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In the previous lecture, we learned to use the cumulative distribution function pbinom() of the binomial
distribution to compute tail probabilities of the binomial distribution. Such tail probabilities can answer
questions, such as, what is the probability that (i) at most 10 patients survive or (ii) at least 20 patients
survive, out of 50 patients when the average survival rate is 30%. In this lecture, we use such tail probabilities
to define the concept of P-value that is typically presented with every statistical test in medical literature.

Definition of P-value

Suppose we have 100 pairs of same-sex twins that are discordant for psoriasis (i.e. one has been diagnosed
with psoriasis and the other hasn’t) and we know that BMI is higher for the psoriatic individual rather than
his/her non-psoriatic twin sibling in 71 out of 100 pairs. Does that sound like higher BMI has a tendency
to go together with the psoriasis status in the population of twin pairs from which these pairs are coming
from? How to quantify statistically the association between BMI and psoriasis in these data?

Idea: If the psoriasis status was independent of BMI in the target population, then we would expect that
there is a 50% chance that the individual with psoriasis happens to have a higher BMI than his/her twin
sibling. In other words, the number of twin pairs where the psoriatic one has higher BMI is distributed as
Bin(100, 0.5), i.e, has binomial distribution with 100 trials each having a success probability of 0.5. Think
this as the distribution of tails in 100 tosses of a fair coin where each toss corresponds to a twin pair.
Under the independence assumption, we would expect about 50 successes (out of 100 trials) in this binomial
experiment, but with some variation around the exact value 50. And we did observe 71. Is 71 already so
far from the expected value of 50 that we have a good reason to question the independence assumption? Or
could it easily happen “by chance” if success probability was 0.57 How could we tell?

We want to quantify (or “test”) how consistent our observation (71 out of 100) is with the independence
assumption. In statistics terms, we define a null hypothesis (denoted by Hy) saying that “psoriasis status
is independent of BMI”. This can be expressed as

HO Ip:0.5,

which says that the null hypothesis (Hp) is that the probability p that the psoriatic twin has a higher BMI
than his/her twin sibling is 50%. Often the null hypothesis is defined in such a way that it describes the
default situation in the target population which, if it holds true, is not very interesting or surprising. Instead,
if the null hypothesis turns out not to hold true, that is usually interesting or surprising. A standard way to
test the null hypothesis is by quantifying how likely the observed data are under the null hypothesis. The
logic is that if the kind of data that we have observed are very unlikely under the null hypothesis, then we
have a good reason to think that the null hypothesis might not be true.

Let’s plot the probability distribution of possible observations under the theoretical null hypothesis (that
assumes psoriasis and BMI are independent in the target population). We could use barplot like in Lecture
1 but now we will rather make a continuous curve that joins the probabilities together using the plot ()
function.



n = 100 #pairs of twins

#Let's stay in range 25...75 as tails outstide this are very improbable and hence unnecessary to be show
x = 25:75

y = dbinom(x, size = n, prob = 0.5)

#Let's plot points in x-y coordinates where x ts number of twin pairs 25,...,75

# for which psoriastis and higher BMI occur in same individual

# and y is probability of that observation under the null hypothestis.

plot(x, y, xlab = "obs'd count", ylab = "probability", main = "Bin(100,0.5)", t = "1", yaxs = "i")
# main = gives the title for the plot. It should be in quotes " ".

#t = "l" means that plotting type is "line", that s, points are connected by line.

# yaxs = "i" forces the plotting area strictly to the range of observed wvalues on y-azis.

# Let's also mark our actual observation that was 71.

X.obs = 71
# Let's add a vertical line at our observation using abline().
abline(v = x.obs, col = "red") # v = z.obs means vertical line at position x.obs

abline(v = n - x.obs, col = "red", lty = 2) # lty = 2 to make a dashed line at 29 = 100 - 71.
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The observation 71 (red line) is very far at the right hand tail of the null distribution, so it is pretty improbable
to get this many or even more observations under the null hypothesis (that is, if BMI and psoriasis were
independent).

Compute probability that under the null hypothesis one would get an observation at least as far in the right
tail as we have observed.

#pbinom(70, n, 0.5) reports probability mass cumulated from O to 70,
#and '1-pbinom(70, n, 0.5)' is then the mass cumulating from 71 to 100.
1 - pbinom(x.obs - 1, size = n, prob = 0.5)

## [1] 1.608001e-05



So in less than 2 out of 100,000 experiments under the null hypothesis would we get 71 or more observations.
What’s your conclusion about independence between psoriasis and BMI?

Conclusion: Either psoriasis status and higher BMI are linked, or a very improbable event has happened
“by chance”, namely that we have observed at least as many as 71/100 twin pairs where high BMI and
psoriasis go together, which is already so far from the 50% expectation that it has a very small probability
if BMI and psoriasis were independent.

Let’s list these right-hand tail probabilities for even more extreme possible outcomes

#Let's list wvalues 71,...,100 and combine them with corresponding tatl probabilities
# using cbind() function, "column bind"", combines columns into a matriz.

X = Xx.obs:n

cbind(value = x, tailprob = 1 - pbinom(x - 1, size = n, prob = 0.5) )

## value tailprob
## [1,] 71 1.608001e-05
#  [2,] 72 6.289575e-06
##  [3,] 73 2.346206e-06
## [4,] 74 8.336813e-07
##  [5,] 75 2.818141e-07
##  [6,] 76 9.050013e-08
# [7,] 77 2.756790e-08
## [8,] 78 7.952664e-09
#[9,] 79 2.168683e-09
## [10,] 80 5.579545e-10
## [11,] 81 1.351381e-10
## [12,] 82 3.073897e-11
## [13,] 83 6.548984e-12
## [14,] 84 1.302958e-12
## [15,] 85 2.412515e-13
## [16,] 86 4.141132e-14
## [17,] 87 6.550316e-15
## [18,] 88 8.881784e-16
## [19,] 89 1.110223e-16
## [20,] 90 0.000000e+00
## [21,] 91 0.000000e+00
## [22,] 92 0.000000e+00
## [23,] 93 0.000000e+00
## [24,] 94 0.000000e+00
## [25,] 95 0.000000e+00
## [26,] 96 0.000000e+00
## [27,] 97 0.000000e+00
## [28,] 98 0.000000e+00
## [29,] 99 0.000000e+00
## [30,] 100 0.000000e+00

We see that the probabilities get smaller and smaller as we observe more extreme deviations from the value
50 that is the expected value under the null hypothesis. Intuitively, more extreme observations also give
more evidence that the deviation from 50 is not just a “chance event” or a “statistical fluctuation” but
rather there is some real link between BMI and psoriasis causing this deviation. This is because probability
of getting so extreme values purely by “chance” drops essentially to 0.

P-value We have just encountered a “P-value”. Definition of P-value is the probability of getting
“at least as extreme data set under the null hypothesis as was observed”. The logic is that if



P-value is very small, then it would be very improbable to observe a data set that is at least as extreme as
was observed if the null hypothesis was true. Therefore, an observation with a small P-value may make us
question the null hypothesis.

Two questions emerge:

(1) How do we define which data sets are “at least as extreme” as the observed one under the null hypoth-
esis?

(2) How small a P-value should be in order that we can conclude that the null hypothesis is not true? Or
can we ever do that?

Which data sets are “at least as extreme” as the observed one? Let’s repeat the previous density
plot of the possible outcomes in the range from 25 to 75 of a binomial experiment Bin(100, 0.5) with the
two red lines at 71 and 29. (Let’s suppress the code from output by using echo = FALSE in the code
block definition so that we only see the resulting plot but do not repeat the code in the knitted document.)
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In this example, the most probable number of twin pairs where higher BMI and psoriasis occur in the
same individual is 50 (out of 100) under the null hypothesis that BMI and psoriasis are independent. It
seems intuitive that the larger the deviation is from 50, the more “extreme” the observation is under the
null hypothesis. A quantitative definition could be that out of two putative observations, the one with the
smaller probability (under the null hypothesis) is the “more extreme” one.

Above we computed that probability under the null to observe 71 or more pairs is about 2 in 100,000. If we
had not fixed beforehand that we would only be interested in deviations that are towards the higher values
from 50, then observing at least 71 out of 100 would be as extreme a value from 50 as observing at most 29
out of 100 (dashed red line above). Thus, probability under the null of seeing “as extreme data” as has been
observed would then mean observing “at least 71 or at most 29 cases out of 100 trials”. Let’s compute the
P-value under such a two-sided alternative hypothesis.



pbinom(29, size = n, prob = 0.5) + (1 - pbinom(71-1, size = n, prob = 0.5))

## [1] 3.216002e-05

This is a two-sided P-value, where we make no prior hypothesis which direction defines more extreme cases
and thus we consider both directions. This two-sided P-values gives here 2 x P-value from the one-sided
test that considered only one tail of the distribution. Typically, we consider 2-sided tests since we want to
see whether there is any deviation from the null hypothesis, no matter to which direction. The one-sided
test ignores the other direction and is conceptually applicable only rarely when we have a strong reason to
pre-define the tail of interest, for example, if we try to replicate a result from an earlier study.

More about one-sided vs. two-sided tests in BMJ 1994;309:248 http://www.bmj.com/content/309/6949/248.
full.

How small a P-value should be in order that we can conclude that the null hypothesis is not
true? The short answer is that we cannot ever conclude truth based on statistics alone. And that even for
properly quantifying the level of evidence that the null hypothesis is true, we would need other information
in addition to the P-value.

However, P-value does provide some information and, very generally, smaller P-values are more evidence
against the null hypothesis than larger P-values. This has led to the use of term statistically significant
to tell that the test has produced a certain pre-defined level of evidence against the null hypothesis. Most
often the evidence is measured by the P-value where smaller P-values are interpreted to be “more statistically
significant” results.

For example, based on the previous psoriasis-BMI example, we could conclude that there is a statistically
significant association between psoriasis and BMI, at a significance level of 0.001, because the P-value was
about 3e-5 < 0.001. The association is also significant at the level of le-4 (because 3e-5 < le-4), but not
anymore at the level of le-5 (because 3e-5 > le-5). By far the most common significance level in medicine,
and elsewhere in applied statistics, is 0.05. This is unfortunate, since a P-value around 0.05 is typically not at
all strong evidence against the null hypothesis. This is a problem because it means that many “statistically
significant” results from literature are actually false positives, where the P-value has got below 0.05 simply
“by chance” even though the null hypothesis holds. Note that the probability of having a P-value smaller
than 0.05 “by chance”, even when the null hypothesis holds, is 5% or 1 in 20, so it indeed happens fairly
often just by chance even when the null hypothesis is true.

All thresholds for calling P-values significant (such as the commonly used 0.05) are arbitrary and they should
be only one piece of evidence when we determine which of the hypotheses is the most likely to hold. A bad
practice is to dichotomize P-values by only reporting whether they were “significant/non-significant” at a
certain significance level rather than reporting the exact numerical value of the P-value. Unfortunately, the
pursue of “statistical significance” is often so strong in medical literature that other, often more important,
aspects of the statistical analyses are not paid enough attention. Partly this is because in order to get
publications, one needs to find some “statistically significant” results. Consequently, there are a lot of
published studies where P-value has just got slightly below 0.05, but when a similar experiment is repeated
again, no supporting evidence for the claimed result can be found, possibly because the results was a false
positive in the first place.

Another important aspect in medical field is that even if there is a true statistically significant effect, it
may not be significant for clinical practice: https://www.studentsdbestevidence.net /statistical-significance-
vs-clinical-significance/.

Summary: Null hypothesis is a statement of interest about the target population. P-value is the probability
that if the null hypothesis

was true, then a sampled data set from the target population would be at least as extreme as what we have
observed. The purpose of P-value is to quantify the possible inconsistency between the null hypothesis and
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the observed data. If P-value is small, then it seems unlikely that under the null hypothesis this extreme
data would had occurred. Thus, small P-values give us a reason to suspect that null hypothesis may not be
true. However, it may still be the case that the null hypothesis is true but a rare event has occurred and
hence we see a small P-value.

Statistical significance at level « is a technical term that is used when the P-value falls below a pre-defined
significance level «, but it does not conclusively show that the null hypothesis does not hold, and the P-values
should be reported as numerical values, not dichotomized based on the chosen significance level.

IMPORTANT: P-value is always a probability under the null hypothesis of observing certain kind of data
sets, it is NOT a probability about the null hypothesis itself. Thus, based on the P-value alone, you cannot
say what is the probability that the null hypothesis holds. All you can say with the P-value is that if the
null hypothesis holds, then the probability of getting data similar to what you have observed or that are
even more extreme than you have observed, is given by the P-value.

Want to read another explanation of P-value from BMJ? https://www.bmj.com/content/340/bmj.c2203.

Example 2.1 (1) You want to study whether the appendicitis (umpilisike) cases operated at Meilahti
Hospital have any bias from 50%-50% split between men and women. What is your null hypothesis?

Null hypothesis is that 50% of the population of appendicitis cases in Meilahti Hospital are males. If we
considered this setting as a binomial experiment, then given that we observe n patients, we would assume
that the number of male patients among the observed patients would be distributed as Bin(n, 0.5) if the
null hypothesis holds.

(2) Over the last year, there has been 316 patients of which 180 women and 136 men. What is the P-value
under the null hypothesis? Is the observed proportion of men statistically significantly different from 50%
at significance level 0.057 Do you suspect a bias from 50%-50% proportions in the patient population based
on this P-value?

n = 316 # all patients
136 # men
x/n # proportion of men is somewhat < 0.5

"
Il

## [1] 0.4303797

# Let's compute 2-sided P-value. Since z/n < 0.5, we compute the left tail and multiply by 2
2*pbinom(x, size = n, prob = 0.5) #2-sided P-value

## [1] 0.0154331

P-value is statistically significant at level 0.05 (since 0.015 < 0.05). This result could indicate a bias where
the population of patients has less men than women. However, the statistical evidence is not (yet) very
strong as a P-value of 0.015 happens even under the null hypothesis more often than once in a hundred
experiments by chance, and more data would be useful to get more convincing evidence to either direction.

(3) If you do a comparison between a treatment gtoup and a placebo group and statistics show a difference
with a P-value of 0.003, what does that mean exactly, explained in plain language? What about if the
P-value were 0.000087 Which one of these two P-values would show stronger evidence for a true treatment
effect in the underlying population and why?

P-value of 0.003 from a clinical trial means that we have observed a difference of such a magnitude that
it or a more extreme difference would be observed only in 3 out of 1000 clinical trials like this, if the null
hypothesis holds, i.e., if there was no true difference between the effects of the treatment and placebo in the
target population. So we tend to think that it is quite improbable (0.003) to observe at least this extreme
data “by chance” when the null hypothesis holds. But still, it can happen, even under the null hypothesis.


https://www.bmj.com/content/340/bmj.c2203

IMPORTANT: It would be WRONG to say that the probability of this observation being produced “by
chance” is 0.003. That would suggest that 0.003 was the probability of the null hypothesis while it actually
is a probability of certain sets of data under the null hypothesis, and it is NOT a probability of the null
hypothesis itself. Based on only the P-value, it is never possible to say how probable a null hypothesis is.

A P-value of 0.00008 is clearly < 0.003, and it does provide more evidence than the P-value of 0.003 that
there is a true treatment effect in the population. This is because, typically, a more extreme deviation from
the expectation under the null hypothesis is more evidence against the null hypothesis, even though we
cannot derive the exact probability of the null hypothesis based on the P-value alone.

Binomial test and Fisher’s test

binom.test() Above we have used the binomial distribution function pbinom() to compute P-values. In
practice, we can do the same more simply by using an existing function called binom.test ().

Let’s redo the statistical testing of 71 successes out of 100 trials when the null hypothesis is that the success
probability is 0.5. (We hope to get 3.216e-5 to be consistent with our earlier result.)

binom.test(71, n = 100, p = 0.5)

##

## Exact binomial test

##

## data: 71 and 100

## number of successes = 71, number of trials = 100, p-value = 3.216e-05
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.6107340 0.7964258

## sample estimates:

## probability of success

## 0.71

Output includes the input data (successes and trials) and the P-value under the null hypothesis of p =
0.5, when the P-value is computed using the two-sided test (“alternative hypothesis” here is that the
population proportion value can be different from 0.5 to either direction).

We could also do a one-sided test, where the alternative hypothesis is that the observed value is greater than
the expected under the null hypothesis. To do this, we use alternative = "greater" in binom.test().

binom.test(71, n = 100, p = 0.5, alternative = "greater")

##

## Exact binomial test

#i#t

## data: 71 and 100

## number of successes = 71, number of trials = 100, p-value = 1.608e-05
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:

## 0.6262716 1.0000000

## sample estimates:

## probability of success

#i# 0.71



Note how the “alternative hypothesis” has changed in the output and now only the upper tail probabil-
ity is computed. Alternatively, only the lower tail would be considered if alternative = "less". If
alternative= is not specified, it is taken to be two.sided by default.

Type ?binom.test to see the details of how to use this function.

Example 2.2 (1) Over the last year, there has been 316 appendicitis patients of which 180 women and
136 men. Make a binomial test to see whether this indicates a significant deviation from the null hypothesis
that the proportion of males among the appendicitis patient population is 50%. Use the significance level of
0.05.

binom.test (136, n = 316, p = 0.5, alt = "two.sided") #136 successes out of 316 trials when prob = 0.5

#it

## Exact binomial test

#i#

## data: 136 and 316

## number of successes = 136, number of trials = 316, p-value = 0.01543
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.3750857 0.4869912

## sample estimates:

## probability of success

#i#t 0.4303797

As seen in example 2.1, this is a statistically significant results at significance level 0.05.

(2) Above we studied the population of the appendicitis patients. Let’s now study the entire population
of the hospital’s catchment area. Our question is whether the incidence of appendicitis is similar in males
and females. Suppose that we know that the underlying population has more females (60% of people) than
males (40% of people). Our null hypothesis is that the incidence is the same in both sexes. This means that,
according to the null hypothesis, an appendicitis patient is male with a probability of 40%. Let’s test the
observed data against this null hypothesis p = 0.4.

binom.test(136, n = 316, p = 0.4, alt = "two.sided")

#i#

## Exact binomial test

#it

## data: 136 and 316

## number of successes = 136, number of trials = 316, p-value = 0.2756
## alternative hypothesis: true probability of success is not equal to 0.4
## 95 percent confidence interval:

## 0.3750857 0.4869912

## sample estimates:

## probability of success

#i# 0.4303797

We see that the P-value is larger now (> 0.25) and we have no reason to question the null hypothesis of an
equal incidence in males and females based on this result. Thus, we conclude that an unequal (40%:60%)
population proportion between the sexes would already be enough to explain the apparent difference of
136:180 in appendicitis cases, since there is not anymore any statistically significant deviation from the null
hypothesis once the null hypothesis takes into account the different population proportions of males and
females.



Example 2.3 Suppose that you are treating patients and you expect that the success rate is 30% in that
patient population. You treat 50 patients and observe 23 successes and 27 failures. What is the two-sided
P-value for the observation under the null hypothesis that the success rate is 30%? Do these data make you
question the null hypothesis?

Answer: We expect a rate of 30% and we have observed an empirical rate of 0.46 = 23/50 from a sample of

size 50. Let’s draw a picture of the null distribution and the observation, adapting the code we used earlier
for distribution Bin(100,0.5).

n = 50

p.null = 0.3

x = 1:n

y = dbinom(x, size = n, prob = p.null)

plot(x, y, xlab="obs'd count", ylab = "probability", main = "Bin(50,0.3)", t = "1", yaxs = i)
x.0bs = 23

abline(v = x.obs, col = "red")
Bin(50,0.3)
AN
—
o
0]
o
2 o
E
1 _
o]
o
o <t
o —
o
3
S | | | | | |
0 10 20 30 40 50

obs'd count

We see that probability of getting at least this large counts under the null is the probability of the right-hand
tail:

p-right = 1 - pbinom(x.obs-1, size = n, prob = p.null) # one-sided P-value
p.right

## [1] 0.01227613

What would be the 2-sided P-value? As opposed to our earlier example with Bin(100, 0.5), this distribution,
Bin(50, 0.3), is not symmetric with respect to its expected value 15, and thus there is not (necessarily) any
value < 15 such that the left-hand tail probability at that value would be exactly p.right=0.0123. Thus we
need to choose among two options to determine a two-sided P-value:



(1) Sum up the probabilities of all those outcome values whose probabilities are less than or equal to the
probability of the observed value. This is an exact way to define a two-sided P-value, and this is how
binom.test() function does it.

binom.test(x.obs, n = n, p = p.null)

#it

## Exact binomial test

#i#

## data: x.obs and n

## number of successes = 23, number of trials = 50, p-value = 0.01954
## alternative hypothesis: true probability of success is not equal to 0.3
## 95 percent confidence interval:

## 0.3181492 0.6067580

## sample estimates:

## probability of success

#i# 0.46

(2) Simply multiply the right-hand tail probability by two to represent the idea that we want to reserve
an equal amount of probability from the left tail for “at least as extreme observations” as we do from
the right tail. This simple approximation works fine for practical purposes, but it does not give exactly
the same P-value as was given by binom.test ().

2*p.right

## [1] 0.02455225

Both methods give a P-value of about 0.02. Conclusion is that there is some evidence that the success rate
might be larger than 30% (statistically significant deviation from the null at significance level 0.05), but
more data would still be needed before evidence for the deviation might become very convincing.

fisher.test() In binomial test, we had a fixed null hypothesis parameter value (like p = 0.5) and then
we measured one property on each individual (e.g. being male or female). Going one step further, we may
have our observations characterized by two properties, for example, being male or female and having the
disease or being healthy. How can we test whether these two properties are independent of each other or
whether they are associated with each other. Here independence between sex and disease means that the
disease incidence is the same in both sexes, i.e., it does not depend on the sex. And an association between
sex and disease means that disease is more common among one of the sexes than among the other sex. In
large samples, we can compute the disease incidence in each sex and compare those with a proportion test,
as we will do in the next lecture. For small samples, we should use Fisher’s test, as we do now.

As an example, suppose we measure the carrier status of a particular rare genetic variant of the HLA-C
gene on the immune system related HLA region of the human genome in healthy controls and in psoriasis
patients, and we get the following counts.

non-carriers carriers

healthy 40 1
psoriasis 13 6

The question is whether the variant carrier status is associated with the disease status, or whether the two
properties are independent of each other in the population where these data come from.
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We can test this by Fisher’s test. In R, that works by making a 2x2-matrix or data frame of data and by
applying fisher.test() on it. Let’s use data frame and add column and row names.

x = data.frame(noncar = c(40,13),
carrier = c(1,6),
row.names = c("healthy", "psoriasis"))
x # always check that your data looks correct before analystis!

## noncar carrier
## healthy 40 1
## psoriasis 13 6

fisher.test(x)

##

## Fisher’s Exact Test for Count Data
##

## data: x

## p-value = 0.003011

## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:

#i# 1.864826 865.022378

## sample estimates:

## odds ratio

## 17.4474

Fisher’s exact test returns a P-value as the sum of probabilities of all such 2x2-tables that have the same
row and column counts as we have observed, and that have at least as small a probability as the one that
we have observed. Thus, here the “at least as extreme” criteria of the P-value definition is defined by how
probable each 2x2-table is if we were to keep the row and column sums fixed but otherwise were to randomly
assign the numerical values to the 4 cells of the table. You can read more from Wikipedia.

Our observation is that only 1/41 healthy people have the variant but 6/19 patients have it. The P-value
describes how statistically extreme this observation is. The P-value 0.003 says that only in 3 out of 1000
random 2x2-tables with these total counts, the genetic variants are distributed at least in this extreme way
between the two groups.

Example 2.4 Of 30 people employed in a small workshop 18 worked in one department and 12 in another
department. In one year, five out of the 18 in the fist department reported a hand injury, while one out of
the 12 in the second department did so. Is there a statistically plausible difference between the safety of the
departments and how would you report this result?

In essence, we are comparing whether the proportions of 5/18 and 1/12 are statistically different, and we do
that by Fisher’s test. For the sake of demonstration, we now use a matrix rather than a data frame.

# 1st row: healthy, 2nd row: injured, columns are departments
x = rbind(healthy = c(18-5, 12-1), injured = c(5,1))
colnames(x) = c("depl","dep2")

X

#it depl dep2
## healthy 13 11
## injured 5 1
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fisher.test(x)

##

## Fisher’s Exact Test for Count Data
##

## data: x

## p-value = 0.3575

## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:

## 0.004593763 2.709980565

## sample estimates:

## odds ratio

## 0.2466137

Thus, these data do not indicate a statistically noticeable difference between the departments (P-value is
0.36, so deviation like this occurs in every third 2x2-table of this type even under the null hypothesis). Note
that we cannot conclude that there is not any difference between the departments, only that, with this
amount of data, we do not see any statistical evidence for such a difference between the departments.
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