
HDS 5. Multiple regression with growing p

Matti Pirinen, University of Helsinki

31.1.2024

So far we have considered statistical inference methods that are based on univariate models. That is,
models where we estimate/test only one variable at a time. Such methods are computationally simple and
can therefore be applied for very high dimensional problems. However, they ignore dependencies between
predictors. To illustrate why this is a problem, let’s consider two correlated predictors X and Z of which
only one directly affects the outcome Y .

Example 5.1. To create variables x and z with correlation r, let’s write X = U +εx and Z = U +εz, where
Var(U) = |r| and Var(εx) = Var(εz) = 1 − |r| with εx and εz independent of each other and of U . Then

Cor(X, Z) = Cov(X, Z)√
Var(X) · Var(Z)

= Cov(U + εx, U + εz)√
Var(U + εx) · Var(U + εz)

= Cov(U, U)√
(Var(U) + Var(εx))(Var(U) + Var(εz))

= |r|(√
|r| + 1 − |r|

)2 = |r|.

If r was negative, we would write Z = −U + εz instead.

Let’s generate x and z for n = 1000 samples with correlation r = 0.7.

n = 1000
r = 0.7
u = rnorm(n, 0, sqrt(abs(r))) #temporary variable that is used for generating x and z
x = scale(u + rnorm(n, 0, sqrt(1 - abs(r))))
z = scale(sign(r)*u + rnorm(n, 0, sqrt(1 - abs(r))))
cor(x, z) #check that now cor(x,z) ~ r

[,1]
[1,] 0.7036026

Let’s generate y =
√

0.2 · x + N (0, 0.8) in which case Var(Y) =
√

0.22 + 0.8 = 1 and X will explain 20% of
the variance of Y (as Var(

√
0.2X)/Var(Y) = 0.2 · 1/1 = 0.2).

y = scale(sqrt(0.2)*x + rnorm(n, 0, sqrt(0.8))) # x explains 20% of y
summary(lm(y ~ 0 + x))

##
Call:
lm(formula = y ~ 0 + x)
##

1

Residuals:
Min 1Q Median 3Q Max
-3.0237 -0.6078 -0.0290 0.6301 2.8429
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x 0.44291 0.02837 15.61 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.8966 on 999 degrees of freedom
Multiple R-squared: 0.1962, Adjusted R-squared: 0.1954
F-statistic: 243.8 on 1 and 999 DF, p-value: < 2.2e-16

Note that we did not use z to generate y, but z and y are still highly correlated:

Cor(Y, Z) = Cov(Y, Z)√
Var(Y) · Var(Z)

= Cov(
√

0.2 · U +
√

0.2 · εx + εy, U + εz)√
1 · 1

=
√

0.2 · Cov(U, U) =
√

0.2 · |r|

Thus, we expect the regression coefficient of Y on Z to be
√

0.2 · 0.7 ≈ 0.31.

summary(lm(y ~ 0 + z)) # z does not have a direct effect on y but will be significant here

##
Call:
lm(formula = y ~ 0 + z)
##
Residuals:
Min 1Q Median 3Q Max
-3.06774 -0.66576 0.02115 0.63622 2.81372
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
z 0.30243 0.03016 10.03 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.9532 on 999 degrees of freedom
Multiple R-squared: 0.09147, Adjusted R-squared: 0.09056
F-statistic: 100.6 on 1 and 999 DF, p-value: < 2.2e-16

Luckily, the joint model of y ~ x + z can tease the effects of x and z apart.

summary(lm(y ~ 0 + x + z))

##
Call:
lm(formula = y ~ 0 + x + z)
##
Residuals:
Min 1Q Median 3Q Max
-3.01014 -0.60618 -0.02546 0.62552 2.84596

2

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x 0.45573 0.03993 11.412 <2e-16 ***
z -0.01822 0.03993 -0.456 0.648

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Residual standard error: 0.8969 on 998 degrees of freedom
Multiple R-squared: 0.1963, Adjusted R-squared: 0.1947
F-statistic: 121.9 on 2 and 998 DF, p-value: < 2.2e-16

We have seen that if we test z univariately, we observe a clear effect on y, but that effect disappears
when we do multiple regression of y on both x and z. Thus, regression is able to correctly split the effect
among correlated variables. This is very important in order to separate possible direct effects X on Y from
confounders Z, that are simply correlated with both X and Y , but not anymore important in explaining Y ,
once we have measured predictors X with direct effects on Y .

Example 5.2. In medical literature, the role of HDL and LDL cholesterol levels in the risk of heart disease
has been studied a lot over decades. Both are marginally correlated with the risk, HDL negatively and LDL
positively. Recent studies and medical trials suggest that LDL is “causal”, in the sense that medication
lowering directly LDL levels will reduce disease risk, whereas HDL is not causal in that sense. This is
extremely important information for developing preventive treatment for heart disease.

Note that with statistical models alone, we cannot ever prove a causal relationship between X and Y but
we can show that Z is unlikely to have a causal relationship if its effect goes away once a better predictor X
is found.

If variables are highly correlated, there will be little information about how the effect should be split among
them and therefore the SEs will become large and effect size estimates will become unstable. Therefore,
in practice, we would not want to include several very highly correlated variables (say |r| > 0.95) into a
regression model. We will come back to this point later when we discuss ridge regression as a way to stabilize
models with highly correlated variables.

What about if predictors were independent of each other? Do we also then need to use a joint model to get
the effect estimates correct? If X and Z are independent, then their marginal effects (from separate models
Y = Xβx + ε and Y = Zβz + ε) are estimating the same quantities as the joint model Y = Xγx + Zγz + ε,
i.e., βx = γx and βz = γz. However, the joint model produces more precise estimates than the marginal
models in case that both X and Z have an effect on Y , because the joint model has lower residual variance,
and hence also smaller standard errors for estimates.

Let’s next consider how we can use multiple regression models in higher dimensional (HD) problems. We
begin from a problem that results from a naive approach. This example also takes us through central issues
in HD data analysis where we need to balance between the variance and bias of our statistical method in
order to avoid overfitting while still getting useful information out from the model.

READ: 2.2.1 Measuring the Quality of Fit from book ISL and see slides HDS5.

• Mean squared error (MSE) for measuring fit
• Training and test data sets, training and test MSE
• How training and test MSE behave as a function of model flexibility?
• Overfitting

Overfitting To make the overfitting problem concrete in a linear regression setting, let’s consider nr = 150
training samples that were measured on p = 70 variables and an outcome variable y. Four variables,

3

https://hastie.su.domains/ISLR2/ISLRv2_corrected_June_2023.pdf.download.html

x1, x2, x3, x4 will truly affect y but the 66 others are just random noise. Let’s build a prediction model for
y using linear regression and let’s test that model in an additional set of nt = 150 test samples.

set.seed(20102017)
p = 70
m = 4 # non-zero predictors
n.tr = 150 # training set size
n.te = 150 # test set size
n = n.tr + n.te
i.tr = 1:n.tr # indexes for training samples
i.te = (n.tr + 1):n # indexes for test samples
phi = 0.05 # variance explained by each relevant predictor, should be 0 < phi < 1/m.
b = rep(c(sqrt(phi / (1 - phi)), 0), c(m, p-m)) # effects 1,2,3,4 are non-zero, see Lect. 0.1 for "phi"
X = matrix(rnorm(n*p), nrow = n) # columns 1,...,4 of X have effects, other 66 cols are noise
eps = scale(rnorm(n, 0, 1)) # epsilon is the error term
y = scale(X%*%b + eps) # y has mean = 1, var = 1
y.tr = y[i.tr]
y.te = y[i.te]
X.tr = data.frame(scale(X[i.tr,]))
X.te = data.frame(scale(X[i.te,]))
lm.fit = lm(y.tr ~ 0 + . , data = X.tr) #fit the model to training data
#(Removes intercept because formulas below become easier,
only possible because columns of X and y have mean = 0.)
summary(lm.fit)

##
Call:
lm(formula = y.tr ~ 0 + ., data = X.tr)
##
Residuals:
Min 1Q Median 3Q Max
-2.08623 -0.53466 -0.09445 0.43393 2.43027
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
X1 0.229311 0.107648 2.130 0.03623 *
X2 0.194258 0.123795 1.569 0.12055
X3 0.260994 0.111172 2.348 0.02136 *
X4 0.308204 0.113932 2.705 0.00834 **
X5 -0.093432 0.108425 -0.862 0.39142
X6 -0.063471 0.120010 -0.529 0.59835
X7 0.035323 0.125730 0.281 0.77948
X8 -0.042481 0.115028 -0.369 0.71287
X9 0.085748 0.113017 0.759 0.45025
X10 0.147267 0.119053 1.237 0.21971
X11 0.043963 0.104601 0.420 0.67540
X12 -0.037629 0.120575 -0.312 0.75579
X13 -0.040844 0.121283 -0.337 0.73718
X14 0.030316 0.126425 0.240 0.81110
X15 0.239408 0.112427 2.129 0.03629 *
X16 0.081389 0.130025 0.626 0.53313
X17 0.171138 0.133239 1.284 0.20269
X18 0.040340 0.108379 0.372 0.71072
X19 -0.050519 0.110614 -0.457 0.64912

4

X20 0.103824 0.108994 0.953 0.34368
X21 -0.093361 0.127151 -0.734 0.46494
X22 -0.062987 0.109931 -0.573 0.56827
X23 0.119597 0.119399 1.002 0.31953
X24 0.200846 0.125858 1.596 0.11447
X25 -0.064935 0.115757 -0.561 0.57639
X26 0.042791 0.105519 0.406 0.68617
X27 -0.067227 0.107897 -0.623 0.53501
X28 -0.037153 0.123721 -0.300 0.76473
X29 -0.064788 0.127722 -0.507 0.61337
X30 -0.142176 0.114476 -1.242 0.21788
X31 0.187589 0.116862 1.605 0.11239
X32 -0.101127 0.127979 -0.790 0.43175
X33 -0.009285 0.110950 -0.084 0.93352
X34 -0.135615 0.108108 -1.254 0.21333
X35 -0.033501 0.105570 -0.317 0.75182
X36 0.006990 0.116591 0.060 0.95234
X37 -0.002173 0.105583 -0.021 0.98363
X38 -0.164300 0.108265 -1.518 0.13306
X39 -0.017016 0.109143 -0.156 0.87650
X40 -0.033981 0.114801 -0.296 0.76800
X41 -0.088039 0.118300 -0.744 0.45894
X42 0.166009 0.119484 1.389 0.16857
X43 -0.099728 0.114277 -0.873 0.38545
X44 0.046778 0.114974 0.407 0.68520
X45 0.139730 0.119479 1.169 0.24568
X46 0.133005 0.110356 1.205 0.23167
X47 0.082510 0.111679 0.739 0.46218
X48 0.060008 0.119797 0.501 0.61781
X49 0.071564 0.117202 0.611 0.54319
X50 0.025570 0.114068 0.224 0.82320
X51 0.017773 0.111185 0.160 0.87340
X52 -0.012569 0.120808 -0.104 0.91740
X53 0.127866 0.118374 1.080 0.28330
X54 -0.063649 0.104397 -0.610 0.54380
X55 0.029813 0.110874 0.269 0.78871
X56 -0.069541 0.103458 -0.672 0.50341
X57 -0.183767 0.124261 -1.479 0.14310
X58 0.125368 0.115853 1.082 0.28245
X59 0.013123 0.107267 0.122 0.90293
X60 -0.049127 0.112818 -0.435 0.66441
X61 -0.062615 0.101760 -0.615 0.54009
X62 -0.049920 0.115007 -0.434 0.66541
X63 0.073498 0.109782 0.669 0.50511
X64 0.069620 0.100568 0.692 0.49077
X65 0.014010 0.108928 0.129 0.89799
X66 -0.023163 0.113457 -0.204 0.83875
X67 0.001113 0.107764 0.010 0.99178
X68 -0.253880 0.122114 -2.079 0.04082 *
X69 0.023563 0.111688 0.211 0.83344
X70 -0.012839 0.105635 -0.122 0.90357

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##

5

Residual standard error: 1.001 on 80 degrees of freedom
Multiple R-squared: 0.5047, Adjusted R-squared: 0.0713
F-statistic: 1.165 on 70 and 80 DF, p-value: 0.2541

Let’s see how well the fitted values correspond to the true outcome values in training data and compare that
to how well the predicted values in test data approximate the outcome values in test data.

fitted.tr = predict(lm.fit) # same as 'as.matrix(X.tr) %*% lm.fit$coeff'
fitted.te = predict(lm.fit, newdata = X.te) # same as 'as.matrix(X.te) %*% lm.fit$coeff'
par(mfrow = c(1, 2))
plot(fitted.tr, y.tr, xlab = "fitted", ylab = "y", main = "Training", pch = 19, col = "peru")
plot(fitted.te, y.te, xlab = "fitted", ylab = "y", main = "Test", pch = 19, col = "maroon1")

−2 −1 0 1

−
3

−
1

0
1

2
3

Training

fitted

y

−2 −1 0 1 2 3

−
2

−
1

0
1

2

Test

fitted

y

Plots show that the fitted values from the model predict well in the training data but do not predict at all
in test data.

Let’s compute measures of fit by the mean squared error (MSE) and the proportion of the total variance
explained by the model (R2 value). Let’s write a function mse(x,y) that computes MSE between two vectors
of same length.

mse <- function(x,y){mean((x-y)ˆ2)}
data.frame(MSE = c(round(mse(y.tr, fitted.tr), 3),

round(mse(y.te, fitted.te), 3)),
R2 = c(signif(1 - mse(y.tr, fitted.tr)/mse(y.tr, mean(y.tr)), 3),

signif(1 - mse(y.te, fitted.te)/mse(y.te, mean(y.te)), 3)),
variance = c(round(var(y.tr), 3), round(var(y.te), 3)),
row.names = c("Train","Test"))

MSE R2 variance
Train 0.534 0.504 1.083
Test 1.596 -0.748 0.919

The model explains about 50% of variance in the training data, but the R2 estimate is negative in the test
data! This is because MSE in the test data is far larger than the variance of the test observations, meaning
that by simply predicting each test data value using the mean value of the outcome distribution (1 parameter

6

model) would give lower MSE than this model fit (70 parameter model)! Thus, the fitted model seems a
completely useless model in the test data.

Not only has the model fit to the noise of training data but it also does not clearly pinpoint the real effects
x1, . . . , x4 that together would explain around 20% of y. (This can be seen in weak statistical significance of
the 4 effect variables in the model summary above.) We say that the model has overfit to the training data.
It has found artificial patterns between the outcome and predictors that are only present in the training
data and do not generalize to the other samples that come from the same population. This happens when
we have many possible predictors and a small sample size. With many predictors, the model is too flexible
and when there is little information about the real effects due to the small sample size, the coefficient values
tend to be determined by the random noise in the data. This is why we will later use shrinkage methods,
that do not just greedily try to explain the patterns in the training data, but will also penalize a model for
its greater flexibility to describe varying patterns from the input data.

Note that in the above model summary, the adjusted-R2 (0.07) as well as the P-value (0.25) based on the
F-statistic are able to tell that the model is not that good. These quantities are able to take into account
the number of predictors used (also called degrees of freedom). Instead, the standard R2 or the model’s
likelihood value do not have any penalization for the model dimension and therefore should not be used for
evaluating the generalizability of the model to other data sets.

Questions.

1. Linear model fit can be geometrically seen as a projection of n-dimensional outcome vector yyy on the
subspace spanned by the columns of the predictor matrix XXX (see notes on Linear model). From
this point of view, what happens to the model fit in the training data as we will add more (linearly
independent) predictors in the model? How does overfitting look like in this geometric interpretation?

2. We always expect training error to be smaller than test error, so that property alone is not yet over-
fitting. What should be a definition for overfitting?

READ: 2.2.2 The Bias-Variance Trade-Off from ISL.

• What are Bias and Variance of a statistical prediction method in intuitive terms?
• What is the formula that combines bias and variance into MSE?
• Which kinds of methods have high bias, which have high variance?
• Which kinds of methods overfit, which “underfit”?

The Bias-variance trade-off

Let’s decompose the expected test error into parts. Assume that we are looking at a regression problem
where Y = f(X) + ε and E(ε) = 0 and Var(ε) = σ2. We denote by f̂ the regression function that is learned
from training data and we apply it to predict a new test data point whose predictor values are X = x0.
When we measure the error using MSE, we have that the expected test error at X = x0 is

Test-err(x0) = E((Y − f̂(x0))2 | X = x0)
= E((Y − f(x0) + f(x0) − f̂(x0))2 | X = x0)
= E((Y − f(x0))2 | X = x0) + E((f(x0) − f̂(x0))2) + 2 · E((Y − f(x0))(f(x0) − f̂(x0)) | X = x0)
= σ2 + E((f(x0) − E(f̂(x0)) + E(f̂(x0)) − f̂(x0))2) + 2 · E(ε)E(f(x0) − f̂(x0))
= σ2 + E((f(x0) − E(f̂(x0)))2 + E(E(f̂(x0)) − f̂(x0))2 + 2 · E((f(x0) − E(f̂(x0)))(E(f̂(x0)) − f̂(x0))) + 2 · 0
= σ2 + Bias2(f̂(x0)) + Var(f̂(x0)) + 2 · Bias(f̂(x0)) · 0
= σ2 + Bias2(f̂(x0)) + Var(f̂(x0))

7

http://faculty.marshall.usc.edu/gareth-james/ISL/

where Bias(f̂(x0)) = E(f̂(x0))−f(x0). (The covariance term with ε disappeared because error ε in test data
has expectation 0 and is independent of both f(x0) and of f̂(x0) which is learned in the training data.) We
see that the test MSE is bounded from below by the irreducible error σ2 that the regression model does not
account for and therefore cannot ever decrease. We also see that to make the test error as small as possible
we should make both the squared bias and variance small. However, these two terms are in an inverse
relation to each other where a decrease of one leads to an increase of the other. In short, bias is increased
when the model is not flexible enough to model the true f and variance is increased when the model is so
flexible to fit data that small changes in data can cause large variation in the estimated f̂ .

The problem of overfitting follows when we optimize the model fit (e.g. by maximizing the likelihood function)
but do not penalize for the number of parameters ,or more generally, for the flexibility of the model. By
penalizing for the flexibility of the model we will cause some bias, i.e., the model is not completely free to go
where the training data points to but instead we prefer sparser models that hopefully better generalize to
unseen test data. This bias caused by penalization means that we will not be able to fit perfectly to settings
where the best models are not sparse. However, by inducing such a bias, we simultaneously decrease the
variance of the model fit, because the model fit is less free to follow weak patterns specific to the training
data and therefore the model fit is more robust to small changes in data and less prone to overfit to the
training data. In high-dimensional problems, it is crucial to look for an appropriate trade-off between bias
and variance to keep the model flexible enough to truly learn from the data, which requires lower bias, while
at the same time minimizing overfitting, which requires lower variance.

Questions. (From ISL)

1. For each of parts (a) through (d), indicate whether we would generally expect the performance of
a flexible statistical learning method to be better or worse than an inflexible method. Justify your
answer.

(a) The sample size n is extremely large, and the number of predictors p is small.
(b) The number of predictors p is extremely large, and the number of observations n is small.
(c) The relationship between the predictors and the response is highly non-linear.
(d) The variance of the error terms, i.e. σ2 = Var(ε), is extremely high.

2. Provide a sketch of typical (squared) bias, variance, training error, test error, and irreducible error
curves, on a single plot, as we go from less flexible statistical learning methods towards more flexible
approaches. The x-axis should represent the amount of flexibility in the method, and the y-axis should
represent the values for each curve. There should be five curves. Explain why each of the five curves
has the shape displayed.

How to choose suitable models: Information criteria As we just saw, in the training data, the model
containing all of the predictors will always have the smallest residual error and the largest R2, since these
quantities are related to the training error. Instead, we wish to choose a model with a low test error and
training error or R2 are not suitable for selecting the best model among a collection of models with different
numbers of predictors. Let’s have a look at two commonly used information criteria that attempt to better
estimate how a model performs also outside the training data, while still using only the training data as
input.

Akaike Information Criterion (AIC) AIC is a general quantity to compare different models fitted to
the same data set. It is named after Hirotugu Akaike and published in early 1970s.

Suppose we consider models M1, . . . , MJ where model Mj has kj parameters. Let θ̂j be the maximum
likelihood estimate for model Mj and Lj(θ̂j) the corresponding value of the likelihood function. Then the
AIC value of model Mj is

AICj = 2kj − 2 log(Lj(θ̂j))

8

The smaller the AIC, the better the model according to AIC.

We know that by increasing the model complexity (e.g. the number of parameters) we can make the model
fit better to data and hence gain higher values of the maximized likelihood. AIC penalizes the maximized
log-likelihood by the number of parameters of the model. Thus, if two models have similar maximized
log-likelihoods, then the one with less parameters is preferred. Intuitively, this favors sparser models and
therefore helps to decrease overfitting.

AIC is derived by an information theoretic argument. Suppose that the data are generated by a probability
density f . We want to determine which one of two candidate densities, g1 and g2, is a better approximation
to f . The information lost when using g1 to model f is quantified by the Kullback-Leibler divergence,

DKL(f || g1) =
∫

f(x) log
(

f(x)
g1(x)

)
dx.

Similarly, DKL(f || g2) measures the information lost when approximating f by g2.

In practice, we do not know f and hence cannot compute the KL-divergencies. Akaike (1974) showed that
differences in AIC can be used to estimate how much more (or less) information is lost by g1 than by g2. This
estimate, though, is only valid asymptotically and makes many quite crude approximations. In particular,
if the number of data points is small, then some correction is often necessary (e.g. AICc).

Connection to the likelihood ratio test in nested models. Assume that model M1 is a submodel of
model M2, e.g., both are regression models but M2 uses k2 − k1 more predictors on top of what M1 utilizes.
Then, if the simpler model M1 holds, the Wilks theorem says that the likelihood ratio test statistic

LRT12 = −2 log
(

L1(θ̂1)
L2(θ̂2)

)
∼ χ2

k2−k1
.

This result can be used for deriving P-values to test the need for additional parameters. (Actually, this result
is asymptotic and requires some regularity conditions and, for example, that the additional parameters of
model M2 are not set at boundaries of their range in the simpler model M1.) We see that the AIC difference
can be written in terms of LRT as

∆12 = AIC1 − AIC2 = 2(k1 − k2) + LRT12.

Given that E
(
χ2

k2−k1

)
= k2 − k1, if model M1 holds, then the expectation of ∆12 is

E(∆12 | M1) = 2(k1 − k2) + (k2 − k1) = k1 − k2 < 0

showing that AIC is expected to correctly favor the model M1.

Note that AIC can be compared for any pair of models on the same data, whereas the χ2
k2−k1

distribution
for LRT holds only for nested models.

Bayesian Information Criterion (BIC) BIC was introduced by Gideon E. Schwarz in 1978, and is also
called Schwarz criterion. BIC has a similar form as AIC but imposes a stronger penalty for the number of
parameters. With the same notation as was used above for AIC, we define the BIC value of model Mj as

BICj = log(n)kj − 2 log(Lj(θ̂j)),

where n is the number of (independent) data points, often determined by the sample size.

BIC is derived using a Bayesian argument assuming that the prior distribution of the parameters is flat, i.e.,
has a constant value in the region of interest. Then we have the following approximation for the marginal
likelihood by using a Laplace approximation to compute the integral:

Pr(DATA | Mj) =
∫

Pr(θj | Mj)Pr(DATA | θj , Mj) dθj ≈ C n−kj/2 Lj(θ̂j),

9

where C is a constant not depending on n. Thus, we have the approximation

2 log(Pr(DATA | Mj)) ≈ 2 log
(

Lj(θ̂j)
)

− kj log(n) + C ′ = −BICj + C ′

Hence, BIC can be seen as an approximation to the negative log-marginal likelihood of the model and a
smaller BIC corresponds to a larger marginal likelihood, and hence a better explanation of the data, after
the model complexity has been taken into account.

By ignoring the constants, we have an approximation to the Bayes factor between models 1 and 2 as

log(BF12) = log
(

Pr(DATA | M1)
Pr(DATA | M2)

)
≈ 1

2(BIC2 − BIC1).

This gives an interpretation for comparing models via the difference in their BIC values.

In particular, note how the Bayesian marginal likelihood automatically accounts for the number of parameters
of the model, and can get higher or lower as we move to more complex models (see aslo “The role of
marginal likelihood in Bayesian inference” from earlier notes HDS4). This is in contrast to the maximum
likelihood value that can only get higher as we increase the number of parameters of the model. The
difference between the marginal likelihood and maximum likelihood is that the former has been computed
by averaging the likelihood function with respect to the prior distribution of the parameters, whereas the
latter only maximizes the likelihood and ignores the prior distribution. In BIC, the approximation that takes
us from the maximized likelihood to an approximate marginal likelihood is the addition of the penalty term
log(n)k, where k is the number of parameters of the model.

For a detailed derivation of BIC, see, for example, https://www.researchgate.net/publication/265739543_
On_the_Derivation_of_the_Bayesian_Information_Criterion.

Example 5.3. We can determine the P-value thresholds at which AIC and BIC start to favor the more
complex model M1 (with maximized likelihood L1) over the simpler submodel M0 (with maxmized likeli-
hood L0), when the difference in the number of parameters is k and the models are nested so that the χ2

approximation to the LRT is applicable.

AIC0 > AIC1 ⇐⇒ −2 log(L0) > 2k − 2 log(L1) ⇐⇒ LRT01 > 2k ⇐⇒ P-value < 1 − Fχ2
k
(2k)

and for k = 1 this threshold is 0.157.

BIC0 > BIC1 ⇐⇒ −2 log(L0) > k log(n)−2 log(L1) ⇐⇒ LRT01 > k log(n) ⇐⇒ P-value < 1−Fχ2
k
(k log(n))

This threshold depends on n as follows:

k = 1
ns = c(10, 25, 50, 75, seq(100,10000,100))
plot(ns, -log10(pchisq(k*log(ns), df = 1, lower = F)),

t = "l", lwd = 2, ylab = "-log10 P-value", xlab = "n", ylim = c(0,3), main = "k=1") #BIC threshold
abline(h = -log10(0.157), col = "red", lwd = 2) #AIC threshold
legend("bottomright", leg = c("AIC", "BIC"), col = c("red", "black"), lwd = 2)

10

https://www.researchgate.net/publication/265739543_On_the_Derivation_of_the_Bayesian_Information_Criterion
https://www.researchgate.net/publication/265739543_On_the_Derivation_of_the_Bayesian_Information_Criterion

0 2000 4000 6000 8000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k=1

n

−
lo

g1
0

P
−

va
lu

e

AIC
BIC

This shows that AIC is much more liberal than BIC in letting additional variables in the model and the
difference increases as the information provided by the data grows with growing sample size n.

Example 5.4. Let’s see how AIC and BIC work when we fit different polynomial regression models for the
Boston data set that contains variables related to housing in suburbs of Boston in 1970s. Wet try to predict
medv (median value of a property) using lstat (regional proportion of people with lower social status).

library(MASS)
medv = Boston$medv
lstat = Boston$lstat
plot(lstat, medv, pch = "+", col = "gray")
x.points = seq(min(lstat), max(lstat), length = 1000) #grid on which to evaluate
cols = topo.colors(8)
Bos.res = data.frame(matrix(NA, ncol = 2, nrow = 8))
names(Bos.res) = c("AIC", "BIC")
for(ii in 1:8){

Bos.fit = lm(medv ~ poly(lstat, ii, raw = T), data = Boston) #ii deg polynomial
y.at.x = predict(Bos.fit, data.frame(lstat = x.points))
lines(x.points, y.at.x, col = cols[ii], lty = ii, lwd = 2)
Bos.res[ii,] = c(AIC(Bos.fit), BIC(Bos.fit))

}
legend("topright", leg = 1:8, col = cols, lwd = 2, lty = 1:8)

11

+
+

++
+

+

+
+

+
+

+
+

++
++

+

+
+

+

+

+

+ +++
+

+
+

+

+
+ ++ +

+ ++
+

+
+

+ + +
+
+ +

+
+

+++

+ +

+

+

+

+

+
+ +

+

+
+

+

+
+

+

+
+

+
++ ++

+ ++ ++

+
+++ +

+
+++

+

+++
+

+

+

+

+

+

+

++

+ ++ + +++ +
++

+++ +
+

+ ++
++ +

++
+

++
+

+

++
+

+
+

+++
+

+
+ ++

+
+

+
+ +

+
+

+
+

+
+

++
+

+

+ +
+

++ +

+
+

+

+++

++
+++

+

++

+

+
+

++

+

+
+

+

+
+

+
+

+

+

+
+

+

+
+

++
+

+

+

++

+
+

+
+

++
+

+

+
++ +

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+ + +
+

++

+ +

+
+

++
++

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

++
+ +

+
++ ++

+

+

+

+

+
+

+

+
+

++
+

+

+

+
+

+

+ +

+
+

+
+

+

+

+
+

+

+

+

+
+

+

+
+

+
+

+ +
+

+
+

++
+

+

++ + +
+

+
+

+
+

+ + + ++
+ ++

+

+

+

+

+ +

++
+
++

+

+

+
+

+
++ +

+

++
+

+

+

++

+++ ++

+ ++ ++ +
++ + + +

++
+

+
++

+

+

+
+ ++ +

+
++++

+
+ +

+

+

+

+

+

+
+ ++

+++
++ +

+
+

+

++
+

++ + +

+ +
+

+
+ +

+ + +

+
+

++
+

++
+

+ + ++
++

+
+++++

+
++

++ + + + +++ ++
+

+

+ +
+

+
+

++++
+ ++

++

+

+ +

+

++
+ +

++
+

++

+
+

+
+

+

10 20 30

10
20

30
40

50

lstat

m
ed

v
1
2
3
4
5
6
7
8

Bos.res

AIC BIC
1 3288.975 3301.655
2 3170.516 3187.422
3 3147.796 3168.928
4 3126.856 3152.216
5 3115.247 3144.833
6 3115.668 3149.481
7 3117.528 3155.566
8 3117.834 3160.099

We see that both AIC and BIC are minimized by the 5th degree polynomial, so this would be the best
model according to these criteria. This would be the bias-variance compromise here: The smaller degree
polynomials do not explain the data well enough and higher degree polynomials start to overfit. We could
also check whether the 5th degree polynomial gives the smallest test error in a test set, but for that we
would need to first split our data into separate training and test sets. (We will later look how to do this
with cross-validation.)

READ: 6.1.1-6.1.2 Subset selection from ISL.

• What are problems with the best subset selection?
• What are advantages of stepwise selection methods?

Stepwise regression

By using, for example, either of AIC or BIC, we could compare and rank different regression models even
with different numbers of parameters. When there are p predictors, there are 2p different subset models,
and evaluating them all using best subset selection becomes impossible already when p gets to the range of
20-30. Instead, a simple way to search for a top model is through a stepwise procedure where we start from

12

https://hastie.su.domains/ISLR2/ISLRv2_corrected_June_2023.pdf.download.html

the empty model, we evaluate putative additions of all possible predictors that are not yet in the model
and choose the one which gives the optimal value for the criterion. We continue this until no new predictor
improves the model according to the criterion. This procedure is called forward selection. We could also
start from the full model and by backward selection start dropping terms that are not useful according to
the evaluation criterion. We may also add a possibility at each step to either drop some existing predictors
or add new ones in hybrid selection. Note that in both forward and backward selection there are at most p
steps and hence at most 1

2 (p2 + p) models to fit, compared to 2p models in best subset selection.

Let’s see how to do these procedures in R using the step() function. We currently have our linear regression
model stored in lm.fit where we had fit p = 70 predictors of which only the first four truly affected the
outcome. We do not plot the full output of these functions here, but you could see them by removing trace
= 0 from the code blocks.

aic.back = step(lm.fit, direction = "backward", k = 2, trace = 0)
k = 2 corresponds to AIC i.e. the penalty is 2 * #params
which variables are in the final model chosen by AIC?
aic.back.vars = names(coefficients(aic.back))
aic.back.vars

[1] "X1" "X2" "X3" "X4" "X15" "X17" "X21" "X24" "X31" "X34" "X38" "X42"
[13] "X45" "X46" "X58" "X68"

we get BIC by setting k = log(n) where n is the number of data points in regression
bic.back = step(lm.fit, direction = "backward", k = log(n.tr), trace = 0)
bic.back.vars = names(coefficients(bic.back))
bic.back.vars

[1] "X1" "X2" "X3" "X4"

We see that BIC is much more stringent and keeps only four variables whereas AIC keeps 16. Both include
the true effects and thus BIC finds exactly the true model.

We have the test set, so let’s see how these two models work in out-of-sample data. This should be our
ultimate goal to judge what is a good model. We use predict() function to apply the final model from the
step() function to the test data.

aic.back.test = predict(aic.back, newdata = X.te)
bic.back.test = predict(bic.back, newdata = X.te)
cat(paste("Test MSE for AIC back:",signif(mse(y.te, aic.back.test), 2),

"\nTest MSE for BIC back:",signif(mse(y.te, bic.back.test), 2)))

Test MSE for AIC back: 1.3
Test MSE for BIC back: 0.82

So BIC is better, as expected, because it found exactly the correct variables here. Note that the variance
in the test data was about 0.92, so the variance explained by BIC model here is 1 − 0.82/0.92 = 10.8%.
(We would expect close to 20% variance explained if the coefficients were perfectly estimated, but here the
sample size is too small for accurate estimates.)

Let’s do forward selection instead. Here we need to specify the starting model and the largest possible model.

13

aic.fwd = step(lm(y.tr ~ 0, data = X.tr), scope = formula(lm(y.tr ~ 0 + . , data = X.tr)),
direction = "forward", k = 2, trace = 0)

aic.fwd.vars = names(coefficients(aic.fwd))
aic.fwd.vars

[1] "X1" "X3" "X4" "X2" "X10" "X34" "X64" "X38" "X46" "X45" "X26"

bic.fwd = step(lm(y.tr ~ 0, data = X.tr), scope = formula(lm(y.tr ~ 0 + . , data = X.tr)),
direction = "forward", k = log(n.tr), trace = 0);

bic.fwd.vars = names(coefficients(bic.fwd))
bic.fwd.vars

[1] "X1" "X3" "X4" "X2" "X10"

Now, on top of the four correct variables, BIC gave one additional variable and AIC gave 7 variables. Let’s
test these models in the test data.

aic.fwd.test = predict(aic.fwd, newdata = X.te)
bic.fwd.test = predict(bic.fwd, newdata = X.te)
cat(paste("Test MSE for AIC fwd:",signif(mse(y.te, aic.fwd.test), 2),

"\nTest MSE for BIC fwd:",signif(mse(y.te, bic.fwd.test), 2)))

Test MSE for AIC fwd: 1
Test MSE for BIC fwd: 0.86

For BIC, forward search gave a slightly worse model than backward search whereas the opposite is true for
AIC.

Our example here was about regression where the true model was very sparse (only 4/70 predictors were
relevant). Here BIC worked much better than AIC, because BIC leads to sparser models in general. In cases
where there are more relevant predictors, each with a smaller effect size, the conclusion may be different.

In general, there is no definite rule to choose between AIC and BIC. Theoretically, BIC is asymptotically
consistent as a selection criterion. This means that given a family of models, including the true model, the
probability that BIC will select the correct model approaches one as the sample size n → ∞. This is not the
case for AIC, which tends to choose models which are too complex as n → ∞. However, this results assumes
that the true model is among the tested ones, which is unlikely to be the case in real world applications. In
practice, we may prefer AIC when a false negative finding would be considered more misleading than a false
positive, and BIC in situations where a false positive is at least as misleading as a false negative.

Example 5.5. Let’s look at the Boston data set about variables related to Housing in suburbs of Boston in
1970s. Let’s predict chas that is a Binary variable (= 1 if area is located on Charles river; 0 otherwise) using
other variables in a logistic regression model. (Note that with logistic regression we must always include the
intercept.) Let’s do forward and backward selections.

library(MASS)
Forward AIC
step(glm(chas ~ 1, family = "binomial", data = Boston),

scope = formula(glm(chas ~ ., family = "binomial", data = Boston)),
trace = 0, k = 2, direction = "forward")

14

##
Call: glm(formula = chas ~ medv + nox + crim + indus, family = "binomial",
data = Boston)
##
Coefficients:
(Intercept) medv nox crim indus
-7.72390 0.07704 5.04992 -0.13759 0.05504
##
Degrees of Freedom: 505 Total (i.e. Null); 501 Residual
Null Deviance: 254.5
Residual Deviance: 223 AIC: 233

Backward AIC
step(glm(chas ~ ., family = "binomial", data = Boston), trace = 0, k = 2, direction = "backward")

##
Call: glm(formula = chas ~ crim + indus + nox + rad + tax + medv, family = "binomial",
data = Boston)
##
Coefficients:
(Intercept) crim indus nox rad tax
-6.574906 -0.239016 0.095828 6.064839 0.189533 -0.009217
medv
0.071458
##
Degrees of Freedom: 505 Total (i.e. Null); 499 Residual
Null Deviance: 254.5
Residual Deviance: 214.5 AIC: 228.5

Backward selection found a model with a lower AIC than forward selection. Why is this? The model has
variables rad and tax on top of the variables chosen by forward selection. Let’s see what happens when we
put these two variables in the model either separately or together.

AIC(glm(chas ~ medv + nox + crim + indus, family = "binomial", data = Boston)) # AIC-fwd model

[1] 232.9887

AIC(glm(chas ~ medv + nox + crim + indus + rad, family = "binomial", data = Boston)) # add only rad

[1] 233.6105

AIC(glm(chas ~ medv + nox + crim + indus + tax, family = "binomial", data = Boston)) # add only tax

[1] 234.2564

AIC(glm(chas ~ medv + nox + crim + indus + rad + tax, family = "binomial", data = Boston)) # add rad and tax

[1] 228.4741

15

We see that adding either tax or rad alone would not decrease AIC but adding them together would decrease
AIC. This shows that stepwise search may not find the optimal model because a single step may not always
be enough to get from the current model to a region of better models, even when such a region existed.
Thus running both forward and backward search might be useful, although even together they would not
guarantee that we would find the optimal model.
What about adding interaction terms? Compact notation .ˆ2 means to include all main terms and all
pairwise interaction terms.

aic.interaction = step(glm(chas ~ 1, family = "binomial", data = Boston),
scope = formula(glm(chas ~ .ˆ2, family = "binomial", data = Boston)),
trace=0, k = 2, direction = "forward")

aic.interaction

##
Call: glm(formula = chas ~ medv + nox + crim + age + indus + rad +
tax + dis + ptratio + rm + black + medv:crim + nox:crim +
nox:age + medv:nox + medv:indus + medv:age + nox:tax + crim:indus +
indus:ptratio + age:rad + medv:dis + crim:rm + tax:dis +
nox:dis + nox:ptratio + nox:indus + nox:rm + indus:rm, family = "binomial",
data = Boston)
##
Coefficients:
(Intercept) medv nox crim age
-41.116893 1.307627 48.797826 -13.354216 1.055293
indus rad tax dis ptratio
1.119478 -0.317790 -0.036844 -20.258624 7.733194
rm black medv:crim nox:crim nox:age
-10.678576 0.023318 0.157145 36.870596 -1.696838
medv:nox medv:indus medv:age nox:tax crim:indus
-5.271692 0.117138 -0.009986 0.179881 -1.305001
indus:ptratio age:rad medv:dis crim:rm tax:dis
-0.121755 0.016140 0.255298 0.954968 -0.029716
nox:dis nox:ptratio nox:indus nox:rm indus:rm
42.764383 -15.545598 4.070428 27.408452 -0.495798
##
Degrees of Freedom: 505 Total (i.e. Null); 476 Residual
Null Deviance: 254.5
Residual Deviance: 98.23 AIC: 158.2

Why it might not be a good idea to do backward search from model with all interaction terms in it?
For the chosen interaction model we see a lot lower AIC than with the main effects. Can we see whether this
model truly performs well and does not just overfit to the data? That is a bit late now, since the model has
been chosen in the whole data set. Even if we re-estimated the effect sizes of the predictors and interactions
in only some subset of the data and applied it to another subset, we would still underestimate the true test
error that we would expect in an independent test data set.
Question: How could we compare performance of the models when we do not have an extra test data
set and do not want to split our valuable data for a separate test set, which would decrease our power to
estimate a good model because the sample size in the training data would get smaller after a test data set
has been removed?

READ: 5.1.1-5.1.4 Cross-validation from ISL.

• What does cross-validation attempt to do?

16

http://faculty.marshall.usc.edu/gareth-james/ISL/

• What is LOOCV and K-fold CV and how do they compare?

Cross-validation

The idea of cross-validation (CV) is to mimic the split of data into training and test sets, without completely
ignoring any part of the data in the training part. In K-fold CV, we split the data into K parts, and carry
out the following procedure separately for each part j = 1, . . . , K:

• Use the other parts of the data except part j to train the model.
• Test the trained model on part j and record the value of the test measure, such as MSE for continuous

outcome variables or correct classification rate for discrete outcome variables.

After all K parts have been used as a test set

• Average the test measure over all K runs.

By carrying out CV for different models, we approximate each model’s performance on out-of-sample test
data. Typically, K = 5 or K = 10 are used and by keeping K rather small we avoid large variance due to
small validation sets, but still have multiple parts in order to avoid the bias present in any one split of the
data set. The case K = n is known as leave-one-out cross-validation. In this case, for observation i, the fit
is computed using all the data points except i.

Let’s try cross-validation on our original data with n = 150 training samples and p = 70 predictors. The goal
is to estimate the test error of the model that includes all variables by applying CV on just the training data
set. CV is implemented in cv.glm() function of the boot package and requires a model fitted by glm(),
that by default fits a linear model with Gaussian errors. Thus, by default, glm() fits the same model as
lm() but the output is a bit different as glm() is also applicable to other regression models such as logistic
regression (using glm(,family="binomial")).

library(boot) # has cv.glm function to do CV for (generalized) linear models fitted by glm()
glm.fit = glm(y.tr ~ 0 + ., data = X.tr) # linear model w/o intercept fitted by glm
Apply K=10 fold CV using MSE as the error measure
outputs 2 values: 1 = raw CV estimate and 2 = adjusted CV estimate of prediction error.
cv.glm(data.frame(y.tr, X.tr), glm.fit, K = 10)$delta

[1] 1.999163 1.896178

var(y.tr) # for comparison with CV'd MSE.

[1] 1.083105

We estimate a test MSE of about 2.0 which is nearly 100% larger than the variance of the training data.
Thus, CV is telling that it is not a good idea to fit this kind of linear model (p = 70) with this small of a
sample size (n = 150) as the estimated MSE is much larger than the variance of the outcome variable. In
other words, the model is badly overfitted to the training data and completely useless when applied to some
unseen data.

Input for cv.glm() can also include a cost function of two vector arguments that will be used as the error
measure. The first argument to the cost function should correspond to the observed responses and the
second argument should correspond to the predicted or fitted responses from the generalized linear model.
The default error measure is MSE, and it was used above.

17

The Wrong and Right Way to Do Cross-validation (from ESL 7.10.2) Consider a problem with
a large number of predictors. A typical strategy for an analysis might be the following

1. Screen the predictors: find a subset of “good”” predictors that show fairly strong (univariate) correla-
tion with the outcome.

2. Using just this subset of predictors, build a multivariate model.

3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error
of the final model.

Is this a correct application of cross-validation?

The problem is that the predictors above have an unfair advantage in the current data set as they were
chosen in step (1) on the basis of all of the data points. Leaving data points out in CV after the variables
have already been selected does not correctly mimic the application of the model to a completely independent
test set, since the chosen predictors “have already seen” the left out samples.

Here is a correct way to carry out cross-validation in this example:

1. Divide the samples into K cross-validation folds at random.

2. For each fold k = 1, 2, . . . , K

• Find a subset of “good” predictors that show fairly strong (univariate) correlation with the outcome,
using all of the data points except those in fold k.

• Using just this subset of predictors, build a multivariate model, using all of the data points except
those in fold k.

• Use the model to predict the outcome for the data points in fold k and record the error measure.

The error estimates from step 2 are then averaged over all K folds to produce a cross-validation estimate of
the prediction error. In general, with any multi-step modeling procedure, cross-validation must be applied
to the entire sequence of modeling steps. In particular, test samples must be “left out” before application of
any selection or filtering steps that use the outcome variable.

Using observed data for deriving sampling distributions

Cross-validation is an example of resampling methods where we use our observed data to not only fit some
model but also to evaluate its performance. When we have a large number of observations from the target
population, then several other methods with similar spirit can also be very useful.

When we considered Q-values, we already saw how the observed P-value distribution can be used to infer
π0, the proportion of true nulls, and further to approximate local false discovery rate for any one P-value.

Two other common applications are permutation testing and Bootstrap.

Note the difference between these methods and the traditional way of stipulating a theoretical distribution
for a test statistic and then comparing the observed test statistic to the theoretical distribution.

18

Permutation testing In permutation testing we permute the indexes of sets of variables with respect to
each other in order to break all associations between the sets while maintaining all the structure within the
sets. For example, suppose that I want to fit a non-linear spline model to predict disease risk (y) from set
of 20 clinically measured variables (X). We don’t have a reliable theoretical null distribution to know what
kind of MSE a complex and highly non-linear prediction method would give under the null hypothesis of no
association between y and X. In permutation testing, we would permute the elements of the y vector and
run the method on the permuted data exactly as it was run on the original data. By collecting the MSE
values from 1000s of permuted data sets we would form an idea of the null distribution of MSE from this
procedure. Importantly, we would maintain a realistic structure among the predictors X, since the columns
of predictor matrix X are not permuted. We only permuted away the possible association between y and
X, not between any two columns of X.

Bootstrap Bootstrao is considered later on this course. One can read about it from section 5.2 The
Bootstrap of ISL.

19

https://hastie.su.domains/ISLR2/ISLRv2_corrected_June_2023.pdf.download.html

	The Bias-variance trade-off
	READ: 6.1.1-6.1.2 Subset selection from ISL.
	Stepwise regression
	READ: 5.1.1-5.1.4 Cross-validation from ISL.
	Cross-validation
	Using observed data for deriving sampling distributions

