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Example: Variable selection in genetics
›Variants near each 

other are often highly 
correlated
§|r|> 0.90 very 

common

›Which ones are 
causal and which are 
just passengers?
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n ~ 105

(samples = 
individuals)

p = 103…104 (predictors = variants)
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Variable selection = “fine-mapping”
›Variants near each 

other are often highly 
correlated

›Which ones are 
causal and which are 
just passengers?
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Final results are probabilities
›What is the 

probability for each 
configuration of 
variants being 
causal?

›What is the 
probability for each 
variant being causal?

3
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Goal of probabilistic variable selection

To provide, for each predictor, 

(1) a measure of being important (“causal”) 
• We want variable selection with estimates of uncertainty that 

elastic net does not give (by default)

(2) by accounting for correlation between the predictors
• Elastic net gives only an optimum but does not output other possible 

solutions that could include some of the highly correlated predictors 
instead of the chosen ones. We want a longer list of most probable 
configurations. 

4
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Three pieces of efficient variable selection
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1.

2.

3.
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Univariate “betas”
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These are simple regression
coeffs between one predictor 
and outcome. Computed 
efficiently as in Exercise 1.5.

› Cor(X1, X2) = 0.85

› X1 has effect 0.2, X2 is null (=0)



www.fimm.fi

Multiple regression
“lambdas”
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These are the direct effects 
and account for other predictors
but are complicated to compute 
for large p, especially when p > n.

› Cor(X1, X2) = 0.85

› X1 has effect 0.2, X2 is null (=0)
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Betas and lambdas
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Assuming standardized predictors

where R is pairwise correlation matrix 
of predictors.
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Summary data
› Computation for multiple regression model is possible 

using summary data: univariate z-scores and 
correlation matrix of predictors (R matrix)

9

R, predictors’ correlations
Z, univariate z-scores
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Use summary data to make multiple 
regression possible from univariate results

› Working with less data but with full information
§ For p=1,000 and n=100,000, data reduction is 100 fold

10

Y X betas R matrix
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Three pieces of efficient variable selection

11

Use 
summary 

data
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Assumption: true configuration is sparse
› Joint MLE (or ridge regression) of all predictors is not our final answer 

to variable selection since it does not lead to sparse solutions

› Bayesian answer: 
§ Define a prior probabilities for configurations
§ Define a prior distribution for regression coefficients of a configuration 
§ Integrate (prior x likelihood) leading to marginal likelihood for the 

configuration

12Benner et al. 2016
“causal effects” = “direct effects” = “multiple regression coefficients”
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Bayesian model for variable selection
› Define a configuration g as a binary vector over predictors

› This configuration represents model where predictors 3 and 7 are 
allowed to have non-zero effects while the other predictors have 
effect size 0

13

0 0 1 0 0 0 1 0g  = 
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Bayesian model for variable selection
› Define a configuration g as a binary vector for predictors

› In total there are 2p configurations on p predictors, but we will 
assume that only sparse configurations are plausible, say those 
with < 10 non-zero predictors 

§ This is similar idea to LASSO that sets many coefficients to 0

› Ultimate goal is to compute probability for each configuration, 
given the observed data 

§ This is much more challenging than the LASSO optimization

14

0 0 1 0 0 0 1 0g  = 
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Bayesian model for variable selection
› Define a configuration g as a binary vector for predictors

› Each non-zero predictor picks its effect from N(0, s2)
§ This is the slab part of the spike and slab prior
§ This is similar prior as in ridge regression but now the model is sparse which 

is different from ridge regression
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Bayesian model for variable selection
› Define causal configuration g as a binary vector for predictors

› Each non-zero predictor picks its effect from N(0, s2)

› For each configuration, compute the Bayes factor (BF), i.e., how 
well the configuration explains the data relative to the null model

› How to compute the numerator?

16
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Marginal likelihood for a configuration

17

(Likelihood x prior)

Depends on X and Y only through
Summary data Z and R!
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Marginal likelihood for a configuration

18

+ Depends on data only through univariate summary 
statistics and correlation matrix R, i.e., 
summary statistics
Thus, we do not need access to original X and Y!

- Dimension is p, the number of predictors that can be 
10,000s, which makes evaluation of many
configurations impossible since each config requires
decomposition of a pxp matrix and this is O(p3)
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Using only causal predictors

19

Consider configuration g
Divide predictors into causal 
( C ) and non-causal ( N )

Benner et al. 2016
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Using only causal variants

20

Cond. distr of ZN | ZC is the same for configuration g as it is for null model ! 

Benner et al. 2016

Consider configuration g
Divide predictors into causal 
( C ) and non-causal ( N )

This derivation holds for small effects, general case in 
Benner et al. 2018 www.biorxiv.org/content/10.1101/318618v1.full.pdf
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Bayesian model for variable selection
› Define causal configuration g as a binary vector for predictors

› Each non-zero predictor picks its effect from N(0, s2)

› For each configuration compute the Bayes factor (BF), i.e., how 
well the configuration explains the data relative to the null model

› By combining BFs with prior probabilities of configurations we get 
the posterior probabilities

21
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Prior on configurations to enforce sparsity

› Specify probability pk that there are 
k non-zero predictors

› Divide that probability equally 
between all configurations having k 
non-zero predictors

› This prior could be learned from 
data or remain as an ad-hoc choice

22

C. Benner
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Three pieces of efficient fine-mapping

23

Use only 
causal 

predictors

Use 
summary 

data
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Space of causal configurations is huge, 2p

› Best subset algorithms evaluate every configuration
§ Can allow at most 3 causal predictors when 1000s of predictors are 

available
§ Experimenting with genetic data: On average only about 100 configs 

out of 70,000,000 already covered 95% of posterior in setting: p=750 
, 5 causal predictors (Benner et al. 2016)

• Can be different in some other application fields!

24
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Shotgun stochastic search algorithm
› Collect configurations from a high probability region using Shotgun 

stochastic search (Hans et al. 2007)
§ Memorize BFs of all those configurations seen during the search 
§ Stop once not much new probability mass is found
§ Renormalize posteriors with respect to the configurations visited

25Benner et al. 2016
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Example: FINEMAP software
› Simulations with p=1500 of which 5 are truly non-zero

§ FINEMAP runs in a few seconds
§ Enumeration is impossible in practice 

26Benner et al. 2016
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Three pieces of efficient variable selection

27

Use only 
causal

predictors

Use 
efficient 
search 

algorithm

Use 
summary 

data
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Benner et al. 2016

6 Mb region
8612 variants
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