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From prediction to inference

Previously, we have been using the predictive ability in the test data as the criterion to choose between
regression models. In practice, we have done this via cross-validation that puts the models into an empirical
test against data that were not included in the training data set. This sounds a very reasonable approach
to choose a model when the goal is to predict well unobserved outcomes.

More broadly, we also intuitively expect that the models that are able to best predict the outcome value
from the input predictors, are also best in “capturing” the underlying phenomenon/system we want to study.
Therefore, we would also like to extract more information about the phenomenon from those best models
than what the point estimates of the coefficients alone give us. A single set of point estimates does not, for
example, answer questions such as

• What is our level of confidence that this particular coefficient βj is non-zero (probability of being
important), or that its value is within a particular interval [a, b]?

• Are there dependencies between multiple predictors so that they seem to be all needed together for
the model to work well? And what are such dependencies in numerical terms?

• Could the predictor j in the chosen model be equally well replaced by another predictor k, or some
combination of several other predictors?

Answers to such questions require that we quantify our uncertainty about the chosen model and about the
values of the coefficients within the chosen model. In other words, we want to do statistical inference in
addition to doing predictions. While there are standard approaches to inference in any one (unpenalized)
regression model, such as using the variance-covariance matrix of the ML-estimator to derive confidence
intervals/regions, no equally general approach is (yet) available for the penalized models. Here we will
approach the problem from two directions:

1. Empirical quantification of variability of our estimation method by using data resampling also known
as the bootstrap.

2. Estimating the posterior distribution for the model and its parameters.

The first one, the bootstrap, is a very generally applicable idea of using the observed data set to generate
additional possible data sets and quantifying how much variation there is in the parameter estimates of the
method when applied across the generated data sets. The flavor of bootstrapping is very practical and it can
be interpreted both as an approximate method to estimate the sampling distribution of the parameters of
interest and as a Bayesian method to estimate the posterior distribution under certain naive prior distribution
about the observed data.

The second approach, the full posterior distribution of all the unknown quantities, is a theoretically sound
way to quantify uncertainty, but it is often technically complicated and hence available in special cases rather
than in general. A current work on probabilistic programming (e.g. Stan) is aiming to bridge this gap and
make the posterior inference more easily available for a wider audience.
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Bootstrap

Let’s consider the problem of estimating the correlation coefficient r between variables x and y using a
sample of size n = 100. We simulate an example where true r = 0.8.

Let’s start by visualizing the sampling distribution of the estimator cor() when it is applied to (R = 5000)
independent sets of n = 100 observations from the population. This distribution shows what kind of estimates
we are likely to observe in this setting.

# function to generate a pair of correlated variables from lecture HDS6
gen.cor.pair <- function(r, n){ # r is target correlation, n is sample size
u = rnorm(n, 0, sqrt(abs(r))) # temporary variable that is used for generating x1 and x2
x1 = scale(u + rnorm(n, 0, sqrt(1 - abs(r))))
x2 = scale(sign(r)*u + rnorm(n, 0, sqrt(1 - abs(r))))
cbind(x1, x2) # returns matrix

}

n = 100
r.true = 0.8
R = 5000 # replicates of data set
r.est = replicate(R, cor(gen.cor.pair(r = r.true, n = n))[1,2]) # returns cor(x,y) for R indep. data sets
hist(r.est, breaks = 50, main = paste0("Sampling distribution at r = ",r.true), col = "orange",

xlab = expression(hat(r)), prob = T, sub = paste0(
"mean = ",round(mean(r.est),3),"; sd = ",round(sd(r.est),3),"; 95%I = (",
round(quantile(r.est,c(0.025)),3),",",
round(quantile(r.est,c(0.975)),3),")"))

abline(v = r.true, col = "red", lwd = 1.5)

Sampling distribution at r = 0.8

mean = 0.799; sd = 0.037; 95%I = (0.717,0.863)
r̂
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We see that with n = 100 the estimates vary from 0.60 to 0.90, with the mean close to the true value (in
red) but the distribution showing some skew to left.

In real life, we do not have a luxury of 5000 independent data sets from which to compute a mean and an
interval, but instead we have only one data set of n observations. Let’s generate such a single data set.

X = gen.cor.pair(r = r.true, n = n)
r.est = cor(X)[1,2]
r.est

## [1] 0.7637661

This particular data set gives a point estimate of r̂ = 0.764. By observing this value alone we have no
idea how much the estimate could vary, if we happened to had sampled another set of similar size from the
population.

If we are familiar with inference about correlation coefficient, we know that we could estimate a 95% CI
using Fisher’s transformation as

tanh(atanh(r.est) + c(-1, 1) * 1.96 * 1/sqrt(n-3)) #9 5%CI for cor from Fisher's transf.

## [1] 0.6674799 0.8349312

However, Fisher’s transformation is a specific trick applicable only to the correlation coefficient estimation
and next we will use the bootstrap as a more general approach to derive a confidence interval. This happens
as follows

1. Resample B data sets of size n, each with replacement from the original data set X. These B
resampled data sets are called bootstrap samples, and denoted by X∗

1 , . . . , X∗
B to distinguish them

from the original data set X.

2. Use the distribution of the statistic of interest over the bootstrap samples as a (posterior) distribution
for the statistic of interest.

Let’s first see how this works in our case, and then discuss more about the motivation and assumptions
behind the procedure.

B = 5000 #bootstrap samples
r.boot = replicate(B, cor(X[sample(1:n, n, replace = TRUE),])[1,2])
hist(r.boot, breaks = 50, main = paste0("Bootstrap distribution at r.est = ", round(r.est,3)),

col = "limegreen", xlab = expression(hat(r)), prob = TRUE,
sub = paste0(

"mean = ",round(mean(r.boot),3),
"; sd = ",round(sd(r.boot),3),
"; 95%I = (", round(quantile(r.boot,c(0.025)),3),",",round(quantile(r.boot,c(0.975)),3),")"))

abline(v = r.true, col = "red", lwd = 1.5)
abline(v = r.est, col = "gold", lwd = 1.5)
legend("topleft", lwd = 1.5, col = c("red","gold"), leg = c("true r","est r"), lty = c(1,1))
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Bootstrap distribution at r.est = 0.764

mean = 0.763; sd = 0.042; 95%I = (0.672,0.835)
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By interpreting this distribution as a posterior distribution of r we can say that a 95% credible interval is
(0.672,0.835). Often exactly the same interval is interpreted as a confidence interval so both Bayesian and
frequentist interpretations are used for this bootstrap interval.

(Philosophical) Discussion: Even though both Bayesian and frequentist interpretations are used for
this interval, there seems not to be good arguments why this interval is a suitable confidence interval,
other than acknowledging that it is actually a credible interval that has a good frequentist calibration. For
example, a nice treatment of the bootstrap by Hesterberg (2014) p.54 says that “The bootstrap percentile
interval has no particular derivation - it just works. This is uncomfortable for a mathematically-trained
statistician, and unsatisfying for a mathematical statistics course.” This “problem” may exist with the
frequentist interpretation, but does not exist with the Bayesian interpretation, because there this percentile
interval of the bootstrap sample is the most obvious estimate for the credible interval.

We see that in our example case this interval agrees well with the Fisher’s transformation above (0.667,0.835),
but let’s also do some empirical testing to see how this interval is calibrated over possible other data sets
that we could have used for making the bootstrap sample. Let’s make 2000 replicates of the whole bootstrap
procedure, each replicate coming from its own data set, and compute the proportion of the replicates where
the 95% bootstrap interval contains the true value of r.

B = 1000
R = 2000
ci.boot = matrix(NA, ncol = 2, nrow = R)
for(ii in 1:R){

X = gen.cor.pair(r = r.true, n = n) # generate one pair of predictors
r.boot = replicate(B, cor(X[sample(1:n, n, replace = T),])[1,2])
ci.boot[ii,] = quantile(r.boot,c(0.025,0.975))

}
# Count in which proportion of data sets the bootstrap 95%CI contained the true r
mean(ci.boot[,1] <= r.true & r.true <= ci.boot[,2])
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## [1] 0.9335

We have pretty well-calibrated 95% intervals (in frequentist sense) from the bootstrap samples, meaning
that ~95% of the intervals indeed contain the true parameter. (To be precise, here the intervals are a bit
narrow with coverage of about 93.4% but it still gives a good idea where 95% of the mass is.)

To conclude: Based on the single data set we estimated r̂ = 0.764 and with an application of the bootstrap
we found a 95% credible (or confidence) interval of (0.67,0.84).

What exactly is the bootstrap used for ? The term “bootstrap” (likely) originates from the saying
“to pull oneself up by one’s bootstraps”, which is used when a (nearly) impossible task is needed to be
completed. In statistics, Bradley Efron introduced the term in his 1979 paper about the method. The
“impossible-sounding” task here is to estimate the sampling distribution of the estimator by using only
one available estimate. The reason that the task is not quite as impossible as it may sound is that the
single available estimate results from a data set of n data points, and the variation of the estimator can
be approximated by resampling additional data sets of the same size as the original data set (n), using the
available data set as an approximation to the (larger) target population.

We use bootstrap to estimate the uncertainty in our statistic of interest. Typical cases are to use SD of the
bootstrap sample to estimate SE of the parameter estimate and to use the α · 100% interval of the bootstrap
sample to approximate the corresponding credible/confidence interval for the parameter. The bootstrap
works better, the more symmetric and unbiased the sampling distribution is, and the bootstrap can fail if
the shape of the distribution very strongly depends on the parameter value, or if the sample size is very
small.

Note that we do not use bootstrap to try to somehow make our single point estimate more accurate. Such
a task indeed remains impossible! By resampling from the existing data set we cannot create more accuracy
about the parameter value compared to what we already have extracted from the available data set. The
bootstrap simply helps us to approximate how much our point estimate might vary if we had observed
another data set of similar size from the same population (frequentist interpretation), or to approximate the
posterior distribution of the parameter of interest (Bayesian interpretation).

Bootstrap resamples with replacement When the original data is X = (x1, . . . , xn), a bootstrap
sample X∗ = (x∗

1, . . . , x∗
n) is a sample of size n from the original data, where each x∗

j has been sampled
independently from among the n values of X, with equal probability 1

n given for each data point xk of X.
In other words, for any bootstrap sample X∗, Pr(x∗

j = xk) = 1
n for all pairs j, k ∈ {1, . . . , n}.

In particular, it follows that the bootstrap sample can include a single data point xk many times and can
miss some other value xk′ completely. Actually, the probability that a bootstrap sample misses a particular
data point xk is (1 − 1

n )n −→
n→∞

e−1 ≈ 0.368. Thus, in large samples, only about 63.2% of the data points are
included in any one bootstrap sample.

For example, if we have observed data set X = (0.6, 1.3, 2.0) we could make 33 = 27 bootstrap samples,
including, e.g., (0.6, 0.6, 0.6),(1.3, 2.0, 1.3) and (2.0, 0.6, 1.3).

Why does the bootstrap work? The non-parametric bootstrap, that we have been considering, can be
seen as first building an estimate for the probability distribution f(x) of the data x in the target population,
and second using that estimate of the distribution for inference about the statistic of interest, θ = θ(x), in
the target distribution.

Thus, the bootstrap does inference based on the assumption that the empirical distribution f̂ of the data
points observed in the data set X is a good approximation to the complete target distribution of the data
points that could have been sampled / will be sampled in the future. This empirical distribution simply puts
a point mass of 1

n on each observed data point and assumes that no other data points are possible. It is
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clear that this is a crude approximation, and depends on the situation and the sample size how good results
it gives.

A Bayesian interpretation of bootstrap, first framed by Rubin in 1981, assumes that we are estimating the
discrete probability of observing each possible data point. We put an uninformative prior distribution on the
probabilities of all possible data points and then we update the probabilities as we observe new data points.
Under this very naive model, the expected value of the posterior distribution after observing n data points
is the bootstrap distribution where each observed point has a probability of 1

n , and there is a probability
of 0 for any so far unobserved data point. It follows that the posterior distribution for any given statistic
θ = θ(x) can then be approximated by the bootstrap method as described above. A detailed explanation is
given by Rasmus Bååth.

Read from ISL “5.2 The Bootstrap”

Bootstrap with penalized regression

Let’s apply the bootstrap to a regression setting. Let’s predict medv (median price in a region) from the
other variables available in the Boston data set. We will first standardize all the variables.

The results from LASSO are:

library(MASS) #include Boston data set
library(glmnet)
y = scale(Boston$medv)
X = scale(as.matrix(Boston[,-which(names(Boston) == "medv")]))

# Let's apply the standard LASSO estimation at lambda.1se
cv.lasso = cv.glmnet(x = X, y = y, alpha = 1)
lasso.coef = as.numeric(coef(cv.lasso$glmnet.fit, s = cv.lasso$lambda.1se))
cv.lasso$lambda.1se

## [1] 0.02839794

data.frame(lasso.coef, row.names = c("intcept", colnames(X)))

## lasso.coef
## intcept -2.044123e-16
## crim -3.028936e-02
## zn 2.129334e-02
## indus 0.000000e+00
## chas 6.199843e-02
## nox -9.238078e-02
## rm 3.247971e-01
## age 0.000000e+00
## dis -1.445185e-01
## rad 0.000000e+00
## tax 0.000000e+00
## ptratio -1.919869e-01
## black 7.024556e-02
## lstat -4.036471e-01
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Here, four coefficients are set to 0. How confident we are about these being 0? Let’s see whether the same
four coefficients are 0 also in all/most/some bootstrap samples. We will simply bootstrap the rows of the
Boston data set, fit LASSO model and collect the lambda parameter and all the coefficients. We will do this
also for lambda.min simultaneously.

n = length(y)
B = 500 # bootstrap samples
boot.coef.1se = matrix(NA, nrow = B, ncol = ncol(X) + 1) # +1 for the intercept
colnames(boot.coef.1se) = c("intcept", colnames(X))
boot.coef.min = boot.coef.1se
boot.lambda = matrix(NA, nrow = B, ncol = 2)
colnames(boot.lambda) = c("1se","min")
for(ii in 1:B){

boot.ind = sample(1:n, size = n, replace = TRUE) # bootstrap indexes
XX = X[boot.ind,]
yy = y[boot.ind]
boot.cv.lasso = cv.glmnet(x = XX, y = yy, alpha = 1)
boot.coef.1se[ii,] = as.numeric(coef(boot.cv.lasso$glmnet.fit, s = boot.cv.lasso$lambda.1se))
boot.coef.min[ii,] = as.numeric(coef(boot.cv.lasso$glmnet.fit, s = boot.cv.lasso$lambda.min))
boot.lambda[ii,] = c(boot.cv.lasso$lambda.1se, boot.cv.lasso$lambda.min)

}
prob.nonzero.1se = apply(abs(boot.coef.1se) > 1e-6, 2, mean) # proportion where each coef was > 1e-6
prob.nonzero.min = apply(abs(boot.coef.min) > 1e-6, 2, mean)

barplot(rbind(prob.nonzero.1se[-1],prob.nonzero.min[-1]), beside = TRUE,
col = c("forestgreen", "green1"),
main = "Bootstrap probability of effect (dark = 1se, light = min)")

crim zn indus chas nox rm age dis rad tax ptratio black lstat

Bootstrap probability of effect (dark = 1se, light = min)
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Looking at the lambda.1se values (dark green), we see that none of the four predictors are always 0, although
they are among the ones having the smallest probabilities of being non-zero: age and rad ~10%, indus ~20%
and tax and zn ~40%. On the other hand, lstat, ptratio and rm seem to be always non-zero.

At lambda.min we see that only age and indus are sometimes set to near zero (< 1e-6) whereas in most
cases all variables have coefficients of larger magnitude.

How much the estimated lambda has varied across the bootstrapping?
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summary(boot.lambda)

## 1se min
## Min. :0.01533 Min. :0.0005163
## 1st Qu.:0.03072 1st Qu.:0.0007457
## Median :0.03810 Median :0.0008656
## Mean :0.04153 Mean :0.0013371
## 3rd Qu.:0.04723 3rd Qu.:0.0017203
## Max. :0.13161 Max. :0.0058687

Not very much, and we see that lambda.min is often very close to zero meaning that the cross-validation
suggests that there is little need for shrinkage in these data.
We can now also look at the variation in the values of coefficients.

par(mfrow = c(2, 1))
par(mar = c(1, 3, 1, 1))
boxplot(boot.coef.1se[,-1], col = "forestgreen", main = "",

xaxt = "n", ylim = c(-0.6, 0.4), cex = 0.5)
abline(h = 0, lty = 2)
text(1.7, 0.35, "lambda.1se", cex = 1.4, col = "forestgreen")
par(mar = c(2, 3, 0, 1))
boxplot(boot.coef.min[,-1], col = "green1", main = "", ylim = c(-0.6, 0.4), cex = 0.5)
abline( h = 0, lty = 2)
text(1.7, 0.35, "lambda.min", cex = 1.4, col = "green1")
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In the 1se plot, lstat is having the largest magnitude, followed by rm and then ptratio. The first two
clearly separate from the rest and hence we can conclude that they will be the ones that explain the most
variance (since for the standardized variables the squared effect size is directly proportional to the variance
explained).
The results are broadly similar in the min plot, but there are some clear differences:

1. At lambda.min the shrinkage is very weak and does not set any parameters exactly to 0 like in the
lambda.1se model. Even indus and age, whose medians are 0 also with lambda.min, do show some
variation around 0 in the lambda.min model.
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2. Some coefficients, like zn, nox, dis, rad and tax, show clearly larger magnitude average effects in
lambda.min than in lambda.1se.

Let’s study the second observation in more detail by making scatter plots of the estimated coefficients of zn
vs. dis, and rad vs tax.

par(mfrow = c(1, 2))
cols = rep( c("green1", "forestgreen"), each = B)
x1 = c(boot.coef.min[,"zn"], boot.coef.1se[,"zn"])
x2 = c(boot.coef.min[,"dis"], boot.coef.1se[,"dis"])
plot(x1, x2, xlab = "zn", ylab = "dis", cex = 0.8, pch = 3, col = cols)
legend("topright", leg = c("1se","min"), col = c("forestgreen", "green1"), pch = 3)
x1 = c(boot.coef.min[,"rad"], boot.coef.1se[,"rad"])
x2 = c(boot.coef.min[,"tax"], boot.coef.1se[,"tax"])
plot(x1, x2, xlab = "rad", ylab = "tax", cex = 0.8, pch = 3, col = cols)
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We see a trend of a negative correlation for both pairs likely meaning that, from the point of view of the
model fit, one can compensate an increase in the magnitude of the first variable by an increase in the opposite
direction of the second variable. When the model is more penalized (dark green), then both values shrink
toward 0, but when there is less penalization, then the values can grow together in magnitude but in opposite
directions.

Finally, with the bootstrap, we could now report a 95% credible interval from the LASSO model. For
example, for lstat these would be

res = rbind(quantile(boot.coef.1se[,"lstat"], c(0.025, 0.975)),
quantile(boot.coef.min[,"lstat"], c(0.025, 0.975)))

rownames(res) = c("1se", "min")
res

## 2.5% 97.5%
## 1se -0.5221777 -0.2492009
## min -0.5452871 -0.2395490

These analyses were simple to do although required some computation. However, the bootstrap may be only
a crude approximation to the actual posterior distribution, and next we will look at more exact results for
the posterior distribution of a LASSO model.
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Bayesian lasso with blasso()

In lecture notes 6, we established that the LASSO model, that was derived as the optimum of a penalized
likelihood function, is simultaneously a maximum-a-posteriori (MAP) estimate of a Bayesian model. The
central property of this Bayesian model was that the prior distribution on all coefficients was the Laplace
distribution that had a sharp peak at 0, which then leads to a situation where the optimum value maximizing
the posterior distribution (or, equivalently, minimizing the penalized likelihood) has typically set several
coefficients exactly to 0.

Let’s now explore the posterior distributions of the coefficients under a Bayesian LASSO model, formulated
by Park & Casella (2008). The difference from the pure penalized likelihood version of LASSO is that here
we introduce explicit prior distributions for all parameters in the model and use computational techniques
called Markov chain Monte Carlo (MCMC) to estimate the posteriors. Technically, this is more complicated
than the bootstrapping above, but luckily Robert Gramacy has implemented it in the blasso() function of
monomvn package.

The Bayesian model behind blasso includes also the parameters µ, λ and σ2 and hence they also need explicit
prior distributions. The Bayesian LASSO is defined hierarchically in such a way that first µ, λ and σ2 are
given “uninformative” prior distributions to implement the idea that for these values the information would
hopefully come almost solely from the data, not from the prior. Conditional on λ and σ2, we then define the
LASSO prior (Laplace distribution) for the coefficients. This prior allows a strong shrinkage to the coefficient
compared to what the data alone favors, and hence this part of the model has a very “informative” prior.
To complete the model, we state that the observed data is a result of Gaussian errors added to the linear
predictor, just like in standard linear model. In formulas, the model specification is

µ ∼ 1 (i.e., a flat prior over the real numbers)
σ2 ∼ 1/σ2 (i.e., a flat prior for log(σ2))
λ2 ∼ "uninformative" Gamma distribution

(βj | σ, λ) ∼ Laplace(0, σ/λ), for all j = 1, . . . , p.

(yi | µ,βββ, σ2,XXXi) ∼ N (µ + XXXT
i βββ, σ2) for all i = 1, . . . , n.

With these distributions, the Bayes rule tells that the joint posterior distribution of all unknown parameters
is proportional to the product of prior and likelihood:

Pr(βββ, µ, σ2, λ2 |yyy,XXX) ∝ Pr(yyy |βββ, µ, σ2, λ2,XXX) · Pr(βββ | σ2, λ2)Pr(µ)Pr(σ2)Pr(λ2),

where the first term on the right hand side is the Gaussian likelihood of the linear model, and the remaining
4 terms are the prior distributions that are defined hierarchically (first independent flat priors on µ, σ2 and
λ2, and then the Laplace prior on βββ conditional on the values of σ2 and λ2). blasso() uses an MCMC
algorithm to numerically sample from this posterior distribution.

Let’s run blasso(). It requires the number of MCMC iterations T as input. More iterations will lead
to more accurate results, but will also take more time. RJ = FALSE gives the Bayesian LASSO and RJ =
TRUE adds a Bayesian variable selection via Reversible Jump MCMC. For now, we use RJ = FALSE. MCMC
produces one set of parameter values per each iteration and these values can be interpreted as samples from
the posterior distribution, except at the first few iterations, where the algorithm is still dependent on its
initial values. Therefore, some initial iterations are often discarded as a “burn-in” period of the algorithm.
Here we discard the first 50 iterations as burn-in. Let’s run blasso and compare the posteriors to the earlier
bootstrap results (lambda.min) via boxplots.

library("monomvn")
mcmc.niter = 5000 # how many iterations to run?
blasso.fit = blasso(X = X, y = y, T = mcmc.niter, RJ = FALSE, case = "default", verb = 0)
burnin = 50 # this many first iterations will be discarded as an initial "burn-in" period
iters = burnin:mcmc.niter # use these iterations in results
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par(mfrow = c(2, 1))
par(mar = c(1, 3, 1, 1))
boxplot(blasso.fit$beta[iters,], col = "dodgerblue", cex = 0.5,

names = colnames(boot.coef.min)[-1], main = "", xaxt = "n")
abline(h = 0, lty = 2)
text(1.7, 0.4, "Bayesian LASSO", cex = 1.4, col = "dodgerblue")
par(mar = c(2, 3, 0, 1))
boxplot(boot.coef.min[,-1], col = "green1", main = "", cex = 0.5)
abline( h = 0, lty = 2)
text(2, 0.4, "Bootstrap (lambda.min)", cex = 1.4, col = "green1")
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The results quite similar and we can conclude that the bootstrap produced a good picture of the posterior
distribution of the LASSO model.

The Boston data set didn’t provide much of a need for stronger shrinkage, so let’s next see how the Bayesian
LASSO works in a more sparse test case.

Example 7.1 Let’s generate similar data as in HDS6 with only a couple of important variables and many
null variables. To keep plots neat, let’s use only p = 30 variables of which first 3 have non-zero effects, each
explaining about 5% of variance of the outcome, and let’s consider n = 250 individuals.

set.seed(122)
p = 30
n = 250
phi = 0.05 # variance explained by x_1, should be 0 < phi < 1.
b = rep(c(sqrt(phi / (1-phi)), 0), c(3, p-3)) # effects 1,2,3 are non-zero, see Lect. 0.1 for "phi"
X = matrix(rnorm(n*p), nrow = n) # columns 1,2,3 of X will have effects, other 27 cols are noise
eps = scale(rnorm(n, 0, 1)) # epsilon, error term
y = scale(X%*%b + eps) # makes y have mean = 0, var = 1
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mcmc.niter = 1000 # how many iterations to run?
blasso.fit = blasso(X = X, y = y, T = mcmc.niter, RJ = FALSE, case = "default", verb = 0)
burnin = 50 # this many first iterations will be discarded as an initial "burn-in" period
iters = burnin:mcmc.niter # use these iterations in results
par(mar = c(3, 3, 0.1, 0.1))
boxplot(blasso.fit$beta[iters,], col = "dodgerblue", main = "", xaxt = "n", cex = 0.5)
abline(h = 0, lty = 2)
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We see that the first three predictors are having larger effects than most others, but the model does not
strongly force the others to stay at 0. This is because the model has a single shrinkage parameter λ that
needs to balance the opposing needs between the first 3 variables and the rest. An extension of blasso()
includes variable selection (RJ = TRUE). That extension includes a prior distribution on the number of non-
zero coefficients, that by default is the uniform distribution on {1, . . . , p}, and hence then the model is
explicitly allowing some coefficients be exactly zero while others may have larger values that may or may
not need shrinkage via λ parameter. Let’s try this out.

blasso.rj.fit = blasso(X = X, y = y, T = mcmc.niter, RJ = TRUE, case = "default", verb = 0)
par(mar = c(3, 3, 0.1, 0.1))
boxplot(blasso.rj.fit$beta[iters,], col = "steelblue", main = "", xaxt = "n", cex = 0.5)
abline(h = 0, lty = 2)
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Let’s plot the posterior median of the absolute values of each variable from with and without the RJ-variable
selection. Let’s add the diagonal and a red line to denote the true effect size in the simulation. Let’s use red
for the 3 true effects and gray for the rest.

x1 = apply(abs(blasso.rj.fit$beta[iters,]), 2, median)
x2 = apply(abs(blasso.fit$beta[iters,]), 2, median)
par(mar = c(4, 4, 1, 0.3))
plot(x1, x2, xlab = "RJ", ylab = "no RJ", col = rep(c("red", "gray"), c(3, p-3)),

pch = 19, xlim =c(0, 0.25), ylim = c(0, 0.25))
legend("topleft", col= c("red", "gray"), pch = 19, leg = c("true eff", "zero eff"))
abline(0, 1, lty = 2)
abline(v = b[1], lty = 1, col = "red") #true value in simulation
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We see that with the variable selection we estimate better the effects of both the true effects and the absolute
values of the zero effects. This is because as the variable selection sets some noise variables to 0, we do not
need to make global λ that large to get a good model, and hence we need not penalize the true effects as
much as we do without the variable selection.

Other methods

Here we took a look at two standard and complementary ways to assess uncertainty in penalized regression
models.

More generally, statistical inference for high dimensional models is very active topic of research. See, for
example, work on Selective inference.
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