
HDS 9. Principal component analysis (PCA)

Matti Pirinen, University of Helsinki

12.1.2024

Now we move from variable selection to dimension reduction. The goal is to represent high dimensional data
in a low dimensional subspace in a useful way, for example, to visualize the data in human interpretable ways
or to pre-process the data for downstream analyses that benefit from reduced data size. The key question is
what is a useful way to reduce the dimension. Intuitively, given a target dimension, we want to find such a
mapping from the original data space to the target space that maintains as much of the original information
as possible. PCA, first defined in 1901 by Karl Pearson, is one of the most widely used method for this
purpose, and one with a clear statistical motivation and linear algebraic implementation. Thus, we will start
from it.

An example in 2 dimensions Let’s consider a set of n = 50 points on 2D space (p = 2):

set.seed(18)
n = 50
x.1 = rnorm(n)
x.2 = 0.4*x.1 + rnorm(n, 0, 0.4)
X = cbind(x.1 - mean(x.1), x.2 - mean(x.2)) #A lways mean-center for PCA
plot(X, asp = 1, pch = 19, xlab = expression(x[1]), ylab = expression(x[2]))
grid()

−2 −1 0 1 2 3

−
1.

0
0.

0
0.

5
1.

0
1.

5

x1

x 2

1

var(X) # what is the variance in x and y directions and what is their covariance?

[,1] [,2]
[1,] 1.2526074 0.5590945
[2,] 0.5590945 0.3478777

These variables are quite correlated, so they are telling partly a redundant story about the study samples.
Do we really need both dimensions to represent these data? Or could only one dimension be enough for
some purposes? How could we project these points to one dimension in a useful way that would preserve
the main structure of the points.

Let’s draw some lines through the origin and project the data on those lines. (Since the data are mean
centered, the origin is at the center of the data set.) Then we will have a set of one dimensional representations
of the data. The unit vector of a line that passes through the origin with slope b is uuu = (1, b)T /

√
1 + b2.

The projection of a point xxx = (x1, x2)T on that line is

(uuuTxxx)uuu =
(

(1, b) · (x1, x2)√
1 + b2

)
(1, b)T

√
1 + b2

=
(

x1 + bx2

1 + b2

)
(1, b)T

And the coordinate of the point along the line is

(uuuTxxx) =
(

x1 + bx2√
1 + b2

)
.

plot(X, pch = 1, xlim = c(-3,3), ylim = c(-3,3), asp = 1,
xlab = expression(x[1]), ylab = expression(x[2]))

grid()
b = c(-0.7, 0.2, 2) # slopes of the example lines
cols = c("purple", "blue", "orange")
vars = rep(NA, length(b)) # variances of the projected point on each line
for(ii in 1:length(b)){

abline(0, b[ii], col = cols[ii], lty = 2, lwd = 0.7)
coord.on.line = (X[,1] + X[,2]*b[ii]) / sqrt(1 + b[ii]ˆ2) # coordinate along each line
z = coord.on.line/sqrt(1 + b[ii]ˆ2) # temp variable
points(z, z*b[ii], col = cols[ii], pch = 1, cex = 0.7) # points on the line
Show projection for point jj=10 using arrows from the point to the lines
jj = 10
arrows(X[jj,1], X[jj,2], z[jj], z[jj]*b[ii], code = 2,

length = 0.1, lwd = 2, col = cols[ii])
vars[ii] = var(coord.on.line)
}

points(X, pch = 1) # re-draw the original points on top

2

−6 −4 −2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

x1

x 2

cbind(b, vars) # see what is the variance of the projected points on each line

b vars
[1,] -0.7 0.4297552
[2,] 0.2 1.4328465
[3,] 2.0 0.9760993

Because the projections are orthogonal, we can think that the projections preserve some of the original
relationships between the points. It seems that the line 2, with the slope 0.2, separates the points most
from each other as on that line the projected points have the largest empirical variance. In that sense, it
preserves more information about the structure of the original data than the other two lines. Think about
the two extreme examples of possible projections on a line. First, the useless case where each original point
is projected on the same point on a line, loses all the information about the differences between the original
data units. Second, if the original data were already on a line, then we do not lose anything by simply
recording the coordinates on that line instead of the original multidimensional coordinates. In reality, our
data lies somewhere in between these extremes, and in the PCA the defining criterion of the target subspace
is that in the subspace the projections of the data points preserve the highest possible variance.
What would be the line on which our example points had the largest variance? Let’s find the unit vector
uuu = (u1, u2)T (u2

1 + u2
2 = 1) that maximizes the empirical variance of the projections of X on that line. As

the columns of XXX are mean-centered, then also the mean of XXXuuu is 0, and the variance is proportional to the
sum of squares of XXXuuu:

V̂ar (XXXuuu) ∝ uuuTXXXTXXXuuu.

We can use the method of Lagrange multipliers to maximize this quantity among all unit vectors uuu, that is,
the vectors for which uuuTuuu − 1 = 0. This method requires us to maximize the extended function f(uuu, α) =
uuuTXXXTXXXuuu + α(uuuTuuu − 1) with respect to uuu and α. The derivative with respect to uuu is

∂f(uuu, α)
∂uuu

= 2XXXTXXXuuu + 2αuuu,

and equals to 0 when XXXTXXXuuu = −αuuu, that is, when uuu is an eigenvector of the matrix XXXTXXX and −α is
the corresponding eigenvalue. Among all eigenvectors, we thus choose the one that maximizes uuuTXXXTXXXuuu =
−αuuuTuuu = −α, which shows that uuu should correspond to the largest eigenvalue of XXXTXXX.

3

Let’s apply this result in practice.

eig = eigen(t(X) %*% X)
eig$values

[1] 74.451730 3.972042

eig$vectors # are in columns, in decreasing order of eigenvalues

[,1] [,2]
[1,] -0.9024967 0.4306969
[2,] -0.4306969 -0.9024967

u = eig$vectors[,1] # corresponds to the largest eigenvalue.
plot(X, pch = 1, xlim = c(-3,3), ylim = c(-3,3), asp = 1,

xlab = expression(x[1]), ylab = expression(x[2])) # plot the data again
abline(0, u[2]/u[1], lty = 2, col = "red") # add max variance line whose unit vector is u
do projections on the max variance line
coord.on.line = (X %*% u) # coordinates of points in X projected on line u
points(u[1]*coord.on.line, u[2]*coord.on.line, col = "red", cex = 0.7)

−6 −4 −2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

x1

x 2

var(coord.on.line)

[,1]
[1,] 1.519423

The chosen line looks plausible. Visually, the projections on this line preserves a lot of the information of
the original configuration of the points in the 2D plane.
For an interactive demo on the same idea see the top answer here: https://stats.stackexchange.com/
questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

4

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Since the eigenvectors (of a symmetric matrix like XXXTXXX) are orthogonal, they give a new coordinate system
on which the data have the maximum variance on the 1st axis and the 2nd axis is the orthogonal direction
in which the data varies less compared to the 1st axis. These are called the principal components (PCs) of
the data XXX. The idea is that since the PC 1 has been chosen to maximize the variability between the points,
it is a good candidate for the one dimensional representation of the original data. Now we may reduce the
dimension of the data by storing only the points’ coordinates on the PC 1 and ignoring the PC 2. We will
lose some information, but, as measured by the variance, this loss is as small as it can be given that we are
reducing the dimension.

You can study this via interactive play with 2D and 3D PCA: http://setosa.io/ev/principal-component-
analysis/

PCA more generally More generally, when p > 2, the number of PCs is min{p, n}. The PC k is defined
by the unit vector uuuk = (uk1, . . . , ukp)T , (||uuuk||2 = 1), and the score (previously called “coordinate”) of data
point i on the PC k is pck(i) = xxxT

i uuuk. The coefficient ukj , by which the variable j contributes to the PC k,
is called the loading of the variable j on the PC k. PCs have the following properties

• PC 1 is the one dimensional subspace of Rp on which the projection of the rows of data XXX have the
maximum empirical variance.

• PC k > 1 is the one dimensional subspace of Rp that is orthogonal to all PCs 1,. . . ,k − 1 and on
which the projection of the rows of data XXX have the maximum empirical variance among all the one
dimensional subspaces orthogonal to the previous PCs.

Each PC is a one dimensional subspace (a line) in the p-dimensional space of all variables. Equivalently, it is
an image of a linear combination of all p variables. Suppose that we have a new data point xxx∗ measured on
the same p variables on which we have constructed the PCs earlier with the data matrix XXX. We can project
this new point on the existing PCs by the linear mapping pck(xxx∗) = xxx∗Tuuuk =

∑p
j=1 x∗

j ukj .

The dimension reduction to k ≤ p dimensions with the PCA happens by simply ignoring the PCs after the
k largest components. For visualization of the data, we use only 2 or 3 components.

It can be shown that the first k PCs minimize the total sum of the squared distances between the original
points and their projections on any k dimensional subspace. Remember that linear regression minimizes the
error between a particular outcome variable y and its prediction made as a linear combination of a set of
predictor variables xj . PCA, instead, treats all variables equally, (not separating any predictors from any
outcomes), and minimizes the total squared distance between its predictions, that are the projections on the
first k PCs, and the original points in the p dimensional space.

Another derivation of PCA Above we saw that the question of the maximum variance line´is solved
by the leading eigenvector of the product matrix of the data XXXTXXX. We can derive the PCA solution also by
relying on a result on the existence of an eigenvalue decomposition of a symmetric (p x p) matrix SSS (here
taken to be the covariance matrix of the data vector xxx when considered as a random variable). This result
says that SSS can be written as SSS = UUUDDDUUUT , where (p x p) matrix UUU is orthonormal, (that is, for any columns
i ̸= j uuuT

i uuuj = 0 and uuuT
i uuui = 1) and where DDD = (dj)p

j=1 is a diagonal matrix. Note that UUUUUUT = UUUTUUU = III.

Let’s set as our goal to find such an orthogonal p × p matrix QQQ that
when the data are transformed by the linear mapping QQQ, the covariances between our original variables are
removed. In other words, we look for an orthogonal QQQ that will transform our observed p-dimensional vector
xxx, with original covariance matrix SSSx (with eigendecomposition SSSx = UUUxDDDxUUUT

x), into a new p-dimensional
vector yyy = QQQxxx whose covariance would be diagonal. Since we require QQQ to be orthogonal, it can be seen
as preserving all the structure in the data and it is simply changing the coordinate system on which the
variables are measured. Since

Var(QQQxxx) = QQQSSSxQQQT = QQQUUUxDDDxUUUT
x QQQT ,

5

http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/

we see that by a choice QQQ = UUUT
x we have that Var(QQQxxx) = DDDx is diagonal and hence the transformed

variables have zero covariances. Thus, by transforming the variables by the eigenvectors of the empirical
covariance matrix of xxx, which is ŜSSx = 1

n−1XXXTXXX, we will rotate the data into new coordinates where different
dimensions do not covary at all. This is the PCA transformation, and the new variable with the largest
variance corresponds to the PC 1 etc. Note that the constant 1

n−1 does not affect the eigenvectors (although
it does affect the eigenvalues multiplicatively). Thus, for deriving the PCA transformation, it does not
matter whether we compute the eigenvectors from XXXTXXX or 1

n−1XXXTXXX.

PCA in practice

Let’s use PCA on the Boston data set. Let’s apply both the R’s standard function prcomp() and also check
that the above defined eigenvalue decomposition method agrees. Note that the help of prcomp says that the
calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, and
not by applying eigen() on the data covariance matrix.

library(MASS)
str(Boston) # remind what's in there

’data.frame’: 506 obs. of 14 variables:
$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
$ chas : int 0 0 0 0 0 0 0 0 0 0 ...
$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
$ rm : num 6.58 6.42 7.18 7 7.15 ...
$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
$ rad : int 1 2 2 3 3 3 5 5 5 5 ...
$ tax : num 296 242 242 222 222 222 311 311 311 311 ...
$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
$ black : num 397 397 393 395 397 ...
$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

We will do PCA WITHOUT lstat included.
keep = c(1:12, 14) # keep these columns for PCA
outcome = setdiff(1:14, keep) # leave this out from PCA and think it as an outcome variable
Do PCA with eigendecomposition:
Boston.scaled = scale(as.matrix(Boston)) # always mean center for PCA. scaling not obligatory
eig = eigen(1/(nrow(Boston) - 1) * t(Boston.scaled[,keep]) %*% Boston.scaled[,keep])
Do PCA with prcomp:
prc = prcomp(Boston[,keep], center = TRUE, scale = TRUE)
str(prc)

List of 5
$ sdev : num [1:13] 2.44 1.264 1.147 0.931 0.895 ...
$ rotation: num [1:13, 1:13] 0.25555 -0.26151 0.35116 -0.00139 0.34458 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:13] "crim" "zn" "indus" "chas" ...
.. ..$: chr [1:13] "PC1" "PC2" "PC3" "PC4" ...
$ center : Named num [1:13] 3.6135 11.3636 11.1368 0.0692 0.5547 ...
..- attr(*, "names")= chr [1:13] "crim" "zn" "indus" "chas" ...

6

$ scale : Named num [1:13] 8.602 23.322 6.86 0.254 0.116 ...
..- attr(*, "names")= chr [1:13] "crim" "zn" "indus" "chas" ...
$ x : num [1:506, 1:13] -1.85 -1.3 -2.08 -2.52 -2.56 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:506] "1" "2" "3" "4" ...
.. ..$: chr [1:13] "PC1" "PC2" "PC3" "PC4" ...
- attr(*, "class")= chr "prcomp"

square roots of the eigenvalues = SD of PCs
cbind(prc$sdev[1:3],sqrt(eig$values[1:3]))

[,1] [,2]
[1,] 2.439967 2.439967
[2,] 1.263604 1.263604
[3,] 1.146852 1.146852

matrix of PC loadings in columns = eigenvectors in columns
cbind(prc$rotation[1:3,1], eig$vectors[1:3,1])

[,1] [,2]
crim 0.2555546 0.2555546
zn -0.2615085 -0.2615085
indus 0.3511626 0.3511626

PC scores of sample 5 on PC 3, note that the sign is arbitrary!
c(prc$x[5,3], t(eig$vectors[,3]) %*% Boston.scaled[5,keep])

[1] 0.03657017 0.03657017

If we had a new Boston area with measured values for these 13 variables, how could we project it to these
2D plots? Let’s do projection for the area 15, even though it was already on PC analysis, and compare to
the observed values.

cbind(as.numeric(predict(prc, newdata = Boston[15,keep])), prc$x[15,])

[,1] [,2]
PC1 -0.12206133 -0.12206133
PC2 -0.67659968 -0.67659968
PC3 -1.23467605 -1.23467605
PC4 -0.15573688 -0.15573688
PC5 0.53868484 0.53868484
PC6 0.60565279 0.60565279
PC7 -0.27826995 -0.27826995
PC8 -0.80364271 -0.80364271
PC9 -0.09900318 -0.09900318
PC10 -0.11513169 -0.11513169
PC11 -0.11364220 -0.11364220
PC12 0.35107680 0.35107680
PC13 0.10032419 0.10032419

Let’s see how large a proportion of the total variance the PCs cumulatively capture.

7

cumsum(prc$sdevˆ2) / sum(prc$sdevˆ2)

[1] 0.4579570 0.5807797 0.6819543 0.7486714 0.8102330 0.8605405 0.9015064
[8] 0.9297357 0.9507612 0.9701338 0.9843621 0.9952522 1.0000000

The 1st component alone explains 46% and the first 7 components explain 90%. Often the variance explained
by the components is plotted, and the resulting scree plot can be used to evaluate visually how many
components have clearly more weight than the rest.

par(mar = c(5,5,1,0.2))
plot(prc$sdevˆ2 / sum(prc$sdevˆ2), t = "b", xlab = "PC", ylab = "proportion of total variance")

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

PC

pr
op

or
tio

n
of

 to
ta

l v
ar

ia
nc

e

Let’s see how the variables make up the leading PC:

prc$rotation[,1]

crim zn indus chas nox rm
0.255554649 -0.261508469 0.351162650 -0.001387083 0.344581670 -0.197336951
age dis rad tax ptratio black
0.311089512 -0.319149629 0.325450533 0.345858250 0.218842202 -0.207663732
medv
-0.264809986

Let’s visualize the first six PCs and color each point according to the lstat value (higher values in red,
lower in blue).

cols = rep("blue", nrow(Boston))
cols[Boston[,outcome] > median(Boston[,outcome])] = "red"
par(mfrow = c(1,3))

8

for(ii in seq(1,6,2)){
plot(prc$x[,ii],prc$x[,ii+1], pch = 3, col = cols, cex.lab = 1.5,

xlab = paste0("PC",ii), ylab = paste0("PC",ii+1))}

−4 −2 0 2 4 6

−
4

−
2

0
2

4
6

PC1

P
C

2

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

PC3

P
C

4
−4 −3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

PC5

P
C

6

We see clear structure, at least in the 1st and 3rd plots, where the scores of the PCs seem to associate with
the lstat value, which was not included in the PCA.

Principal components regression (PCR) Let’s do linear regression of lstat ~ PC1 and compare it to
how the individual variables explain lstat.

summary(lm(Boston[, outcome] ~ prc$x[,1]))

##
Call:
lm(formula = Boston[, outcome] ~ prc$x[, 1])
##
Residuals:
Min 1Q Median 3Q Max
-14.2733 -2.6826 -0.5661 2.0816 19.8784
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.65306 0.21343 59.28 <2e-16 ***
prc$x[, 1] 2.16828 0.08756 24.76 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 4.801 on 504 degrees of freedom
Multiple R-squared: 0.5489, Adjusted R-squared: 0.548
F-statistic: 613.2 on 1 and 504 DF, p-value: < 2.2e-16

How do the individual variables explain lstat?
for(ii in keep){

print(paste(names(Boston)[ii],":",
summary(lm(Boston[, outcome] ~ Boston[,ii]))$adj.r.squared))}

[1] "crim : 0.20601869232111"
[1] "zn : 0.16891881326848"
[1] "indus : 0.363313331937917"
[1] "chas : 0.000930012813023517"

9

[1] "nox : 0.347846506084054"
[1] "rm : 0.375524008489809"
[1] "age : 0.361547440694417"
[1] "dis : 0.245510817911551"
[1] "rad : 0.237294251952689"
[1] "tax : 0.294531865698533"
[1] "ptratio : 0.138202621403982"
[1] "black : 0.132301404549657"
[1] "medv : 0.543241825954707"

The PC 1 explains similarly lstat as medv, and much more than any other variable alone.

When many predictors in a regression model are highly correlated, one approach for a robust regression
analysis is first to compute the leading PCs out of the correlated predictors and then to do the regression on
some of the leading PCs. This is called principal components regression (PCR). For example, when regressing
the outcome variable y on the PC 1 and PC 2, the model is

yi = µ + pc1(i)β1 + pc2(i)β2 + ε

= µ + β1

p∑
j=1

xiju1j + β2

p∑
j=1

xiju2j + ε

Thus, the model has only two coefficients, but still each of the p original predictors xj is contributing to the
model by xij(β1u1j + β2u2j). The idea is that by focusing on the leading PCs, we can capture more of the
main structure of the predictors than with an equal number of individual predictors, but we will reduce the
variance compared to the standard linear model with p coefficients that is prone to overfit when p is high.

An advantage of PCR is that the PCs are uncorrelated with each other, and still capture a large part of
the joint information of the original correlated predictors. A disadvantage is that the interpretation of the
regression coefficient is not anymore given in terms of the original predictors, which is a problem in cases
where the original predictors had a clear meaning for the analyst, whereas the PCs didn’t.

PCA on the samples rather than on the variables Let’s then use the PCA the other way around.
We now consider the p = 14 variables as the “samples” that have been measured on n = 506 “variables”
which are the Boston areas. We want to find the 2-dimensional description of the relationships between
these p variables. Let’s first show them with a heat map.

heatmap(cor(Boston))

10

di
s zn

bl
ac

k
m

ed
v

rm
ch

as
pt

ra
tio

cr
im ra
d

ta
x

ls
ta

t
ag

e
no

x
in

du
s

dis
zn
black
medv
rm
chas
ptratio
crim
rad
tax
lstat
age
nox
indus

It seems that there are two main groups. Let’s see what the leading PC gives:

prc = prcomp(t(Boston.scaled))
plot(prc$x[,1], prc$x[,2], col = "white", xlab = "PC1", ylab = "PC2")
text(prc$x[,1], prc$x[,2], labels = names(Boston))

11

−15 −10 −5 0 5 10 15 20

−
10

−
5

0
5

10

PC1

P
C

2

crim

zn

indus

chas

nox
rmage

dis

radtax

ptratio

black

lstat

medv

So the leading PC also divides the variables into the same two main groups as the correlation matrix.
In general, the correlation matrix of p variables has p(p − 1)/2 unique elements, whereas the first k PCs
have together p · k elements. Already when p is in hundreds, and we keep k small, say k ≤ 10, there is a
considerable difference in favor of the PCs in the efficiency of the data reduction, and this difference becomes
crucial in applications where p is in thousands.

See examples of PCA in slides HDS9_slides.pdf

Read ISL section 12.2 PCA

• What does PCA aim to do?

• What are the loadings and what are the scores?

• PCA solution minimizes something and maximizes something else. What are these quantities?

• Should we scale variables before PCA?

Tutorial on PCA by Jon Shlens https://arxiv.org/pdf/1404.1100.pdf
This is an excellently written tutorial, but unfortunately it uses the rows and columns of the data matrix
the other way as we are using so the data matrix is given as a p × n matrix, and p (the number of variables)
is called m.

Singular value decomposition (SVD)

The SVD is the fundamental decomposition of a matrix XXX (of any size n × p) into three components:

XXX = UUUΣΣΣVVV T , where

12

https://arxiv.org/pdf/1404.1100.pdf

• UUU is an n × n orthonormal matrix,
• VVV is a p × p orthonormal matrix,
• ΣΣΣ is n × p rectangular diagonal matrix with elements σ1, . . . , σm ≥ 0 on the diagonal, where m =

min{n, p}, and
• XXXvvvk = σkuuuk, for all k ≤ m, where vvvk and uuuk are the kth columns of VVV and UUU respectively.

We call the columns of UUU as the left-singular vectors of XXX, the columns of VVV as the right-singular vectors
of XXX and values σk ≥ 0 as the singluar values of XXX. We order the singular values in decreasing order
σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 (and we define σj = 0 for all j > m).

SVD exposes the basis VVV for Rp and basis UUU for Rn that are particularly suitable for understanding the
structure of the original matrix XXX.

Interpretation of SVD Linear transformation.

Let’s think about what the matrix XXX does when it is used as the matrix of a linear mapping from Rp to Rn.
For example, consider how the parameter vector β̂ββ turns into the predicted values ŷyy of the linear regression
model through the linear mapping ŷyy = XXXβ̂ββ defined by the data matrix XXX.

The SVD says that the transformation β̂ββ 7→ ŷyy between the standard bases of Rp and Rn happens in 3 basic
steps.

• Rotate the standard coordinate system of Rp so that the (orthonormal) columns of VVV become the basis
vectors, and express β̂ββ in this orthonormal basis, when the new coordinates of β̂ββ are β̂ββ

(V)
= VVV T β̂ββ.

• Scale the p elements of β̂ββ
(V)

by matrix ΣΣΣ, i.e., get the scaled coordinates

β̂ββ
(V,Σ)

= ΣΣΣβ̂ββ
(V)

=
(

σ1β̂1
(V)

, . . . , σmβ̂(V)
m , 0, . . . , 0

)T

,

(Note that if m = p < n then the last n − p elements of the vector are 0. Otherwise m = n and there
are no extras zeros at the end of the vector after the element m.) It is important that this scaling
happens by the non-negative constants σk ≥ 0 along each coordinate axis of the basis VVV in the input
space Rp and ends up in the output space Rn.

• Rotate the scaled coordinates β̂ββ
(V,Σ)

, that are given in the orthonormal basis UUU , to the standard basis
of Rn to get the final

ŷyy = UUUβ̂ββ
(V,Σ)

= UUUΣΣΣVVV T β̂ββ = XXXβ̂ββ.

It is important that the output space coordinate σkβ̂k

(V)
along the basis vector uuuk depends only on

the input space coordinate along the basis vector vvvk and not on any other direction of the input space.

Thus, the SVD tells that the linear transformation defined by any matrix XXX is simply a (non-negative) scaling
along certain characteristic directions, combined with two suitable rotations that reveal those characteristic
directions with respect to the standard bases of the input and output spaces of the matrix.

https://en.wikipedia.org/wiki/Singular-value_decomposition#/media/File:Singular-Value-Decomposition.
svg

In the special case, where XXX = XXXT is a symmetric square matrix, the SVD coincides with the eigenvalue
decomposition and U = V is the basis formed by the eigenvectors of XXX and the singular values are the
eigenvalues of XXX.

A low rank approximation to XXX.

13

https://en.wikipedia.org/wiki/Singular-value_decomposition#/media/File:Singular-Value-Decomposition.svg
https://en.wikipedia.org/wiki/Singular-value_decomposition#/media/File:Singular-Value-Decomposition.svg

Let’s get back to our main topic of dimension reduction. Since the matrix ΣΣΣ is diagonal in the SVD
XXX = UUUΣΣΣVVV T , we can use the SVD to decompose XXX into a sum of simple n × p matrices, each of which has a
rank of 1

XXX =
m∑

k=1
σkuuuk vvvT

k .

This tells how the structure of XXX piles up from the individual pieces determined by the pairs of left and right
singular vectors weighted by the singular values. Each rank 1 matrix uuuk vvvT

k can only capture one quantitative
pattern shared by all rows (encoded by vvvk) and one pattern shared by all columns (encoded by uuuk), and the
components are given in the decreasing order of contribution to the final matrix.

It can be shown (Eckart-Young theorem) that by truncating this sum of rank 1 matrices after the first K
components leads to the rank K approximation to XXX that minimizes the elementwise squared error (Frobenius
norm) from XXX among all rank K matrices. Thus, by keeping only the leading K components of SVD, we
reduce the amount of information from np elements (original size of XXX) to K(n + p + 1) elements in the
optimal way in terms of the MSE.

Example. Let’s consider a 2 × 3 matrix X and see how it is formed as a sum of two rank 1 matrices
determined from its SVD.

X = matrix(c(1, 0, -1,
2, 1, 1), ncol = 3, byrow = T)

X

[,1] [,2] [,3]
[1,] 1 0 -1
[2,] 2 1 1

make SVD
S = svd(X)
S

$d
[1] 2.497212 1.328131
##
$u
[,1] [,2]
[1,] 0.2297529 0.9732490
[2,] 0.9732490 -0.2297529
##
$v
[,1] [,2]
[1,] 0.8714722 0.3868166
[2,] 0.3897342 -0.1729896
[3,] 0.2977305 -0.9057856

Two rank 1 matrices r.k = u_k %*% v_kˆT, for k = 1,2:
r.1 = S$u[,1] %*% t(S$v[,1])
r.2 = S$u[,2] %*% t(S$v[,2])
r.1

[,1] [,2] [,3]
[1,] 0.2002233 0.08954258 0.06840444
[2,] 0.8481594 0.37930844 0.28976586

14

r.2

[,1] [,2] [,3]
[1,] 0.37646888 -0.16836200 -0.8815549
[2,] -0.08887225 0.03974488 0.2081069

when they are weighted by singluar values, they will make up the original X:
S$d[1]*r.1 + S$d[2]*r.2

[,1] [,2] [,3]
[1,] 1 0 -1
[2,] 2 1 1

and the best rank 1 approximation to X (measured by MSE) is given by
S$d[1]*r.1

[,1] [,2] [,3]
[1,] 0.500000 0.2236068 0.1708204
[2,] 2.118034 0.9472136 0.7236068

A concrete way to visualize the rank K approximations is to consider an image as a rectangular matrix and
then compare the different approximations to the original one. In particular, notice how the complexity of
the image has a large effect on how many components are needed to represent it well. http://timbaumann.
info/svd-image-compression-demo/

Connection between SVD and PCA We determined earlier that the PCs were the eigenvectors of
XXXTXXX. If we write this crossproduct matrix using the SVD of
XXX = UUUΣΣΣVVV T , we have that

XXXTXXX = VVV ΣΣΣTUUUTUUUΣΣΣVVV T = VVV ΣΣΣTΣΣΣVVV T = VVV DDDVVV T ,

where n × n diagonal matrix DDD = ΣΣΣTΣΣΣ. Thus, the eigenvectors of XXXTXXX can be read from the columns of VVV
and the corresponding eigenvalues are the squares of the singular values, that is, λk = σ2

k. Furthermore, the
scores of the samples on the PCs are

XXXVVV = UUUΣΣΣ,

and can be formed as linear combinations of the columns of UUU . Hence, by doing the SVD of XXX we also get
both the loadings and the scores of the PCs of the matrix XXX. The function prcomp actually uses the SVD
for computing the PCA.

Computing the PCA

What is the quickest way to do the PCA?

If p ≤ n, then the eigenvalue decomposition of a p×p matrix XXXTXXX is a cubic procedure, that is, requires the
number of basic operations (such as multiplications and additions) that grows as p3 as a function of p. We
denote this by saying that its time complexity is O(p3), (“of the order of p3”). The eigenvalue decomposition
gives us the loadings and the computation of all PC scores takes an additional O(np2) time. Computation of
the crossproduct XXXTXXX to start with takes yet another O(np2) time. Thus the whole process is O(2np2 +p3).

If p > n, then we will have only n PCs and we can instead consider the eigendecomposition of n × n matrix

XXXXXXT = UUUΣΣΣVVV TVVV ΣΣΣTUUUT = UUUΣΣΣΣTUUUT ,

15

http://timbaumann.info/svd-image-compression-demo/
http://timbaumann.info/svd-image-compression-demo/

that gives us the scores on the PCs (in columns of UUUΣΣΣ) and the eigenvalues of each PC (the diagonal of
ΣΣT). From there, we can compute the loadings VVV from the relationship VVV ΣΣΣT = XXXTUUU which is an O(pn2)
operation. Computing the XXXXXXT takes O(pn2). Thus, the whole process is O(2pn2 + n3).

All in all, PCA through an eigendecomposition takes O(min{(p3 + np2, n3 + pn2}) time.

The algorithms for the SVD have similar theoretical complexity (depending on the relationship between n
and p). Let’s see how they compare in practice.

set.seed(67)
file.name = "rprof.out" # time the algorithms
n = 1000
ps = c(500, 1000, 2000, 3000, 4000)
times = matrix(NA, ncol = 2, nrow = length(ps))
for(ii in 1:length(ps)){

p = ps[ii]
X = scale(matrix(rnorm(n*p), ncol = p))
prcomp is using the SVD
Rprof(file.name)
prc = prcomp(X)
Rprof(NULL)
times[ii,1] = summaryRprof(file.name)$sampling.time

Rprof(file.name)
if(n > p){
use the pxp matrix: t(X) %*% X

eig = eigen(1 / (n-1) * crossprod(X)) # has eig. values and loadings
scores = X %*% eig$vectors # compute scores

}else{
use the nxn matrix: X %*% t(X)
eig = eigen(tcrossprod(X)) # has eig. values and scores
loadings = crossprod(X, eig$vectors) %*% diag(1/sqrt(eig$values)) # compute loadings

}
Rprof(NULL)
times[ii,2] = summaryRprof(file.name)$sampling.time

}
plot(times, xlab = "prcomp/SVD (in sec)", ylab = "eigen (in sec)", t = "b",

xlim = c(0, max(times)), ylim = c(-1,max(times)), main = paste0("n=",n,"; p varies"))
text(times[,1], times[,2] - 1.2, labels = ps)
abline(0, 1, lty = 2)
grid()

16

0 2 4 6 8 10 12

0
2

4
6

8
10

12

n=1000; p varies

prcomp/SVD (in sec)

ei
ge

n
(in

 s
ec

)

500

1000

2000
3000

4000

Seems quite similar for smaller p but seems to favor the eigendecomposition for larger p. This could be
because when n = 1000 remains constant, the eigendecomposition for matrices with large p (> n) has always
the time complexity O(n3), and hence the computing time does not grow that much with p because the
pre-processing time grows only linearly in p.

In practice, when both n and p are large, the PCA is done by finding only a few of the leading components.
(prcomp() can take in a parameter rank that specifies the number of components.) There are efficient
methods that extract the leading components one-by-one without ever computing the crossproduct matrices
or the SVD. These methods are based on the idea of power iteration, that is, they iterate sequential multipli-
cation of a random vector z by the target square matrix AAA to get a sequence zzz,AAAzzz,AAA2zzz, . . ., which converges
towards the leading eigenvector of AAA, if a suitable normalization is carried out at each step. Let’s check that
the power iteration works in practice.

set.seed(14)
n = 100
p = 10
X = scale(matrix(rnorm(n*p), ncol = p)) # random matrix
A = (t(X) %*% X) / (n-1) # A = XˆT X, whose 1st eigenv vector we want
eig = eigen(A)
eig$values[1:3] # check that the 1st is clearly larger than others

[1] 1.541419 1.419703 1.268965

A.eig1 = eig$vector[,1] # this is our target eigenvector
z = rnorm(p) # a random vector in p-space
niter = 50
res = rep(NA, niter) # distance between the 1st eig.vector and the power iterated vector
for(ii in 1:niter){

z = z / sqrt(sum(zˆ2)) # normalize

17

res[ii] = sqrt(sum((A.eig1 - z)ˆ2)) # distance to target
z = A %*% z

}
plot(res, t = "l", xlab = "iteration", ylab = "distance from 1st eigenvec of A")
abline(h = 0,lty = 2, col = "red")

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

iteration

di
st

an
ce

 fr
om

 1
st

 e
ig

en
ve

c
of

 A

The actual methods in use, such as Implicitly Restarted Arnoldi Method, are more sophisticated and robust
than this simple power iteration. See the slides for an example analysis of FastPCA on the UK biobank
data. Another method is FlashPCA.

A connection between the PCA and ridge regression

Consider a regression problem of estimating βββ ∈ Rp in yyy = XXXβββ + εεε, where yyy is mean centered and the size
of XXX is n × p.
Let’s apply the SVD of XXX = UUUΣΣΣVVV T to the predicted outcome values from the OLS estimate

ŷyyOLS = XXXβ̂ββOLS = XXX
(
XXXTXXX

)−1
XXXTyyy = UUUΣΣΣVVV T

(
VVV ΣΣΣTUUUTUUUΣΣΣVVV T

)−1
VVV ΣΣΣTUUUTyyy = UUUUUUTyyy.

We have assumed in this SVD that

• UUU is an n × r matrix and spans the column space of XXX,
• ΣΣΣ is an r × r diagonal matrix with positive diagonal elements σ1 ≥ . . . ≥ σr > 0
• VVV is an r × r matrix that spans the row space of XXX,
• r ≤ n is the rank of XXX.

Thus, if r < n, we have discarded those n − r basis vectors of Rn from UUU that correspond to the singular
value 0. Similarly, if r < p, we have discarded those p − r basis vectors of Rp from VVV that correspond to the
singular value 0. (Had we kept these unnecessary columns in UUU and VVV to make them square matrices, the
above formula would not hold.)
This shows, unsurprisingly, that the ordinary least squares predictions are obtained by an orthogonal pro-
jection of the outcome variable to the basis UUU that is the column space of XXX.

18

Consider then the ridge regression (RR) estimates with the penalty parameter λ. The fitted values are

ŷyyRR = XXXβ̂ββRR = XXX
(
XXXTXXX + λIII

)−1
XXXTyyy

= UUUΣΣΣVVV T
(
VVV ΣΣΣTUUUTUUUΣΣΣVVV T + λIII

)−1
VVV ΣΣΣTUUUTyyy

= UUUΣΣΣVVV T
(
VVV

(
ΣΣΣ2 + λIII

)
VVV T

)−1
VVV ΣΣΣUUUTyyy

= UUUΣΣΣ
(
ΣΣΣ2 + λIII

)−1 ΣΣΣUUUTyyy

= UUU
(
ΣΣΣ−1 (

ΣΣΣ2 + λIII
)

ΣΣΣ−1)−1
UUUTyyy

= UUU
(
III + λΣΣΣ−2)−1

UUUTyyy

= UUU∆∆∆
(

σ2
k

σ2
k + λ

)
UUUTyyy,

where ∆∆∆(dk) is the diagonal matrix with sequence (dk)r
k=1 on the diagonal.

Thus, also for the ridge regression prediction, we project the outcome variable to the column space, but not
orthogonally. Instead, we will shrink (if λ > 0) the coordinates along each uuuk direction by the coefficient

σ2
k

σ2
k

+λ
, which means that the directions with the smallest singular values will be shrunk the most. These

are the directions in the column space, where the data have the smallest variance. We see that the ridge
regression penalty induces relatively stronger shrinkage in the directions where the data vary the least. This
sounds like a good approach if those directions are dominated by noise rather than by the true signal. The
idea is similar to that of PCA: we remove or downweight the directions in which the data vary little and get
both dimension reduction and more robust analyses. And as the cost, we will also lose some of the original
information.

19

	PCA in practice
	Singular value decomposition (SVD)
	Computing the PCA
	A connection between the PCA and ridge regression

