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BASICS OF STATISTICS

* Linear model summary material is available on the course
home page

* If you need some more material about the fundamental
ideas of statistics and/or R language, you can read more
material here

* https://www.mv.helsinki.fi/home/mjxpirin/medstat _course/

* What are parameter estimates, standard errors, confidence intervals,
P-values, Normal distribution?

* How to do basic things with R language?



https://www.mv.helsinki.fi/home/mjxpirin/medstat_course/

REGRESSION

What is the expected value of outcome Y for a sample whose predictor values are X = x?
How does E( Y | X = x) depend on x?

Linear regression example: Expected sales depends on the amount of advertisement

sales = By + B1 X TV + B2 X radio + 3 X newspaper + €.

Logistic regression example: Risk of default (p) depends on credit card balance

* log (1%9) = fo + B1 X balance

Regression function is a simple function of coefficients (5;)

We find estimates (,E’k) for coefficients

* Inference:What do we know about the values of coefficients?

* Prediction:What is predicted outcome value for a new sample X = x’?

Fig. from ISL
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FITTED MODEL

## Call:

## lm(formula = logl@(GDP) ~ tfr, data = y)

#H

## Residuals:

## Min 1Q Median 3Q Max

## -1.4358 -0.3703 -0.0134 0.4197 1.4586

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 4.15995 0.09179 45.32 <2e-16 xkx
## tfr -0.25333 0.02343 -10.81 <2e-16 *kx
#H ——

## Signif. codes: 0 'xxkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#H

## Residual standard error: 0.5647 on 188 degrees of freedom
## (17 observations deleted due to missingness)

## Multiple R-squared: 0.3834, Adjusted
## F-statistic: 116.9 on 1 and 188 DF,

GDP = gross domestic product

R-squared: 0.3801

p-value: < 2.2e-16

tfr = total fertility rate. ave. no. of children per a woman
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Each unit of total fertility rate associates with
a decrease of -0.25 in log,o(GDP) or
a multiplication of GDP by 107(-0.25)=0.56.

What is the uncertainty related to these estimates?



INTERVALS

STANDARD ERRORS AND CONFIDENCE

95% confidence interval

## Coefficients: from confint( ) function

## Estimate Std. Error

2.5 % 97.5 %
## (Intercept) 4.15995 0.09179 3 9788741 4.3410321
## tfr -0.25333 0.02343 _p.2995475 -0.2071029

95% confidence interval (95%ClI):

If we were to repeat the model fitting to many data sets of this kind,
then, on average, in 95% of our data sets, the 95%Cl| would cover the true
value of the parameter.This is a frequentist concept, i.e., defined
through what would happen on average across many repeated data sets.

In many cases, we can interpret the 95%Cl in a Bayesian way as an
approximation to a 95% credible interval:

Interval that covers the true value with 95% probability. This is a
subjective concept, i.e., combines analyst’s prior distribution with data.

(For this Bayesian interpretation of 95%Cl, we need to assume a uniform
prior distribution and an approximately Gaussian likelihood.)

Standard error = standard deviation of the
sampling distribution of parameter estimates.
This is a frequentist concept that describes
how much the estimates were expected to
vary.

For example, if we were to estimate tfr’s
coefficient from many similarly structure data
sets, then the SD of the estimates would be
~ 0.023.

One can approximate 95%CI by adding
1.96 x SE on both sides of the estimate:
-0.253 + 1.96%0.0234 = (-0.299, -0.207)

This is very close to the values given above by
R’s confint( ) function.



PREDICTION

Im.tfr model coefficients: ¥

## Coefficients: 5

## Estimate Std. Error g =

## (Intercept) 4.15995 0.09179 £ 3

## tfr -0.25333  0.02343 2 .
Prediction for a country with tfr = 4 is . ; s 4 . ; ; .
4.15995 — 0.25333%4 = 3.14663. 5t

Uncertainty of the prediction can be described by

a 95% prediction interval. Frequentist interpretation is that in 95% of the
data sets, the prediction interval covers the true value. Here 95% pred.
int. is (2.03, 4.26).

> predict(Ilm.tfr, newdata = data.frame(tfr = 4), interval = "pred")
fit lwr upr
1 3.146652 2.029485 4.26382



VARIANCE EXPLAINED

## Multiple R-squared: 0.3834, Adjusted R—;quared: 0.3801

Linear model with only intercept (y = a) Linear model with also slope (y =a + b x)
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Residual: deviation of outcome from predicted value.
Variance of outcome variable is the same as variance of residuals of the left-hand model, var(y - a) = 0.5145.
Variance of residuals on the right-hand model is var(y - a - b x) = 0.3189.
Variance explained by the model is 0.5145 — 0.3189 = 0.1956.
R2is the proportion of variance explained: 0.1956/0.5145 = 0.38.



ASSUMPTIONS OF LINEAR MODEL

Let’s list the assumptions behind the standard linear model and properties of its least squares estimates (LSE).

p
Yi =ﬂo+2ﬂjxij+€i
=1

J:

1. Additivity and linearity. We assume that each predictor acts additively (there is + between terms that involve different predictors) and that

the effect of each predictor on outcome is linear (predictor is simply multiplied by a f coefficient). (How to extend linear model outside
these assumptions?)

2. Error terms are independent of each other and of predictors. If this does not hold, then the amount of information in data does not
correspond to the number of observations, and statistical inference based on theoretical distributions will be invalid. Additionally, LSE is not

an optimal unbiased point estimate but a ganeralized least squares estimation, that takes into account the correlation between errors, gives
more precise estimates.

3. Errors have same variance (homoscedasticity). If this does not hold, then a weighted linear regression would give more precise estimates.

4. Errors are Gaussian (i.e. have a normal distribution). Under this assumptions LSE coincides with the maximum likelihood estimate and
hence has many optimality properties. However, LSE has several optimality properties even without this assumptions. For example, Gauss-

Markov theorem says that LSE f has the smallest sampling variance among all linear and unbiased estimators of / as long as errors are
homoscedastic and uncorrelated, no matter what is their distribution. Gaussian errors is in practice the least important assumption out of
the ones listed here.



