
HDS 6.1 Breast cancer metastasis example

Matti Pirinen, University of Helsinki

9.1.2024

Let’s look at a study of breast cancer metastasis published by Van’t Veer et al. in 2002. Data (15 MB)
were downloaded from http://web.as.uky.edu/statistics/users/pbreheny/603/ and can now be found from
https://www.mv.helsinki.fi/home/mjxpirin/HDS_course/material/vantveer.txt.

In the study, biological samples were obtained from tumors of women with breast cancer. These samples
were scanned with a microarray, that measures the expression of 10,000s of genes simultaneously, i.e, how
much of each gene product is being produced by the cells in the sample. The patients were followed up to
see how long it took for the cancer to metastasize (spread elsewhere, which is bad news). Clinically, the goal
is to identify patients with poor prognosis in order to administer more aggressive follow-up treatment for
them. Scientifically, knowledge of the genes related to the worse outcomes can help understand the disease
better and to help develop some therapeutics in the future.

set.seed(21)
D = read.table("vantveer.txt", header = T) # add your path here
dim(D) # rows patients, cols outcome + gene expressions

[1] 98 24189

anyNA(D)

[1] FALSE

y = as.numeric(D[,1]) # survival time
X = as.matrix(D[,2:ncol(D)]) # gene expression measurements
rm(D)
n = length(y)
p = ncol(X)
summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 25.25 56.50 63.83 97.00 161.00

summary(apply(X, 2, mean)) # not mean centered

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.409847 -0.023194 0.006776 -0.003500 0.032255 0.313347

1

http://web.as.uky.edu/statistics/users/pbreheny/603/
https://www.mv.helsinki.fi/home/mjxpirin/HDS_course/material/vantveer.txt

summary(apply(X, 2, sd)) # not standardized

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03919 0.11772 0.16494 0.19807 0.24711 1.08625

A possible filtering step could be to remove the predictors that have small variance, because those are less
likely to be informative in statistical sense. Of course, any gene could be important biologically even if its
expression varies only a little between individuals but we have less statistical power to find such effects, and
therefore, if we needed to filter out predictors, those uninformative genes could be candidates. Our methods
are efficient enough so, for now, let’s keep all predictors in and standardize the columns.

X = scale(X) # now mean = 0 and var = 1 for each column
y = y - mean(y) # mean-center, but do not scale to keep the interpretation of time units.
we can now ignore the intercept because everything is mean-centered

Let’s first do a quick version of the ordinary least squares univariately for each gene j using the model
y = xjβj + ε. We do not want to do a for-loop to apply lm() for 24,000+ times but instead we use formulas
from the Exercise 1.5.

After standardization within the sample xxxT
j xxxj = n − 1 for each column j and thus

β̂j =
xxxT

j yyy

xxxT
j xxxj

=
xxxT

j yyy

n − 1 .

Thus, the vector β̂ββ
(UNI)

= XXXTyyy/(n−1) has the univariate least squares estimates, and this can be computed
by a single matrix-by-vector operation, so it is as quick as it can get.

Similarly, we can compute the univariate estimate of σ2
j for each gene as

σ̂2
j = 1

n − 2

(
yyy − xxxj β̂j

)T (
yyy − xxxj β̂j

)
and then we have estimates for the standard errors as

sj =

√
σ̂2

j

(n − 1) .

beta.uni = as.vector((t(X)%*%y)/(n-1))
sigma2.uni = colSums((y - t(t(X)*beta.uni))ˆ2)/(n-2) #this is sigma2 formula above written in R
se = sqrt(sigma2.uni/(n-1))
Now we have fit > 24,000 linear models.
Check an arbitrary column against lm() output:
i = 10625
summary(lm(y ~ X[,i]))$coefficients[2,1:2]

Estimate Std. Error
-5.682152 4.539231

c(beta.uni[i], se[i])

Gene10625
-5.682152 4.539231

2

OK.
pval = pchisq((beta.uni/se)ˆ2, df = 1, lower = F)
qqplot(-log10(ppoints(p)), -log10(pval), pch = 4) # huge deviation from the null
abline(0,1)

0 1 2 3 4

0
2

4
6

8
10

−log10(ppoints(p))

−
lo

g1
0(

pv
al

)

summary(pval)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.07208 0.29467 0.36428 0.62452 0.99990

Let’s fit a LASSO model to the data.

library(glmnet)

Loading required package: Matrix

Loaded glmnet 4.1-8

cv.lasso = cv.glmnet(X, y, alpha = 1) # takes < 5 seconds even with p > 24,000
plot(cv.lasso)

3

−1 0 1 2 3

14
00

18
00

22
00

26
00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

115 110 101 95 87 78 67 59 51 39 27 11 6 3

plot(cv.lasso$glmnet.fit, xvar = "lambda")
abline(v = log(cv.lasso$lambda.min), lty = 2)
abline(v = log(cv.lasso$lambda.1se), lty = 2)

−1 0 1 2 3

−
4

−
2

0
2

4
6

Log Lambda

C
oe

ffi
ci

en
ts

110 91 66 36 4

LASSO seems to choose only 12 predictors at lambda.min. Let’s look at their statistics.

4

lasso.var = as.matrix(coef(cv.lasso, s = "lambda.min"))
genes = names(which(abs(lasso.var[,1]) > 1e-10)) # names of the chosen genes
lasso.ind = which(abs(lasso.var[,1]) > 1e-10) - 1 # indexes, removing intercept index by -1
data.frame(gene = genes, beta = beta.uni[lasso.ind], se = se[lasso.ind], pval = pval[lasso.ind])

gene beta se pval
Gene681 Gene681 -23.08704 3.922848 3.973909e-09
Gene1699 Gene1699 18.03849 4.189450 1.664642e-05
Gene3812 Gene3812 18.78226 4.155264 6.180659e-06
Gene8878 Gene8878 21.26679 4.028614 1.299367e-07
Gene9616 Gene9616 24.52200 3.831071 1.545437e-10
Gene10755 Gene10755 -21.11582 4.036878 1.688423e-07
Gene10986 Gene10986 -22.67197 3.947985 9.319588e-09
Gene12106 Gene12106 -21.63213 4.008301 6.782746e-08
Gene13143 Gene13143 -21.32241 4.025550 1.178703e-07
Gene16323 Gene16323 -21.46052 4.017898 9.231780e-08
Gene20199 Gene20199 22.71551 3.945377 8.536801e-09
Gene23726 Gene23726 -18.23905 4.180395 1.282930e-05

sum(pval < 1e-7)

[1] 13

We see that the P-values of variables chosen by LASSO are small in general (< 1e-5) but that there are
many other genes with small P-values that LASSO has dropped, e.g., 13 genes had a P-value < 1e-7 and
there are only 6 such in the list. So LASSO is not just about sorting P-values.

Can we also fit ridge regression to this data set with p > 24,000 even when it does not produce similar
sparsity as LASSO?

cv.ridge = cv.glmnet(X, y, alpha = 0) # takes only ~ 20 seconds even with p > 24000
plot(cv.ridge)

5

6 7 8 9 10

14
00

16
00

18
00

20
00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

24188 24188 24188 24188 24188 24188 24188 24188

plot(cv.ridge$glmnet.fit, xvar = "lambda")
abline(v = log(cv.ridge$lambda.min), lty = 2)
abline(v = log(cv.ridge$lambda.1se), lty = 2)

6 7 8 9 10

−
0.

05
0.

00
0.

05

Log Lambda

C
oe

ffi
ci

en
ts

24188 24188 24188 24188 24188

The cross-validated MSEs at minimum seem similar between ridge regression (RR) and LASSO. Note also
that λ is large (> exp(9) ≈ 8100) so RR heavily penalizes the linear model, as it should when p >> n.

6

A big benefit of LASSO is its small number of predictors, here only 12 compared to 24,188 that are used by
RR. If we can build two prediction models that are almost as good, and the first one has 12 predictors and
the second has 24,188 predictors, the first one is more practical in many ways.

What about trying out some elastic net model that is a compromise between the two?

cv.enet = cv.glmnet(X, y, alpha = 0.8) # takes only ~ 5 seconds even with p > 24,000
plot(cv.enet)

−1 0 1 2 3

16
00

20
00

24
00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

119 115 108 97 96 86 72 67 58 45 31 11 7 3

plot(cv.enet$glmnet.fit, xvar = "lambda")
abline(v = log(cv.enet$lambda.min), lty = 2)
abline(v = log(cv.enet$lambda.1se), lty = 2)

7

−1 0 1 2 3

−
4

−
2

0
2

4
6

Log Lambda

C
oe

ffi
ci

en
ts

118 103 77 50 9

Elastic net has a few more predictors than LASSO but still produces a very sparse model compared to
original p. CV’d MSEs seem similar between the three methods.

8

