same (like in our case here). The test statistic for
Welch t-test is

w = x − y√
σ̂2

x

nx
+ σ̂2

y

ny

and to get a P-value, it is compared to a t-distribution.

In addition to Welch t-test, there is also a version of two-sample t-test called Student’s t-test which is
specifically for cases where the variance is known to be the same between the groups. Since usually we do not
know this, Welch t-test should be our default option. Indeed, t.test() has its default parameter var.equal
= FALSE, meaning that it uses Welch t-test by default. However, in cases where the variances are the same,
Student’s t-test is more powerful than Welch test and that is why it is kept as an option in t.test(). (In
next lecture, we will talk about what “power” means in statistics.)

Example 4.3

(1) Assume that a population mean for a particular biomarker is µ = 6 and that the distribution of the
biomarker in patients infected by a specific virus is N(3,2ˆ2) (2ˆ2 means that variance is 2ˆ2=4 and
hence the standard deviation is 2). Suppose that you had a sample of n = 10 infected individuals and
you would like to compare their biomarker levels to the population mean. Generate a sample of n = 10
values from N(3,2ˆ2). Display the data with a stripchart(). Use a t-test to test whether the mean
of the patient population seems to equal to µ = 6 based on these data. What is the 95% confidence
interval for the mean of the sample?

x = rnorm(10, 3, 2)
stripchart(x, col = "red")
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t.test(x, mu = 6) #'mu' is t.test parameter for null hypothesis mean

##
## One Sample t-test
##
## data: x
## t = -3.881, df = 9, p-value = 0.003726
## alternative hypothesis: true mean is not equal to 6
## 95 percent confidence interval:
## 1.214385 4.738885
## sample estimates:
## mean of x
## 2.976635

From the chart we see that nearly all values are below the reference value of µ = 6 and hence it is not
surprising that the P-value is small indicating a deviation of the sample mean from the reference value.

In the one-sample t-test, the 95% CI is given for the mean of the distribution. Here, the interval is wide
because the sample size is so small, but it is still quite far from the reference value of µ = 6.

(2) Suppose that you have also another set of infected individuals collected from a different hospital area.
Suppose that their biomarker distribution is N(3,1ˆ2). Generate a sample of n = 40 values from this
distribution. Make a boxplot of both these data and the data from part (1). Use a t.test to test whether
the means of the two populations are equal. What is the 95% confidence interval for the difference in
means?

y = rnorm(40, 3, 1)
boxplot(x,y, names = c("x","y"), col = c("yellow","gold"))
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t.test(x, y)

##
## Welch Two Sample t-test
##
## data: x and y
## t = -0.22407, df = 9.9011, p-value = 0.8273
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.959101 1.601522
## sample estimates:
## mean of x mean of y
## 2.976635 3.155424

In the two-sample t-test, the 95% CI is for the difference between the means of x and y. Here it is (-
1.96,..,1.60), and there is no evidence that the population means would be different from each other because
value 0 is well within this interval. Note also that the P-value is large (0.83), which says that we do not
detect any clear deviation from the null hypothesis that the means are equal. This result is not surprising
since the means were indeed the same in the data generation, only the standard deviations differed, and a
difference in SDs is not tested by the t-test.

Paired sample t-test.

Consider the default example data set sleep in R’s datasets library. It shows how much two soporific drugs
(here 1 and 2) increase in hours of sleep compared to control on 10 patients. (Write ?sleep for info and
sleep to see the data.)

sleep

## extra group ID
## 1 0.7 1 1
## 2 -1.6 1 2
## 3 -0.2 1 3
## 4 -1.2 1 4
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## 5 -0.1 1 5
## 6 3.4 1 6
## 7 3.7 1 7
## 8 0.8 1 8
## 9 0.0 1 9
## 10 2.0 1 10
## 11 1.9 2 1
## 12 0.8 2 2
## 13 1.1 2 3
## 14 0.1 2 4
## 15 -0.1 2 5
## 16 4.4 2 6
## 17 5.5 2 7
## 18 1.6 2 8
## 19 4.6 2 9
## 20 3.4 2 10

So we have 20 observations (extra) on 10 individuals (ID), each measured once with each of the two drugs
(group). The question is whether there is a difference in extra sleep individuals get depending on which
drug they are given. We should use the paired t-test because the same individuals are measured for both
drugs.
We can do this paired t-test by making two vectors of the extra sleep times corresponding to the two drugs
and calling t.test(, paired = TRUE).

drug.1 = sleep$extra[sleep$group == 1]
drug.2 = sleep$extra[sleep$group == 2]
#Check that we got the data correct
rbind(drug.1, drug.2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## drug.1 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0.0 2.0
## drug.2 1.9 0.8 1.1 0.1 -0.1 4.4 5.5 1.6 4.6 3.4

t.test(drug.1, drug.2, paired = TRUE)

##
## Paired t-test
##
## data: drug.1 and drug.2
## t = -4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -2.4598858 -0.7001142
## sample estimates:
## mean difference
## -1.58

It seems that with drug 2 people sleep longer. The mean of the differences is -1.58 (-2.46, -0.70) and the
P-value is 0.003 (under the null hypothesis that the mean difference was 0).
NOTE: To avoid writing complicated expressions like sleep$extra[sleep$group == 1], we could use
with(sleep,) structure which means that all the individual variables (here extra and group) are taken
from the sleep data set. So the paired t-test could be done like this:
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with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))

##
## Paired t-test
##
## data: extra[group == 1] and extra[group == 2]
## t = -4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -2.4598858 -0.7001142
## sample estimates:
## mean difference
## -1.58

Let’s visualize the differences between the drugs 2 and 1 using both a stripchart and a boxplot.

sleep.d = drug.2 - drug.1
stripchart(sleep.d, method = "stack", xlab = "hours", col = "blue",

main = "Sleep prolongation with 2 vs 1 (n = 10)")
#Let's add a horizontal boxplot to the current plot (add = TRUE), at y = 0.6 (at = .6)
boxplot(sleep.d, horizontal = TRUE, add = TRUE, at = .6, col = "steelblue")

0 1 2 3 4

Sleep prolongation with 2 vs 1 (n = 10)

hours

0 1 2 3 4

Actually, the paired t-test is nothing but a one-sample t-test ran on the set of within sample differences.
Let’s confirm.

t.test(sleep.d) #One-sample t-test testing whether mean of within pair differences is 0

##
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## One Sample t-test
##
## data: sleep.d
## t = 4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.7001142 2.4598858
## sample estimates:
## mean of x
## 1.58

Example 4.4 (1) You have collected 40 men and 40 women and want to compare whether there is a
difference between their haemoglobin levels? Would you use a paired or independent two-sample test?
The group of men are independent of the group of women (or at least no links between sampling strategies
of the men and women have been described). Therefore, use the independent sample t-test.
(2) You study families who have children and you have collected both fathers and mothers from 40 families.
Again you want to compare whether there is a difference in the haemoglobin levels between men and women.
Would you use a paired or independent two-sample test?
Now the data come in as 40 father-mother pairs. Within families, the parents share many environmental
factors, and may share some factors also because they have paired up in the first place. Therefore, use the
paired t-test to account for the shared background within families.

Non-parametric tests

What if continuous data are not Normally distributed and you are unsure whether the methods you would like
to use are robust enough for the non-normality? There are non-parametric methods available for these cases.
Non-parametric means that we do not assume any specific form or shape about the underlying population
distribution. It other words, the method is statistically valid no matter whether the data follow Normal or
Uniform or any other distribution. Under Normality, non-parametric methods typically lose some statistical
power (topic of next lecture) compared to the methods that assume Normality, but the obvious advantage
of the non-parametric tests is that they are robust to deviations from the distributional assumptions.
Consider the question whether the values of some biomarker in population X (patients) tend to be smaller
or larger than in another population Y (healthy). Collect n samples from X and m samples from Y and
order the n + m values in ascending order. If the distributions of populations X and Y are similar, then
the sum of ranks of values from X should come from the distribution of sum of ranks of n randomly chosen
values from among all possible ranks 1, ..., n + m. If the sum of ranks of X is clearly lower than under the
null distribution, then the values from X tend to be smaller than those from Y. If the sum of ranks from X
is clearly larger than under the null, then the values from X tends to be larger than those from Y. This can
be tested by Wilcoxon rank sum test, also known as Mann-Whitney U-test.
As an example, let’s generate sets of n = 10 and m = 13 samples from two uniform distributions that have
ranges (0,1) and (0.5, 1.5), respectively, and apply Wilcoxon test.

n = 10 #samples from X
m = 13 #samples from Y

# Sample X from U(0,1) and Y from U(0.5,1.5)
# Distributions are not the same but on average Y>X
X = runif(n, 0, 1)
Y = runif(m, 0.5, 1.5)
# Visualize X and Y together with different colors
stripchart(list(X,Y), col = c("blue","red"), group.names = c("X","Y"))
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# We want to test whether X and Y come from the same distribution
# We use Wilcoxon rank sum test.
wilcox.test(X,Y)

##
## Wilcoxon rank sum exact test
##
## data: X and Y
## W = 8, p-value = 0.0001171
## alternative hypothesis: true location shift is not equal to 0

We see from the plot that the values from X tends to be smaller than the values from Y and Wilcoxon test
P-value (0.0001) indicates a possible difference as well.

Example 4.5 Generate n = 100 values from Uniform(-0.5, 0.5) distribution and another set of the same
size from Uniform(-1, 1) distribution. Use stripchart( ) to visualize the observed data using different
colors for the two samples. Which one seems to have higher values? Apply Wilcoxon rank sum test to data?
What is the P-value?

n = 100
X = runif(n, -0.5, 0.5)
Y = runif(n, -1, 1)
# Visualize X and Y together with different colors
stripchart(list(X,Y), col = c("blue","red"), group.names = c("X","Y"))
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wilcox.test(X,Y)

##
## Wilcoxon rank sum test with continuity correction
##
## data: X and Y
## W = 4655, p-value = 0.3999
## alternative hypothesis: true location shift is not equal to 0

Here the ranges of the distributions are clearly different (X is concentrated on a subrange of Y), but their
median values are similar (actually 0), and there is no tendency of either of them being smaller than the
other. Hence, the Wilcoxon P-value is not significant.

Example analysis: Blood pressure data

Let’s finish with a summary of what we have done in this lecture. Let’s read in the blood pressure /
cholesterol data from a file systbp_ldlc.txt.

x = read.table("systbp_ldlc.txt", as.is = TRUE, header = TRUE)
str(x) #Show structure of the data

## ’data.frame’: 965 obs. of 3 variables:
## $ sex : int 2 2 2 2 2 2 2 2 2 2 ...
## $ systbp: int 123 150 160 113 139 145 124 126 127 135 ...
## $ ldlc : num 3.4 4.2 2.7 2.3 3.5 3.4 3.1 4 3.6 3.3 ...

head(x) #Show the first few lines

## sex systbp ldlc
## 1 2 123 3.4
## 2 2 150 4.2
## 3 2 160 2.7
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## 4 2 113 2.3
## 5 2 139 3.5
## 6 2 145 3.4

#Sex is 1 = Male, 2 = Female, systolic blood pressure in mmHg, ldl-cholesterol in mmol/l
summary(x) #summary of the columns

## sex systbp ldlc
## Min. :1.000 Min. : 93.0 Min. :1.400
## 1st Qu.:1.000 1st Qu.:122.0 1st Qu.:2.900
## Median :2.000 Median :132.0 Median :3.500
## Mean :1.544 Mean :134.4 Mean :3.571
## 3rd Qu.:2.000 3rd Qu.:145.0 3rd Qu.:4.100
## Max. :2.000 Max. :208.0 Max. :7.500

#How many males and females?
table(x$sex) # '$' denotes variables of data frame.

##
## 1 2
## 440 525

#We can also work on the rows that match the condition 'sex == 1' (i.e. are males)
summary(x[x$sex == 1,]) #summary for males

## sex systbp ldlc
## Min. :1 Min. : 97.0 Min. :1.500
## 1st Qu.:1 1st Qu.:125.0 1st Qu.:3.100
## Median :1 Median :134.0 Median :3.700
## Mean :1 Mean :137.1 Mean :3.765
## 3rd Qu.:1 3rd Qu.:148.0 3rd Qu.:4.325
## Max. :1 Max. :208.0 Max. :7.300

#Or we can enclose the command in "with(x, )" and then R knows to pick variable 'sex' automatically from 'x'
with(x, summary(x[sex == 2, ])) #summary for females

## sex systbp ldlc
## Min. :2 Min. : 93.0 Min. :1.400
## 1st Qu.:2 1st Qu.:119.0 1st Qu.:2.800
## Median :2 Median :130.0 Median :3.300
## Mean :2 Mean :132.2 Mean :3.408
## 3rd Qu.:2 3rd Qu.:143.0 3rd Qu.:3.900
## Max. :2 Max. :196.0 Max. :7.500

#Above we saw mean and quantiles but let's plot the whole distribution.
#Use systbp in females.
y = x[x$sex == 2,"systbp"] #now 'y' is shorthand for our data
hist(y, breaks = 30, xlab = "mmHG", main = "SystBP Females", col = "red")
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It is not symmetric around the mode but has skew to the right, towards the high values. This is common
in positively valued measurements. Often logarithm of the values is more symmetric and closer to a Normal
distribution.

hist(log(y), breaks = 30, xlab = "log(mmHG)", main = "SystBP Females", col = "tomato")
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Let’s make QQ-plots to assess Normality of both raw values and the log-transformed values.

par(mfrow = c(1,2)) #2 plots next to each other (plotting area divided into 1 row, 2 columns)
par(pty = "s") #make plots to exact squares
qqnorm(y, main = "SystBP Females", cex = 0.5)
qqline(y)
qqnorm(log(y), main = "log(SystBP) Females", cex = 0.5)
qqline(log(y))
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We see that the original data have more higher values than a Normal distribution due to the skew to right
whereas the log-transformed data look like Normally distributed.

Are the means in males and females different? Even though the distributions were not perfectly normal, the
sample sizes (~500 for males and females) are large enough that the confidence interval from t.test() is a
good approximation of the difference in means.

y.m = x[x$sex == 1, "systbp"]
y.f = x[x$sex == 2, "systbp"]
t.test(y.m, y.f)

##
## Welch Two Sample t-test
##
## data: y.m and y.f
## t = 4.2583, df = 944.71, p-value = 2.266e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.621554 7.103381
## sample estimates:
## mean of x mean of y
## 137.0682 132.2057

21



#With log-transformed data we have more perfectly normally distributed data:
logy.m = log(y.m)
logy.f = log(y.f)
t.test(logy.m, logy.f)

##
## Welch Two Sample t-test
##
## data: logy.m and logy.f
## t = 4.4962, df = 954.69, p-value = 7.769e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.02111718 0.05382917
## sample estimates:
## mean of x mean of y
## 4.912726 4.875253

#What about non-parametric test?
wilcox.test(y.m, y.f)

##
## Wilcoxon rank sum test with continuity correction
##
## data: y.m and y.f
## W = 133548, p-value = 2.84e-05
## alternative hypothesis: true location shift is not equal to 0

#Note that non-parametric test is immune to any monotonic transformation.
#Thus it gives exactly the same P-value for log-transformed data as it gave for the original data:
wilcox.test(logy.m, logy.f)

##
## Wilcoxon rank sum test with continuity correction
##
## data: logy.m and logy.f
## W = 133548, p-value = 2.84e-05
## alternative hypothesis: true location shift is not equal to 0

Conclusions: The mean of systbp is statistically higher in males than in females. (Same conclusion by all
three tests with P-values < 1e-4.) The difference between the means is 4.9 mmHG (95%CI 2.6,. . . ,7.1).

Extra material - not required in exercises

Read more about logarithms and transformations. Note that in the conclusion above, we gave a 95% CI
for the difference between the means in the original scale (mmHG) even though the distributions were not
perfectly normal. This is based on the large sample size and Central Limit Theorem but would not be a
good practice for small data sets. For that, read about CI of the difference between means of transformed
data.
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Central Limit Theorem (CLT)

Assume that dataset X contains n (independent) samples from some distribution with mean = µ and standard
deviation = σ but X does not necessarily need to follow Normal, binomial or any other distribution we have
ever heard about. CLT says that the distribution of the point estimate of the mean of X is approximately
Normal(mean=µ, sd= σ/

√
n) in LARGE samples. This result can be used for deriving confidence intervals

for the estimated mean. For example, a 95% CI is the observed mean ±1.96 s/
√

n, where s is the observed
standard deviation of X. The importance of this result is its complete generality with respect to the shape
of the underlying distribution. However, it requires a large sample to work in practice: Rather hundreds of
data points than a few dozens.
Let’s try it out with Uniformly distributed values. Let’s compute a mean of n = 500 values from U(0,1)
distribution, and repeat this computation 1000 times. We’ll do that by making a big data matrix where the
rows are 1000 repetitions and the columns are 500 observations. According to the theory, the mean of U(0,1)
is 0.5 and its SD is 1/

√
12 ≈ 0.289. Thus, we expect that the mean of 500 samples from U(0,1) has a mean

of 0.5 and SD of 1/
√

12 · 500 ≈ 0.0129. Our main interest is whether the distribution of the mean over the
repeated
data sets is Normal in the way that CLT claims.

n = 500 #sample size in each repetition
m = 1000 #number of repetitions
X = matrix(runif(n*m), nrow = m, ncol = n) #data matrix
means = rowSums(X) / n #collect 1000 means here
c(mean(means), sd(means)) #what is the mean and sd of the estimates of the mean

## [1] 0.49958043 0.01287575

qqnorm(means) #see whether means seem Normally distributed
qqline(means)
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Indeed, the distribution of the means looks like Normal according to the QQ-plot. Let’s see the histogram
of the means, and let’s also show a histogram of one of the individual data sets to see that the individual
data sets indeed looked like uniform and are far from being Normally distributed!

par(mfrow = c(1,2))
hist(means, xlim = c(0.4, 0.6), breaks = 15,

col = "limegreen", main="Means of 1000 data sets follow a Normal")
#plot the first data set just to make sure that the original data look like U(0,1)
hist(X[1,], breaks = 10, col = "gray", main = "One data set follows Uniform(0,1)")
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From the histograms we see how a single data set looks uniformly distributed on [0,1] (right) but how the
means of 1000 such data sets is tightly concentrated around 0.5 and has an approximate Normal distribution.
This is CLT in action.

From this result, we can derive the standard Normal approximation to the confidence interval for the mean
of values from any distribution. Suppose that we have n values from a distribution D. The endpoints of the
95% confidence interval for the mean of D are

x ± 1.96 × ŝ/
√

n,

where x is the empirical mean of the n values, ŝ is their empirical standard deviation and 1.96
=qnorm(1-0.05/2) is the quantile point from the standard Normal distribution below which probability
mass 0.975 = 1 − 0.05/2 lies.
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