
HDS 8. Bayesian variable selection

Matti Pirinen, University of Helsinki

11.1.2024

In HDS6, we saw that LASSO has a feature of setting many of the coefficients to exactly zero at the optimum
of the objective function and hence we said that LASSO does variable selection. A technical reason for this
behavior was the LASSO’s prior distribution for coefficients that had a sharp peak around zero. In HDS7,
we embedded the LASSO model into a fully Bayesian model blasso that allowed us to estimate the full
posterior distribution of the coefficients but that was computationally much more heavy to apply than the
standard LASSO. Next, we will consider conceptually simpler Bayesian models for variable selection, where
the prior distribution of a coefficient states that the coefficient is non-zero with probability π1 and has a
positive probability mass 1 − π1 of being exactly zero.

The spike and slab prior (SSP)

Under SSP, we model an individual regression coefficient βj using a two-component mixture distribution

βj | π1, τ2 ∼ (1 − π1)δ0 + π1N (0, τ2)

where δ0 is the point mass at 0 (in mathematics called as Dirac delta function). Another way to describe
this two-component mixture distribution is to say that{

βj = 0, with probability 1 − π1,

βj ∼ N (0, τ2), with probability π1.

Thus, if we wanted to generate example data from such a mixture distribution, we could proceed in two
steps. First, we chose which component to sample from (component 1 with probability π1 and component
0 with probability 1 − π1). Second, conditional on the chosen component, we would sample a value for βj

from the distribution specific to the chosen component.

1

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spike and slab with π1=0.5 τ=1

βj

de
ns

ity
 /

pr
ob

ab
ili

ty

spike
slab

Figure visualizes the two-component spike and slab distribution. The spike component sits at exactly 0, and
has a non-zero probability mass. The slab component is a Gaussian distribution centered at 0 and having
SD > 0. The figure describes the probability mass (black) for the spike and the density function (blue) for
the slab.

Suppose we have n samples and p predictors (columns of XXX) to model the outcome vector yyy. Let γγγ = (γj)p
j=1

be a vector of binary indicators indicating which variables are non-zero, that is,

γj =
{

1, if βj ̸= 0,

0, if βj = 0.

We can assign to each predictor, independently, an SSP(π1, τ2) prior where the values π1 and τ2 are shared
between the predictors. Value of π1 could be determined based on which proportion of predictors we expect
to be non-zero, and τ2 could be determined based on what magnitude of coefficient values we expect at
the non-zero coefficients. Such a model is implemented in BoomSpikeSlab package. (Later we will discuss
extensions that also estimate π1 and τ2 from data.)

Let’s try it on the same data we analyzed using Bayesian LASSO in HDS7 that had n = 250, p = 30 and the
first 3 variables had an effect size of 0.229 while the remaining 27 were exactly 0. We use as prior parameters
π1 = 5/30 ≈ 0.167 (by setting expected.model.size = 5) and τ2 = 1 (by setting prior.beta.sd =
rep(1,p)).

set.seed(122)
p = 30
n = 250
phi = 0.05 # variance explained by x_1, should be 0 < phi < 1.
b = rep(c(sqrt(phi / (1-phi)), 0), c(3, p-3)) # effects 1,2,3 are non-zero, see Lect. 0.1 for "phi"
X = scale(matrix(rnorm(n*p), nrow = n)) # cols 1,2,3 of X have effects, other cols are noise
eps = scale(rnorm(n, 0, 1)) # epsilon, error term
y = scale(X%*%b + eps, scale = FALSE) # makes y have mean = 0
library(BoomSpikeSlab)

2

prior = IndependentSpikeSlabPrior(X, y,
expected.model.size = 5,
prior.beta.sd = rep(1,p))

lm.ss = lm.spike(y ~ X - 1, niter = 1000, prior = prior)

summary(lm.ss)

coefficients:
mean sd mean.inc sd.inc inc.prob
X3 3.25e-01 0.06140 0.32500 0.0614 1.000
X1 2.65e-01 0.07120 0.26900 0.0642 0.986
X2 2.39e-01 0.08060 0.25000 0.0640 0.957
X6 9.79e-03 0.03860 0.12700 0.0667 0.077
X11 4.50e-03 0.02410 0.10000 0.0585 0.045
X23 -4.01e-03 0.02320 -0.09550 0.0645 0.042
X27 -4.48e-03 0.02560 -0.11500 0.0650 0.039
X9 -2.02e-03 0.01570 -0.06310 0.0631 0.032
X15 -1.91e-03 0.01500 -0.07080 0.0596 0.027
X22 2.97e-04 0.00816 0.01480 0.0572 0.020
X20 1.14e-03 0.01220 0.06020 0.0671 0.019
X10 -1.06e-03 0.01210 -0.05600 0.0695 0.019
X17 -6.31e-04 0.01000 -0.03510 0.0681 0.018
X29 4.77e-04 0.00818 0.02800 0.0580 0.017
X24 -1.24e-03 0.01120 -0.07310 0.0477 0.017
X28 1.51e-04 0.00559 0.00942 0.0446 0.016
X12 -1.06e-03 0.01230 -0.06650 0.0734 0.016
X19 -2.48e-04 0.00690 -0.01660 0.0557 0.015
X16 1.87e-04 0.00974 0.01330 0.0842 0.014
X14 -3.41e-04 0.00873 -0.02440 0.0723 0.014
X5 -1.90e-04 0.00786 -0.01360 0.0674 0.014
X13 -7.43e-05 0.00630 -0.00571 0.0572 0.013
X7 -1.00e-03 0.00990 -0.07720 0.0424 0.013
X26 6.95e-05 0.00637 0.00579 0.0604 0.012
X18 4.45e-04 0.00681 0.03700 0.0523 0.012
X4 -2.93e-04 0.01060 -0.02440 0.0981 0.012
X25 6.06e-04 0.00900 0.05510 0.0692 0.011
X21 -1.26e-05 0.00669 -0.00126 0.0705 0.010
X8 -3.50e-04 0.00573 -0.03500 0.0479 0.010
X30 -3.42e-04 0.00631 -0.04270 0.0601 0.008
##
residual.sd =
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8597 0.9638 0.9917 0.9946 1.0245 1.1778
##
r-square =
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.1208 0.1519 0.2054 0.1990 0.2494 0.4028

We see that the 3 variables with true non-zero effects have posterior inclusion probabilities (PIP) > 0.90
whereas all others have PIPs < 0.10. In the results, we have two sets of posterior means and standard
deviations: first from the full posterior distribution and second conditional on that the variable has been
included in the model. When the variable has a large PIP, then the two are similar, but for small PIPs, the
two differ and the full unconditional mean is a shrunk version of the conditional mean where the shrinkage

3

factor is the PIP. For example, for variable X6, the posterior mean is 0.1270995 conditional on the variable
being non-zero, and X6 is non-zero with a posterior probability of 0.077 Thus, the (unconditional) posterior
mean is

0.077 · 0.1270995 + 0.923 · 0 = 0.0097867.

Note that, in a similar way, one could extend the LASSO method to relaxed LASSO, where one first
runs LASSO to choose the non-zero variables (corresponding to the unconditional analysis) and then fits an
unpenalized model using only the chosen variables (corresponding to the conditional analysis). Statistical
inference for such a stepwise procedure is, however, complicated, whereas, in the Bayesian approach, the
posterior distribution is directly available and forms a natural basis for inference.

Let’s visualize the PIPs and the posterior distributions of the coefficients.

par(mfrow = c(1, 2))
plot(lm.ss) # plots PIPs
plot(lm.ss, "coefficients") # plots coeffs

4

https://glmnet.stanford.edu/articles/relax.html

X30

X8

X21

X4

X25

X7

X13

X18

X26

X14

X5

X16

X19

X28

X12

X24

X29

X10

X17

X20

X22

X15

X9

X27

X23

X11

X6

X2

X1

X3

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0

X30

X8

X21

X4

X25

X7

X13

X18

X26

X14

X5

X16

X19

X28

X12

X24

X29

X10

X17

X20

X22

X15

X9

X27

X23

X11

X6

X2

X1

X3

−0.2 0.0 0.2 0.4

5

The posterior probability on the model size can also be plotted.

plot(lm.ss, "size", freq = F)

Histogram of size

Number of nonzero coefficients

D
en

si
ty

2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Extension to estimating π1 and τ2

To make the model fully Bayesian, we would like to estimate also the parameters π1 and τ2 from the data. For
that, we will consider τ2 as being specified relative to the error variance σ2, i.e., we use a prior distribution

βj | π1, τ2, σ2 ∼ (1 − π1)δ0 + π1N (0, σ2τ2).

For example, the parameters π1 and τ2 can be given priors π1 ∼ Beta(b0, b1) and τ2 ∼ Inverse-Gamma(1/2, s2/2)
where the hyper-parameters b0, b1 and s are given such fixed values that the priors cover all reasonable
values of the parameters in a fairly uniform manner. Additionally, a flat prior on σ2 could be an
Inverse-Gamma(a, a) where a is a small positive value, such as 0.01, as such a distribution approximates a
uniform prior on log(σ2) scale (so called Jeffrey’s prior for the variance parameter). By using such “flat
priors” we hope to achieve a posterior distribution that has been guided by information from the data while
the effect of the prior distribution on the posterior remains small.

In the following analysis, we will set the hyper-parameters to b0 = b1 = 1, s = 0.5 and a = 0.01 that lead to
the following prior densities on π1 and τ2.

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

Beta(1,1)

π1

de
ns

ity

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Inv−Gamma(1/2,1/8)

τ2

de
ns

ity

The following Gibbs sampler code to implement this model is adapted from Fabian Dablander https://
fabiandablander.com/r/Spike-and-Slab.html

#' Spike-and-Slab Regression using Gibbs Sampling for p > 1 predictors
#'
#' @param y: vector of responses
#' @param X: matrix of predictor values
#' @param nr_samples: indicates number of samples drawn
#' @param a1: parameter a1 of Gamma prior on variance sigma2e
#' @param a2: parameter a2 of Gamma prior on variance sigma2e
#' @param pi1: parameter of prior over mixture weight
#' @param a: 1st parameter of Beta prior for pi1
#' @param b: 2nd parameter of Beta prior for pi1
#' @param burnin: number of samples we discard ('burnin samples')
#'
#' @returns matrix of posterior samples from parameters gamma, beta, tau2, sigma2e, pi1
ss_regress <- function(

y, X, a1 = .01, a2 = .01, pi1 = .5,
a = 1, b = 1, s = 1/2, nr_samples = 6000, nr_burnin = round(nr_samples / 4, 2)
) {

p <- ncol(X)
n <- nrow(X)

res is where we store the posterior samples
res <- matrix(NA, nrow = nr_samples, ncol = 2*p + 1 + 1 + 1)

colnames(res) <- c(
paste0('gamma', seq(p)),
paste0('beta', seq(p)),
'sigma2', 'tau2', 'pi1'

)

take the MLE estimate as the values for the first sample
m <- lm(y ~ X - 1)
res[1,] <- c(rep(0, p), coef(m), var(predict(m) - y), 1, .5)

7

https://fabiandablander.com/r/Spike-and-Slab.html
https://fabiandablander.com/r/Spike-and-Slab.html

compute only once
XtX <- t(X) %*% X
Xty <- t(X) %*% y

we start running the Gibbs sampler
for (i in seq(2, nr_samples)) {

first, get all the values of the previous time point
gamma_prev <- res[i-1, seq(p)]
beta_prev <- res[i-1, seq(p + 1, 2*p)]
sigma2_prev <- res[i-1, ncol(res) - 2]
tau2_prev <- res[i-1, ncol(res) - 1]
pi1_prev <- res[i-1, ncol(res)]

Start sampling from the conditional posterior distributions
##

sample pi1 from a Beta
pi1_new <- rbeta(1, a + sum(gamma_prev), b + sum(1 - gamma_prev))

sample sigma2e from an Inverse-Gamma
err <- y - X %*% beta_prev
sigma2_new <- 1 / rgamma(1, a1 + n/2, a2 + t(err) %*% err / 2)

sample tau2 from an Inverse Gamma
tau2_new <- 1 / rgamma(

1, 1/2 + 1/2 * sum(gamma_prev),
sˆ2/2 + t(beta_prev) %*% beta_prev / (2*sigma2_new)

)

sample beta from multivariate Gaussian
beta_cov <- qr.solve((1/sigma2_new) * XtX + diag(1/(tau2_new*sigma2_new), p))
beta_mean <- beta_cov %*% Xty * (1/sigma2_new)
beta_new <- mvtnorm::rmvnorm(1, beta_mean, beta_cov)

sample each gamma_j in random order
for (j in sample(seq(p))) {

get the betas for which beta_j is zero
gamma0 <- gamma_prev
gamma0[j] <- 0
bp0 <- t(beta_new * gamma0)

compute the z variables and the conditional variance
xj <- X[, j]
z <- y - X %*% bp0
cond_var <- sum(xjˆ2) + 1/tau2_new

compute chance parameter of the conditional posterior of gamma_j (Bernoulli)
l0 <- log(1 - pi1_new)
l1 <- (

log(pi1_new) - .5 * log(tau2_new*sigma2_new) +
sum(xj*z)ˆ2 / (2*sigma2_new*cond_var) + .5 * log(sigma2_new / cond_var)

8

)

sample gamma_j from a Bernoulli
gamma_prev[j] <- rbinom(1, 1, exp(l1) / (exp(l1) + exp(l0)))

}

gamma_new <- gamma_prev

add new samples
res[i,] <- c(gamma_new, beta_new*gamma_new, sigma2_new, tau2_new, pi1_new)

}

remove the first nr_burnin number of samples
res[-seq(nr_burnin),]

}

Let’s fit the model using this Gibbs sampler and visualize the posteriors of π1 and τ2.

set.seed(18)
ss = ss_regress(

y, X, a1 = .01, a2 = .01, pi1 = .5,
a = 1, b = 1, s = 1/2, nr_samples = 5000
)

par(mfrow = c(1,2))
plot(density(ss[,"pi1"]), xlab = expression(pi[1]), lwd = 2,

main = "Posterior of pi1", col = "red")
plot(density(ss[,"tau2"]), xlab = expression(tauˆ2), lwd = 2,

main = "Posterior of tau2", col = "orange", xlim = c(0,1))

0.0 0.2 0.4 0.6

0
1

2
3

4

Posterior of pi1

π1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Posterior of tau2

τ2

D
en

si
ty

summary(ss[,"pi1"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.008434 0.126940 0.184983 0.199423 0.258069 0.688194

9

summary(ss[,"tau2"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01785 0.05738 0.09008 0.14707 0.15038 14.88438

The posterior of π1 is quite wide and suggest that π1 is somewhere between 0.05 and 0.4. For τ2, the bulk
of the posterior is below 0.20.

We can also see the PIPs and the posterior distributions of the coefficients.

par(mfrow = c(1,2))
barplot(colMeans(ss[,1:p]), names.arg = 1:30,

col = "limegreen", horiz = TRUE, xlab = "PIP")
library(vioplot)
vioplot(ss[,(p+1):(2*p)], names = 1:30,

col = "blue", horizontal = TRUE, xlab = expression(beta[j]))
abline(v = 0, lty = 2)

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

PIP

0.0 0.2 0.4 0.6 0.8 1.0 −0.2 0.0 0.2 0.4

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

βj

Unfortunately, these implementations of Bayesian variable selection using the Spike and Slab prior through
Gibbs sampler do not scale to large data sets. The first problem is that, at each iteration of the Gibbs
sampler, the matrix decomposition on p × p matrix related to XXXTXXX is done. The second problem is that, at

10

each iteration, every predictor is updated even when the model might be very sparse, i.e., even when only a
few coefficients are non-zero. These issues become too demanding when p becomes truly large.

Let’s next discuss some recent work that has made it possible to apply these kinds of models to very large p.

Efficient computation of Bayes factors under SSP

Let’s continue with the assumption that each predictor has an independent SSP(π1, τ2) prior. It has been
shown by Benner et al. that the Bayes factor (BF) comparing a model where the non-zero coefficients
are specified by a configuration γγγ and the null model γγγ0 = (0, . . . , 0) where all coefficients are zero can be
computed using data on only the non-zero variables (Details in Slides). This allows computing BF(γγγ : γγγ0)
between γγγ and γγγ0 in O(k3) operations, where k =

∑p
j=1 γj is the number of non-zero coefficients in γγγ,

compared to O(p3) operations that are required when the computation is done in the standard way. When
we consider sparse models where k ∼ 10 and p ∼ 105 this can make all the difference.

Note that under the SSP(π1, τ2) prior, the prior probability of a configuration γγγ is π
kγ

1 (1 − π1)p−kγ and only
depends on kγ . Thus, by knowing the BFs for all possible configurations, we can compute an (unnormalized)
posterior probabilities for the configurations as

Pr(γγγ | Data) ∝ BF(γγγ : γγγ0)πkγ

1 (1 − π1)p−kγ .

By normalizing these quantities with respect to their sum over γγγ, we have computed the posteriors for every
configuration.

However, if we allowed, say, 10 non-zero variables out of 105 candidates, we would still have
(105

10
)

≈ 1043

configurations to evaluate, and that is far too many even when we can do every one of them quickly. For this
reason, stochastic search algorithms have been introduced to approximate the posterior by finding the most
relevant configurations from the whole space of configurations and then normalizing their un-normalized
posteriors with respect to the relevant subset of configurations. (See slides for an example.)

Sum of single effect model (SUSIE)

Another recent approach to analyze Bayesian variable selection model is using the ‘single-effect regression’
(SER) model as a building block (Wang et al.). SER model is a multiple-regression model in which exactly
one of the p predictors has a non-zero regression coefficient. The idea is to combine some number K of these
SERs together to get a model where there are K non-zero predictors, or K effects. The key is that fitting
each SER model conditional on the other SER models is very quick.

SUSIE model with K effects Let’s assume that the number of non-zero effects K, the error variance
σ2 and the prior variance on the non-zero effect τ2 are fixed. For each non-zero effect k = 1, . . . , K, define
γγγ(k) ∈ {0, 1}p as the indicator vector that shows which is the kth non-zero coefficient, that is,

∑p
j=1 γ

(k)
j = 1.

The model is

yyy ∼ N (XXXβββ, σ2III)

βββ =
K∑

k=1
βββ(k)

βββ(k) = β(k)γγγ(k), for each k = 1, . . . , K,

β(k) ∼ N (0, τ2), for each k = 1, . . . , K,

γγγ(k) ∼ Multinomial(1, (1/p, . . . , 1/p)), for each k = 1, . . . , K.

The last line means that exactly one of the elements of γγγ(k) is non-zero and, a priori, it is equally likely to
be any one of the p elements.

11

https://www.biorxiv.org/content/10.1101/318618v1.full.pdf
https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12388

Note that the model does not rule out the possibility that γγγ(k) = γγγ(ℓ) for some k ̸= ℓ even though conceptually
it would be natural to avoid such overlaps. However, by leaving a possibility for an overlap, we can treat
each effect independently and we get much simpler computations. Additionally, in practice, we won’t observe
overlapping effects in the posterior distribution estimated by the following algorithm.

Iterative Bayesian stepwise selection (IBSS) A key motivation for the SUSIE model is that, given
(βββ(ℓ))ℓ ̸=k, fitting βββ(k) involves only fitting an SER model whose posterior distribution on the indicator γγγ(k)

and the parameter β(k) is simple to compute. This suggests an iterative algorithm (called IBSS) to fit the
model. Below we apply it to our existing data set by allowing K = 5 effects and setting the prior variance
τ2 = 1.

p = ncol(X)
n = nrow(X)
K = 5
tau2 = 1
xx = colSums(Xˆ2) # = diagonal of t(X) %*% X. Will be needed later.
b = matrix(0, nrow = K, ncol = p) # initialize each effect beta_k = 0
res.b = res.pip = res.v = b # initialize results to 0
diff.in.post = rep(0,p) # initialize to 0
converged = FALSE
tol = 1e-6 # stop when difference between iterations < tol
iter = 0
while(!converged){

iter = iter + 1
for (k in 1:K){ # Fitting SER model for effect k

r = as.vector(y - rowSums(X%*%t(b[-k,]))) # residuals without effect k

Use Exercise 1.5 results here to get MLE of linear model
b.k = t(X) %*% r / xx # univariate OLS estimate
B = matrix(b.k, byrow = T, nrow = n, ncol = p)
M = (X*B - r)ˆ2
v.k = colSums(M) / xx / (n-1) # MLE for variance of b.k

Combine MLEs with prior distributions to get posteriors
post.v.k = 1/(1/v.k + 1/tau2)
post.b.k = post.v.k/v.k * b.k
Conditional posterior for beta_k is N(post.b.k, post.v.k)
conditional on the effect being at that position

PIPs for the effect being at position 1,...,p:
log.bf = 0.5*log(v.k/(v.k + tau2)) + 0.5*b.kˆ2/v.k*tau2/(tau2 + v.k)
tmp = exp(log.bf - max(log.bf))
post.ip = tmp / sum(tmp)

b[k,] = post.b.k*post.ip # save new effect k estimate for next iteration
compare to previous iteration to observe convergence:
diff.in.post[k] = max(abs(b[k,] - res.b[k,]*res.pip[k,]))
save results
res.b[k,] = post.b.k
res.pip[k,] = post.ip
res.v[k,] = post.v.k

}

12

converged = (all(diff.in.post < tol))
}
print(paste("Ended in", iter, "iterations"))

[1] "Ended in 8 iterations"

Let’s examine the output of this algorithm. We allowed 5 non-zero effects. Let’s see the distributions of
PIPs for each effect k = 1, . . . , 5.

par(mfrow = c(1,5))
for(ii in 1:K){
barplot(res.pip[ii,], names.arg = 1:p, horiz = TRUE, xlim = c(0,1),

main = paste("Effect",ii), col = ii, xlab = "PIP")
}

1
2

3
4

5
6

7
8

9
11

13
15

17
19

21
23

25
27

29

Effect 1

PIP

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7
8

9
11

13
15

17
19

21
23

25
27

29

Effect 2

PIP

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7
8

9
11

13
15

17
19

21
23

25
27

29
Effect 3

PIP

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7
8

9
11

13
15

17
19

21
23

25
27

29

Effect 4

PIP

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7
8

9
11

13
15

17
19

21
23

25
27

29

Effect 5

PIP

0.0 0.2 0.4 0.6 0.8 1.0

We see that for the first 3 effects, there is a clear difference between predictors in their PIPs. For the last
two, none of the coefficients has a large PIP and therefore we may want to ignore those effects. In other
words, likely there are only 3 clear non-zero effects there and the remaining effects, if included in the SUSIE
model, wouldn’t provide any information about which of the predictors would have a non-zero effect. Note,
however, that despite this reasonable ad hoc criterion to determine the number of effects, the SUSIE model
cannot make any probabilistic assessment of the number of non-zero effects whereas the SSP model directly
gave us the posterior distribution on the number of non-zero coefficients.

We can next estimate the coefficients by summing over the K SER models. Let’s denote the posterior mean
and variance of the SER model k conditional on the effect being at predictor j by µ

(k)
j and η

(k)
j , respectively.

Then we can compute the mean and variance for each coefficient (marginalized over all K SER models) as

13

follows.

E(βj) = E
(

K∑
k=1

γ
(k)
j β

(k)
j

)
=

K∑
k=1

π
(k)
j µ

(k)
j

Var(βj) = Var
(

K∑
k=1

γ
(k)
j β

(k)
j

)
=

K∑
k=1

Var
(

γ
(k)
j β

(k)
j

)
=

K∑
k=1

(
E
(

γ
(k)
j

2
β

(k)
j

2)
− E

(
γ

(k)
j β

(k)
j

)2
)

=
K∑

k=1

(
π

(k)
j

(
η

(k)
j

2
+ µ

(k)
j

2)
− π

(k)
j

2
µ

(k)
j

2)
=

K∑
k=1

(
π

(k)
j

(
η

(k)
j

2)
+ π

(k)
j (1 − π

(k)
j)µ(k)

j

2)

Let’s find the posterior means and variances and then show the 95% credible intervals assuming that the
shape of the posterior distributions are Gaussian.

b.mean = colSums(res.pip * res.b)
b.var = colSums(res.pip * res.v + res.pip * (1 - res.pip) * res.bˆ2)
plot(NULL, xlim = c(0, p + 1), ylim = c(-0.1, 0.5),

ylab = expression(beta), xlab = "")
points(1:p, b.mean, pch = 19)
arrows(1:p, b.mean - 1.96 * sqrt(b.var), 1:p, b.mean + 1.96 * sqrt(b.var),

code = 3, length = 0)
abline(h = 0)

0 5 10 15 20 25 30

−
0.

1
0.

1
0.

2
0.

3
0.

4
0.

5

β

Credible sets of non-zero variables A nice property of the SUSIE model is that it allows a straight-
forward computation of credible set of the non-zero variables.

Definition. A level ρ credible set (CS) is a subset of variables that has a probability ≥ ρ of containing at
least one effect variable, i.e., a variable with non-zero regression coefficient.

For each effect in the SUSIE model, we can compute a credible set by sorting the PIPs in decreasing order
and by forming the CS by including in the set the smallest possible number of variables whose PIPs sum to
a value ≥ ρ.

In our current example, the 95% CSs are below.

14

rho = 0.95
cs = list()
for(ii in 1:K){

ord = order(res.pip[ii,], decreasing = T)
cs[[ii]] = ord[1:min(which(cumsum(res.pip[ii,ord]) >= rho))]

}
cs

[[1]]
[1] 3
##
[[2]]
[1] 1
##
[[3]]
[1] 2
##
[[4]]
[1] 6 23 11 27 15 9 12 20 24 10 30 7 5 18 17 25 29 16 14 26 22 13 19 8 1
[26] 4 28 3
##
[[5]]
[1] 6 23 11 27 15 9 12 20 24 10 30 7 5 18 17 25 29 16 14 26 22 13 19 8 1
[26] 4 28 3

For the first three effects, the CSs only contain one variable each, while the CSs for the last two effects
contain almost all variables. This again shows that the first three effects are clearly localized each to one
variable whereas the two additional effects are not informative and we might want to just ignore them.

Note that the posterior distribution provided by the SSP model does not directly contain information by
which we could build credible sets for the variables. Credible sets are useful when one needs to list the
possible candidate variables that could replace each other in the model.

Question. Assume that there are three highly correlated variables of which one truly affects the outcome
but no other variables associated with the outcome. What kind of PIPs SUSIE would give and how would
the credible sets look like?

15

	The spike and slab prior (SSP)
	Extension to estimating \pi_1 and \tau^2

	Efficient computation of Bayes factors under SSP
	Sum of single effect model (SUSIE)

