X2

CORRELATED PREDICTORS

Data with r = 0.95 Estimates

CY=02X,+e,
¢ COf’(X,, Xz) - r

* How do estimates of
coeffs of X, and X,
behave as function of r?




X2

2

Data with r = 0.95

Data withr= 0.1

Estimates

Estimates

Note how SEs of
estimators increase
with |r|.

Intuitively this is
because with highly
correlated variables

it is less clear how to
split the effects between
variables: There are
many almost equally
likely ways.



RIDGE REGRESSION ESTIMATOR

r=0.95 <=

A
B2

r=20.1

0.4

0.3

0.2

0.1

0.0

-0.1

0.5

0.2 0.3 04

0.1

0.0

-0.1

Ridge A =0

-0.1

Ridge A =0.5

0.0 0.1

A
P4

Ridge A =5




1.0

0.9

o
o)

R squared

o
~J

0.6

0.5

RIDGE REGRESSION (RR) VS
ORDINARY LEAST SQUARES (OLYS)

test

* Random predictors have Gaussian effects

p = k*n, where k = 0.55,...,0.95, n = 20,...,200

* Ridge regression does better in the test data
model . .
5 Particularly when n is small
- iR * OLS has slightly smaller training error than RR
100 150 200 50 100 150 200
Number of training observations
From:

https://drsimonj.svbtle.com/ridge-regression-with-glmnet
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R squared

0.7

0.6

07

ORDINARY LEAST SQUARES (OLYS)

RIDGE REGRESSION VS

test

0.8 0.9 0.6 0.7
Number of features as proportion
of number of observation

train

* Random predictors have Gaussian effects
p is from 55% to 95% of the sample size n

* Ridge regression does better in the test data

model Particularly when p is large compared to n
OLS . 2 o o
——" * OLS has slightly smaller error in training data
0.8 0.9
From:

https://drsimonj.svbtle.com/ridge-regression-with-glmnet



RIDGE REGRESSION VS
ORDINARY LEAST SQUARES (OLYS)

Relative R squared advantage of Ridge compared to OLS

Tes i * Ridge regression does better in test data
< * Particularly when p is large and / or n is small
£ _09
o c . . . e
52 RidgeAdvantage * OLS slightly better in training data
0o . . . . .
© 5 0.8 0.4 * Overfits particularly when p is large and / or n is small
$ 0
3% 0.2
[ L
gé 0.7 0.0
e
g 0.2
£ " os
Z
0 50 100 150 200 0O 50 100 150 200
Number of training observations
From:

https://drsimonj.svbtle.com/ridge-regression-with-glmnet



6.2 SHRINKAGE METHODS

Springer Texts in Statistics

Gareth James

Daniela Witten
Trevor Hastie
Robert Tibshirani

with Applications in R

@ Springer

Section 6.2




PENALIZED LIKELIHOOD FORMULATION

T

o~

i=1 j=1 j=1

2
' p Y p
Yi — Bo — E Bixij | + A E B2 =RSS+ ) f7 , ,
(g o o ") = 2.0 Ridge regression

7

o~

2
P P P
(.uz- —Bo—Y 3]%> +AY (8] =RsS+AY || LASSO
1 j=1 j=1

i= j=1

How would you write AIC or BIC in this formulation?



CONSTRAINED MINIMIZATION
FORMULATION

( 2)
n P P
. . . R . . ) ‘ 2 . . .
minimize 4 Y — Bo — g B, > subject to E B5 < s, Rldge regression
i=1 j=1 j=1
\ J
4 2 )
n P P
mini%nize 3 yi — Bo — g Bij > subject to E 18] <s LASSO
i=1 j=1 j=1
\ J
( 2)
n p p Best subset selection.
mini%nize £ vy — Bo — E Bjxi; > subject to E I(B; #0) <s. LASSO provides an
i=1 j=1 j=1 efficient approximation for this
\ J
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of X\ and ||BL|2/|15||2.
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of X and ||B%||1/||8]|1-



5 8- S 57 i
3 . Data where 45 predictors all have effects
5 5
g g
- : Ridge has a lower MSE than LASSO because
= = model is not sparse and therefore LASSO
1e—‘01 1eLO1 1e4‘»03 0.‘0 O‘.2 0!4 0{6 0{8 1.‘0 is nOt as gOOd as ridge regreSSion°
A 138 12/115112

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of X and ||5Z||2/||B||2. The horizontal dashed lines indicate the minimum

possible MSE. The purple crosses indicate the ridge regression models for which g 2
the MSE is smallest.
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R% on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.



ADVANTAGE OF LASSO IN SPARSE MODEL
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both
are plotted against their R* on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-

. 2 2 ) .
gions, |f1| + |B2]| < s and BT + B3 < s, while the red ellipses are the contours of

the RSS.

Why does LASSO do
variable selection
and ridge does not!



contours of RSS as LASSO Pr’oduces SpaI"Sity

it move away from
%"‘e —— In high dimensions, with LASSO,
v we have straight edges and corners on
i ) :
o The coordinate axes that make a diamond.
“ ‘ When the likelihood surface
: w of a given value approaches the diamond,
e : * o o fa c .
b g £ 8 it is likely to hit the diamond at an edge or
B p Y 8
RSS (Least Square) a corner where some/many coordinates
The lasso coefficients Ty are 0.This leads to some/many coefficients

\‘ . \ f— O.
The ridge regression

coefficients

o -
- -

o B, A B, RR does not produce sparsity
RR has a spherical budget
The penalty term (budget) . .
shown as a constraint region reg|on SO there IS hO Preference
for the points on the coordinate axes to
LASSO RIDGE REGRESSION be the ones that hit the likelihood

function at the largest value among all
points in the region.

https://gerardnico.com/wiki/data_mining/lasso
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matriz with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

For orthogonal
variables methods
have simple
Actions.

LASSO:
Soft-thresholding,
i.e. constant additive
shrinkage towards 0.

Ridge:
Constant
multiplicative
shrinkage.
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FIGURE 6.11. Left: Ridge regression is the posterior mode for 3 under a Gaus-
swan prior. Right: The lasso is the posterior mode for 8 under a double-exponential
prior.

Penalized likelihood
is proportional to a
posterior
distribution in
Bayesian statistics.

Estimates from the
penalized
regression are
maximum a
posterior values

Ridge regression
uses Gaussian prior
for coefficients.

LASSO uses double

exponential prior
for coefficients.
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of \. Right: The coefficient
estimates as a function of A. The vertical dashed lines indicate the value of A
selected by cross-validation.

Cross—Validation Error

Cross-validation is the key to choose lambda
for both methods.

Ridge regression and LASSO are flexible families
of regression models that adapt their
bias-variance compromise to the data

through lambda value, aiming to the smallest

test MSE.
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit

for which the cross-validation error is smallest.



OTHER PENALTIES (ESL P.72-73)

* Different exponents g outside g = | (LASSO) and g = 2 (ridge) give different
penalties

* Elastic net penalty combines LASSO and ridge penalties by linear weighting by a
given parameter value a (a = | is LASSO, a = 0 is ridge)

* Elastic net inherits variable selection property (making some coefficients zero)
from LASSO while penalties with g > | would not have such a property

g=12 a—(02.8

qg=4 qg=2 g=1 qg=20.5 qg=20.1 |
| | | | | ‘ A\
[ | | | I Lg Elastic Net

FIGURE 3.12. Contours of constant value of Zj 1B for given wvalues of q.

P
penalty e (B) = ) (1 — @)B? + alp;l)
i=1



304 H. Zou and T. Hastie

B2

B

Fig. 1. Two-dimensional contour plots (level 1) (---- - - , shape of the ridge penalty; ------- , contour of the
lasso penalty; , contour of the elastic net penalty with o = 0.5): we see that singularities at the vertices
and the edges are strictly convex; the strength of convexity varies with «




* GLMNET package

* Does elastic net penalized regression for most common
generalized linear models (GLMs)

An Introduction to glmnet

Trevor Hastie
* Includes ridge regression (¢ = 0), LASSO (a =1) and

Junyang Qian linear model as special cases

* Very fast

Kenneth Tay * Read from the beginning of the Glmnet vignette to

the end of the linear regression part before you do

March 27, 2023 .
exercises 4

https://glmnet.stanford.edu/articles/glmnet.html



Regularized Cox Regression

https://glmnet.stanford.edu/articles/Coxnet.html
Kenneth Tay

Noah Simon

Jerome Friedman

Trevor Hastie

Rob Tibshirani
Balasubramanian Narasimhan

March 27, 2023



CV FOR COX MODEL

Cox model, we compute the cross-validated deviance, which is minus twice
the log partial likelihood. An issue arises in computing the deviance, since if
N/K is small, there will not be sufficient observations to compute the risk
sets. Here we use a trick due to van Houwelingen et al. (2006). When fold &

is left out, we compute the coefficients g_k()\), and then compute

Devs : = Dev[B~*(\)] — Dev=*[B~*(\)]. (3.29)

The first term on the right uses all NV samples in computing the deviance,

while the second term omits the fold-k samples. Finally Dev§" = Zi(:l [76\\71;\
is obtained by subtraction. The point is that each of these terms has sufficient
data to compute the deviance, and in the standard cases (that is, any of the
other generalized linear models), the estimate would be precisely the deviance
on the left-out set.

Statistical Learning with Sparsity



PRE-VALIDATION

omitted part

<— cases ——= /

outcome y T
] Expression data
X
genes

pre—validated v isti
predictor I rcla()%::itslfon
clinical Z — ¢
predictors

Figure 1: A schematic of the Pre-Validation process. The cases are divided up into (say)
10 equal-sized groups. Leaving out one of the groups, a prediction rule is derived from the
data of the remaining 9 groups. This prediction rule is then applied to the left out group,
giving the pre-validated predictor y for the cases in the left out group. Repeating this process
for every group yields the pre-validated predictor y for all cases. Finally, i is included in a
logistic regression model together with the clinical predictors to assess its relative strength in
predicting the outcome.

Hofling, Tibshirani:
A STUDY OF PRE-VALIDATION



Kaplan-Meier Estimates (naive) Kaplan-Meier Estimates (prevalidated)
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Figure 3.7 The black curves are the Kaplan—Meier estimates of S(t) for the Lym-
phoma data. In the left plot, we segment the data based on the predictions from
the Cox proportional hazards lasso model, selected by cross-validation. Although the
tuning parameter is chosen by cross-validation, the predictions are based on the full
training set, and are overly optimistic. The right panel uses prevalidation to build
a prediction on the entire dataset, with this training-set bias removed. Although the
separation is not as strong, it is still significant. The spikes indicate censoring times.
The p-value in the right panel comes from the log-rank test.

* Lymphoma data
* n=240,p =7399
* Censored = 120

* Qutcome: time to death

Statistical Learning with Sparsity



Mean-Squared Error
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What do these plots say?




A RECENT EXAMPLE OF LASSO

Accurate Genomic Prediction Of Human Height

Louis Lello!, Steven G. Averyl, Laurent Tellier!3", Ana L. Vazquezz, Gustavo de los
Campos>*, and Stephen D.H. Hsu!-?

bioRxiv, Sep 18 2017

* Start with 650,000 genetic variants and 420,000
individuals with height measurements

* Use LASSO method for building the predictive model



PRE-PROCESSING

5 non-overlapping sets of 5k individuals each were held back from LASSO
training (5 holdback sets were used for tuning lambda)

A completely separate 5k validation set was also put aside

A first screening based on standard univariate regression on the training set to
reduce the set of candidate predictors from 645,589 to the top p = 50k and
|00k by statistical significance

Age and sex were regressed out from the outcome variable (=height) and
predictors and outcome were standardized




TRAINING

* For each value of the LI penalization A the resulting predictor B* is applied to
the genomes of the holdback sets and the correlation between predicted and
actual height is computed.

* It is the standard LASSO method:

and gender adjusted; both y and genotype values X are standardized).

_)* . - = - > 1 = Py 2 o
B* = argmin O,(. X; ), 0y, X;B) = 5”)‘ - XB||” +na|Bll. (1)
BERP

where A is a penalty (hyper-)parameter and the L| norm is defined to be the sum of the absolute values

of the coefficients
]7
1B = )" 1851,
J=1



CHOOSING LAMBDA

* A phase transition (region of rapid variation in results) occurs at roughly
|0 < — log(A) < 12.The penalization is reduced until the correlation is
maximized

- Height
Top 100k SNPs

0.6 0.7
L

0.5
1

Predictive Correlation
03
L

0.2

0.1

Max Correlation
0.6399 +/- 0.0172
—In(A)

13.3144 +/- 0.0068

0.0
L

T T T T
10 1" 12 13

—In(x)

Figure 2: Correlation between actual and predicted heights as a function of L; penalization 4. Each
line represents the training of a predictor using 453k individuals. Correlation is computed on 5k
individuals not used in training.




CHOOSING LAMBDA

* The penalization is reduced until the correlation is maximized

4 Height
Top 100k SNPs

07

0.3 04 0.5 0.6
1 I 1 L

Predictive Correlation

0.2
1

0.1

Max Correlation

0.6399 +/-0.0172

o —In(A)

S 7 13.3144 +/- 0.0068
T T T T T T T T

5000 10000 15000 20000 25000 30000 35000

o

Number of Hits

Figure 1: Correlation between actual and predicted heights as a function of the number of SNP hits
activated in the predictor. While difficult to visually separate, each line represents the training of a
predictor using 453k individuals. Correlation is computed on 5k individuals not used in training. The
phase transition region (roughly, 10 < —In(1) < 12) corresponds to rapid growth in correlation on this
graph, with number of hits growing from near 0 to over 5000.




IDENTIFYING RELEVANT
PREDICTORS

@ 1 Height
- r=0.61
Total Hits = 22k

287347280 862041840 1436736400 2011430961 2586125521

Position (base pairs)

* About 20,000 variants are identified by LASSO and each
with its effect size will be used in predicting the height of
a new test individual



RESULTS IN AN IN-SAMPLE VALIDATION SET
(THAT WAS NOT USED IN TRAINING BUT
COMES FROM THE SAME DATA SOURCE)

2 1 oot ot
gm % }
— Height

—— Heel Bone Mineral Density

T T T T T T T T
100 150 200 250 300 350 400 450
Sample Size/1000
Figure 3: Correlation between predicted and actual height as number of individuals 7 in training set is

varied. p = 50k candidate SNPs used in optimization. Fit lines of the form Corr ~ === are included
to aid visualization.




IN-SAMPLE VALIDATION

* In in-sample validation the correlation was 0.61

© Males
o Females

Actual Height (cm)
170 190
| |

150
|

o = 2000 Individuals

T T T T T
150 160 170 180 190

Predicted Height (cm)

Figure 4: Actual height (cm) versus predicted height (cm) using 2000 randomly selected individuals
held back from predictor optimization. Error bars indicate £1 SD range computed using larger
validation set. (Roughly equal numbers of males and females; no corrections of actual height for age
or gender. See Supplement for details of predictor training.)




OUT-OF-SAMPLE VALIDATION

* In a completely separate sample the correlation dropped by ~7 percentages to
~0.54. (It already dropped from 0.61 to 0.58 in the in-sample validation set
when it was restricted to the same set of predictors that were available in the
out-of-sample validation set).
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140
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Figure 6: Actual height (cm) versus predicted height (cm) using 2000 randomly selected individuals
(roughly equal numbers of M and F; no corrections for age or gender) from the ARIC dataset. Error
bars indicate +£1 SD range computed using larger validation set.




