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* Mean Squared Error measures how well y is predicted by function that we
have learned from data

* MSE is a criterion by which we fit regression models (e.g. least squares in linear
regression)

* For purpose of comparing models, one can also use sum of squared errors (=
n*MSE) or root-mean-square error (RMSE) = sqrt(MSE) which is measured in
the original units of the outcome variable y

* |s the model with the smallest MSE the best!?

* Not necessarily. The smallest MSE in training data does not automatically
generalize to equally small MSE in new test data
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* Does small MSE in training data automatically generalize to new
test data?

* Will MSE be equally small in test data that it is in training data?
* In the end, we want to predict something we don’t yet know

* If all we can predict well is training data, that is not useful

* We want to predict well also in unseen test data

Figure from
www.nosimpler.me/



EXAMPLE

Data
. . T b Observations come from blue curve with some
L J +
100 - S * Test noise.
= True Function
el We take 70% of observations as training data (black)
and 30% as test data (red).
0.50 1
np— We will fit models in training data (by minimizing
training-MSE) and then see how well they do in test
0.00 - data (by computing test-MSE).
—0.25 1
—0.50 1
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X

Data and True Generating Funtion

Taken from:W. Koehrsen  https://towardsdatascience.com/overfitting-vs-underfitting-a-complete-example-d05dd7e 19765



FITTING TOO SIMPLE MODEL

: 1 Degree Model on Training Data - 1 Degree Model on Testing Data
® Observations ® Test Observations
=== True Function —— True Function
° ° === Model Function ® Test Predictions

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Large training MSE, equally large test MSE. Model is not able to capture the pattern in training data. It underfits.



FITTING TOO FLEXIBLE MODEL

25 Degree Model on Training Data 25 Degree Model on Testing Data

15 15
® Observations ® Test Observations

wem= True Function — True Function
° ° === Model Function ® Test Predictions

Small training-MSE, a bit larger test-MSE. Model overfits to patterns specific to training data that are not present in test data.



FITTING OPTIMAL MODEL

. 4 Degree Model on Training Data . 4 Degree Model on Testing Data
® Observations ® Test Observations
=== True Function —— True Function
° ° =====_Model Function ® Test Predictions

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

Training MSE is small and test-MSE is similarly small. The model captures patterns that generalize to test data.



How model flexibility affects training error and test error
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FIGURE 2.9. Left: Data stmulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSFE over all methods (dashed line). Squares
represent the traiming and test MSEs for the three fits shown wn the left-hand
panel.

Training error is
Monotonically decreasing

Test error has
U-Shape

Overfitting:

Model has adapted to
patterns in training data
that are specific to
training data and not
generalizable to test data

Overfitting leads to
small training error but

large test error

Overfitting has happened
when a less flexible model
would have given a lower
test error than observed
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FIGURE 2.10. Details are as i Figure 2.9, using a different true f that s
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Detazls are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.



2.2.2 BIAS-VARIANCE TRADE-OFF
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E (yg — f(:170)>2 — Var(f(z0)) + [Bias(f(z0))]? + Var(e).

“variance” “squared bias” “irreducible error”

* Test error at predictor values x, is sum of 3 components:
* Variance of the regression function estimator
* Squared bias of the regression function estimator
* lrreducible error that the regression function cannot account for

* To make error small we want small variance AND small bias?

o We can’t do anything to the irreducible error (unless we got some new predictors that
could explain it and it would be nomore “irreducible”)



BiaS(XO) — E(f(x())) —f(X()) Linear model has

downward bias here & upward bias here
* Bias of estimator of true regression function f, at value x,,

tells how much, on average, the predicted value differs | .
+ + Data simulated from f
from the truth | : — Thue

Linear estimate of f

— Polynomial estimate of f, m=3

* The expectation is taken when the model is fitted over T e ff e | rlmoniststinfeof . mezo

many data sets and each provides a different estimate for
the function

* Typically bias is high if the method used for estimating f is
not flexible enough to fit true shape of f well

* E.g. fitting a linear model to 3 degree polynomial leads to =1
high bias 4

Michael Halls-Moore, Quantstart.com



Var(f (z0)) = E(f (z0) — E(F (20)))?

* Variance of estimator of true regression function f, at
value x, tells how much, on average, the predicted
value varies across data sets

* The expectation is taken when the model is fitted

over many data sets and each provides a different
estimate for the function

* Typically, variance is high if the method used for
estimating f is very flexible and adjusts to the specific
properties of each observed data set that may
change across data sets

* E.g.fitting a 20 degree polynomial to data that originates
from a cubic polynomial leads to high variance whereas

a linear model fit there would have low variance (but
higher bias)

Red polynomial fit is having
high variance as it would
change considerably with a new
data set

» Data simulated from f
— Truef
Linear estimate of f
— Polynomial estimate of f, m=3
— Polynomial estimate of f, m=20
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TRADE-OFF

* As we use more flexible methods, the variance will increase and the
squared bias will decrease having opposite effects on test error

* As we increase the flexibility methods, the bias tends to initially
decrease faster than the variance increases and MSE declines

* At some point increasing flexibility has little impact on the bias but
starts to significantly increase the variance and MSE increases

* This is the reason for U-shaped test error curves as a function of
model flexibility
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.
The vertical dotted line indicates the flexibility level corresponding to the smallest

test MSE.



K-NEAREST NEIGHBORS

CLASSIFIER

FIGURE 2.14. The KNN approach, using K = 3, s illustrated in a simple
situation with six blue observations and six orange observations. Left: a test ob-
servation at which a predicted class label is desired 1s shown as a black cross. The
three closest points to the test observation are identified, and it 1s predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown wn black. The
blue grid indicates the region in which a test observation wrll be assigned to the
blue class, and the orange grid indicates the region in which 1t will be assigned to
the orange class.



KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K =1 and K = 100 on the data from Figure 2.13. With
K =1, the decision boundary is overly flexible, while with K = 100 4t is not

sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.



KNN: K=10

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very simalar.
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.



Algorithm 6.1 Best subset selection

1. Let Mg denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1,2,...p:

(a) Fit all (f ) models that contain exactly k predictors.

(b) Pick the best among these (f) models, and call it M. Here best

is defined as having the smallest RSS, or equivalently largest R?.

3. Select a single best model from among My,..., M, using cross-

validated prediction error, C), (AIC), BIC, or adjusted RZ.

(We will look cross-validation soon. C, is our AIC.)

2P possible submodels grows too quickly for practical use when p is large
p=10: ~10° models, p=20: ~10%, p=30: ~107 ...



Algorithm 6.2 Forward stepwise selection

L.
2.

Let M denote the null model, which contains no predictors.

For k=10,..., p—1
(a) Consider all p — k models that augment the predictors in My
with one additional predictor.
(b) Choose the best among these p — k& models, and call it M.
Here best is defined as having smallest RSS or highest R?.
Select a single best model from among My,..., M, using cross-

validated prediction error, C,, (AIC), BIC, or adjusted RZ.

Now we have at most (p?+p)/2 models to fit. Much better than 2P,



# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income, rating, income,
student, limit student, 1limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

Forward selection does not always pick the “best” model because
the best model with k+|variables is not necessarily
a superset of best model with k variables.



Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.

(a) Consider all £ models that contain all but one of the predictors
in M, for a total of £ — 1 predictors.

(b) Choose the best among these & models, and call it Mj._;. Here
best is defined as having smallest RSS or highest R?.

3. Select a single best model from among My...., M, using cross-

validated prediction error, C), (AIC), BIC, or adjusted R?.

Backward selection only possible when n>p, otherwise we cannot fit the
full model with p variables.
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VALIDATION SET

* Goal is to estimate test error (i.e. the error that would be expected
in a new unseen data) using existing data

* We can split the existing data into two parts: training and validation
sets

* Fit the model in training data

* Estimate the error in validation set, that mimics an unseen test data set

123 n

!

7 22 13 91

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 13, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the traimang set, and its performance is evaluated on the validation set.
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown wn orange. The linear regression fit for a
model that includes horsepower? is shown as a blue curve. The linear regression
fit for a model that includes all polynomaals of horsepower up to fifth-degree s
shown wn green.

Fit polynomials of
horsepower to explain
mpg using linear
model

Want to see which
fits best.

We could look

. P-values
2. AIC and BIC

But here we do
3. Validation set approach
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FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg wusing polynomaal
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from thais approach.

|.When the split between
training and validation
sets is changed,

MSE estimate also varies

2. For any one validation set,
only a subset of data points
are used in training, leading
to inefficient use of data



Leave one out cross validation (LOOCYV)

123 n
123 n
123 n
123 n
123 n

FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error 18 then estimated by averaging the n resulting MSE’s. The first training set

contains all but observation 1, the second training set contains all but observation
2, and so forth.

Because training data is large
in each of n steps of
LOOCY, it tends to give
more accurate estimate for
test MSE than a single

split to training and validation
(i.e. LOOCV has less bias)

LOOCV may be costly

to do since it requires
fitting model n times



K-fold cross-validation
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

Less computational costly
than LOOCV

Often K=5 or K=10 is used.



LOOCV 10-fold CV
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FIGURE 5.4. Cross-validation was used on the Auto data set in order to es-
timate the test error that results from predicting mpg using polynomaal functions
of horsepower. Left: The LOOCYV error curve. Right: 10-fold CV was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different C'V error curves.

Some variability remains
across sets of |0-fold CV,
but much less than across
a set of single validation set

approaches



