Example: Variable selection in genetics

%7 GWAS: n =15626
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° Variants near each
other are often highly
correlated

"|r|> 0.90 very
common

Which ones are
causal and which are

19q13/APOE association with LDL cholesterol j u St pa Sse n g e rS ?

n~10°
(samples =
individuals)

C.Benner

IND1 M A/A A/C A/C C/C A/A A/C A/C C/C C/C
INDZ M A/A A/C A/A C/C A/C A/C A/C C/C A/C
IND3 M A/C C/C A/C C/C A/A C/C C/C C/C C/C
IND4 F A/A A/C A/A C/C A/C A/C A/C C/C C/C
INDS F A/A C/C A/C C/C A/A A/A C/C A/A A/C

IND6 M A/C A/C C/C C/C A/A A/C A/C C/C C/C
IND7 F A/A A/A A/C C/C A/A C/C A/C C/C A/C
IND8 M A/C A/C C/C C/C C/C A/C C/C C/C C/C
IND9 F A/A A/A A/C C/C A/A A/C C/C A/C C/C

p = 103...10% (predictors = variants)

FIMM

www.fimm.fi 1



-log10( P-value)

Variable selection = “fine-mapping”

60: GWAS: n =15626 08 3 potential causal Va”ants near eaCh
°© o foo variants by stepwise .
% conditioning other are often highly
correlated
‘ Which ones are
causal and which are
" just passengers?
19q13/APOE association with LD 13: GWAS: n =15626 3 potential causal
114 Optimal LD information variants by FINEMAP
9 3: :
i o
4 [ ] S o
C . Be n ne r 19q13/APOE association with LDL cholesterol
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Final results are probabillities

3 potential causal What is the
wrene Sy HREVET probability for each
configuration of
variants being
causal?

o What is the
probability for each
variant being causal?

| GWAS: n =15626
| Optimal LD information

log10( Bayes factor )
w (3] ~ ©
1 1 1 1 1 1 1 1 1

g

|
-
L 1 L

19q13/APOE association with LDL cholesterol

rank config config_prob config_logl0bf index snp snp_prob snp_logl0bf

1 rsl5,rs47 0.59 44.6 15 %515 1.00 11.3

2 rs15,rs42,rs47 0.02 44.9 47 rs47 1.00 10.6

3 rs15,rs34,rs47 0.01 44,7 42 rs42 0.03 -0.22
C.Benner
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Goal of probabillistic variable selection

To provide, for each predictor,

a measure of being important (“causal”)

«  We want variable selection with estimates of uncertainty that
elastic net does not give (by default)

by accounting for correlation between the predictors

« Elastic net gives only an optimum but does not output other possible
solutions that could include some of the highly correlated predictors
instead of the chosen ones. We want a longer list of most probable

configurations.

FIMM oo 4



Three pieces of efficient variable selection
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Univariate “betas”

Y = X; B + €

nxl px11x1 nx1

By = (XIX,) 1 X,y -

-0.2

These are simple regression
coeffs between one predictor
and outcome. Computed

efficiently as in Exercise 1.5.

0.3

0.2

0.1

0.0

0.1

0.2 0.4

0.3

0.0 0.1
Cor(X;, X,) = 0.85

X, has effect 0.2, X, is null (=0)

FIMM
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Multiple regression
“lambdas”

Y = X XN + ¢

nx1 nXxppxl nx1

A= (XTX)1XTy |

These are the direct effects 00 0.1 0.2
and account for other predictors
but are complicated to compute
for large p, especially when p > n. > %1 has efiect 0.2, X; is null (=0)

0.3 04
Cor(X;, X,) = 0.85

FIMM
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Betas and lambdas

Assuming standardized predictors
B=L(X"X)A=RA

N

where R is pairwise correlation matrix
of predictors.

1 0.85]| [0.2

B=1loss 1 01| |0.17

0.2

FIMM




Summary data

Computation for multiple regression model is possible
using summary data: univariate z-scores and
correlation matrix of predictors (R matrix)

Y = X M + €

nx1 nxppxl nx1

K\ Tyl w7
A= (x X) X'Y R, predictors’ correlations
N— v Z, univariate z-scores
nR V/Noez

FIMM



Use summary data to make multiple
regression possible from univariate results

Working with less data but with full information

= For p=1,000 and n=100,000, data reduction is 100 fold

Y X betas
Trait SNP GWAS
o values genotypes output
@] D@E IN D)
* * i. * * * SNP1 *
Size: | * #|* * * SNP2| =*
S 3 SNP3| «
10510 |.| .. . .
| * | * ¥ * Collapsing
Q individual-level
2| = |« 5% & data

SNP1
SNP2
SNP3

R matrix
SNP
correlations
* | SNP1
* | SNP2
* * * | SNP3
& g
= =2 =
) %) )

Size:
103 x 103

From C.Benner
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Three pieces of efficient variable selection

Use
summary
data

FIMM
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Assumption: true configuration Is sparse

Joint MLE (or ridge regression) of all predictors is not our final answer
to variable selection since it does not lead to sparse solutions

Bayesian answer:
= Define a prior probabilities for configurations

= Define a prior distribution for regression coefficients of a configuration
= Integrate (prior x likelihood) leading to marginal likelihood for the

configuration
0] 1 I 011 | 0l0|0]| 1|0/ 0 |Causal configuration -
0 2.1|0 0.1| 00| 0|31 0| 0 | Causal effects A
1.3[2.0]0.7[0.2|1.5[0.3[0.2|3.2[2.9] 0.1 MLE A

“causal effects” = “direct effects” = “multiple regression coefficients”

FIMM
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Bayesian model for variable selection

Define a configuration y as a binary vector over predictors

’y = o 0 1 0 0, 0 1 0

This configuration represents model where predictors 3 and 7 are
allowed to have non-zero effects while the other predictors have
effect size 0

FIMM
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Bayesian model for variable selection

Define a configuration y as a binary vector for predictors

In total there are 2P configurations on p predictors, but we will
assume that only sparse configurations are plausible, say those
with < 10 non-zero predictors

= This is similar idea to LASSO that sets many coefficients to 0

Ultimate goal is to compute probability for each configuration,
given the observed data
= This is much more challenging than the LASSO optimization

FEMM www.fimm.fi 14



Bayesian model for variable selection

Define a configuration y as a binary vector for predictors

Each non-zero predictor picks its effect from N(0O, s?)
= This is the slab part of the spike and slab prior

= This is similar prior as in ridge regression but now the model is sparse which

is different from ridge regression
Causal configuration ~

110101000101 0]O0]O

[ 1

p(Aly) =N (0,5°A) o

A = diag(y) =

FIMM it 15



Bayesian model for variable selection

Define causal configuration y as a binary vector for predictors
Each non-zero predictor picks its effect from N(0O, s?)

For each configuration, compute the Bayes factor (BF), i.e., how
well the configuration explains the data relative to the null model

_ P(DATAly)
BEy = sATANULLD)

How to compute the numerator?

FEMM www.fimm.fi
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Marginal likelihood for a configuration

Ly) = / p (YA, X) p(Aly) dA (Likelihood x prior)

/ N (X\A, 02(XTX)_1) N (A0, s50°A,) dA

N (Ao, o?(nR) ™ + $30%A, )
N (/Z\‘O R + RA* R) Depends on X and Y only through
2 Y

Summary data Z and R!

z =B/SEs = Y"B and A% = s}A,

FIMM it 17



Marginal likelihood for a configuration

L(v) =N (z|0,R+ RA%R)

25 Depends on data only through univariate summary
statistics and correlation matrix R, I.e.,

summary statistics
Thus, we do not need access to original X and Y!

- Dimension is p, the number of predictors that can be
10,000s, which makes evaluation of many
configurations impossible since each config requires
decomposition of a pxp matrix and this is O(p3)

www.fimm.fi 18
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Using only causal predictors

Consider configuration y 27
Divide predictors into causal z — R = Ree Ren
( C ) and non-causal ( N ) ZN RNC RNN

FIMM Benner et al. 2016 wwinmi 19



Using only causal variants

Consider configuration y Zc
Divide predictors into causal z — R = Ree Ren
(C ) and non-causal (N ) ZyN Ryne Rawy

Cond. distr of Zy | Z. is the same for configuration y as it is for null model !

N(z[0, R + RA*R)
N(z|0, R)
N(zc|0, Ree + Rec Agc Rec) N(zn|ze)

BF(v : NULL)

N(Z(;|O, RC(;)N(ZN|2C)
N(zc|0, Rec + Rec Agc Rec)
N(Zc|0, Rcc)

Benner et al. 2016

FEMM This derivation holds for small effects, general case in
Benner et al. 2018 www.biorxiv.org/content/10.1101/318618v1.full.pdf

www.fimm.fi 20



Bayesian model for variable selection

Define causal configuration y as a binary vector for predictors
Each non-zero predictor picks its effect from N(O, s?)

For each configuration compute the Bayes factor (BF), i.e., how
well the configuration explains the data relative to the null model

By combining BFs with prior probabilities of configurations we get
the posterior probabilities

py = P(7y|DATA) o prior,, X BF,,

FIMM
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Prior on configurations to enforce sparsity

Specify probability p, that there are P
K non-zero predictors

1
Divide that probability equally 2
between all configurations having k I 3
non-zero predictors # of causal SNPs
This prior could be learned from p1/10 [IToJ oo o o 0] 0] 0] 0]
data or remain as an ad-hoc choice '

p1/10 [oToToToToToTo oo ]
p2/45 [IT1JoJoJoJoJoJof o]0}l

V
p2 /45 [oToToToToJoJo]o1[1]

C. Benner

FIMM it 22



Three pieces of efficient fine-mapping

Use
summary
data

Use only
causal
predictors

FIMM

23



Space of causal configurations is huge, 2P

Best subset algorithms evaluate every configuration

= Can allow at most 3 causal predictors when 1000s of predictors are
available

= Experimenting with genetic data: On average only about 100 configs
out of 70,000,000 already covered 95% of posterior in setting: p=750
, 5 causal predictors (Benner et al. 2016)

- Can be different in some other application fields!

FIMM it 24



Shotgun stochastic search algorithm

Collect configurations from a high probability region using Shotgun

stochastic search (Hans et al. 2007)

= Memorize BFs of all those configurations seen during the search

= Stop once not much new probability mass is found

= Renormalize posteriors with respect to the configurations visited

SNP SNP
i 2 3 1 2 3

- KIBRE KRB Score
Current configuration Current configuration

Delete Delete
| EFIRE . BER s
| KRN sco | v BIBXER scoe

Change Change
| EEE v BEREY scoe

e EIEIEN sco- | v ERERER scoe |[EXE

Sample configuration Sample configuration

FIMM Benner et al. 2016 wwwimmi
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Example: FINEMAP software

Simulations with p=1500 of which 5 are truly non-zero

= FINEMAP runs in a few seconds
= Enumeration is impossible in practice

10 0.99

062

Descend|ng

003

Number of selected causal SNPs

-~ FINEMAP (
o FINEMAP(K 3)
—m— CAVIARBF (K = 3)
-0~ OPTIMAL

I 1 ! I U ! | ) ) I ! I I 1 I ) ! ! 1 )

1 3 5 F i 9 11 13 19 17 19
Number of selected top-ranked SNPs

FIMM Benner et al. 2016 wuwwioms 26



Three pieces of efficient variable selection

Use
Use efficient
summary search
data algorithm

Use only
causal
predictors
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156921 /LIPC association with HDL cholesterol

Squared correlation 0.80.60.40.2

with lead SNP |

Benner et al. 2016

Surakka et al.
Nat. Genet. 2015

log10( Bayes factor )

—-log10( P-value )

FINEMAP
rs7350789

regulatory
variant

rs1800588

rs113298164

190x higher likelihood
than 3-SNP configuration
from conditional analysis

40-

301

204

10+

SINGLE-SNP TEST

3-SNP configuration

p B
from conditional
analysis

promoter
polymorphism
missense

variant

6 Mb region
8612 variants

-
S
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http://www.finemap.me/

